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Abstract Understanding human mobility has implications for several areas, such as immigration, disease control,
mobile networks performance, and urban planning. However, gathering and disseminating mobility data face chal-
lenges such as data collection, handling of missing information, and privacy protection. An alternative to tackle
these problems consists of modeling raw data to generate synthetic data, preserving its characteristics while main-
taining its privacy. Thus, we propose MobDeep, a unified framework to compare and evaluate generative models
of time series based on mobility data features, which considers statistical and deep learning-based modeling. To
achieve its goal, MobDeep receives as input statistical or Generative Adversarial Network-based models (GANs)
and the raw mobility data, and outputs synthetic data and the metrics comparing the synthetic with the original
data. In such way, MobDeep allows evaluating synthetic datasets through qualitative and quantitative metrics. As
a proof-of-concept, MobDeep implements one classical statistical model (ARIMA) and three GANs models. To
demonstrate MobDeep on distinct mobility scenarios, we considered an open dataset containing information about
bicycle rentals in US cities and a private dataset containing information about a Brazilian metropolis’s urban traf-
fic. MobDeep allows observing how each model performs in specific scenarios, depending on the characteristics
of the mobility data. Therefore, by using MobDeep researchers can evaluate their resulting models, improving the
fidelity of the synthetic data regarding the original dataset.
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1 Introduction

Location-based technologies embedded in vehicles and mo-
bile devices have improved the understanding of human mo-
bility [Gonzalez et al., 2008]. In this sense, information and
communication technologies (ICT) and Internet of Things
(IoT) devices, have become valuable allies for managers in
urban centers [Zhang and Lu, 2020]. For instance, mobility
data already allowed researchers to identify improvements in
the city’s infrastructure [Hillier et al., 2009; Kitamura et al.,
2000], to assess how to mitigate natural disasters through
crowd control [Helbing et al., 2007; Johansson et al., 2008],
and to analyze the propagation of diseases such as malaria
[Huang and Tatem, 2013], Ebola[Gomes et al., 2014], and
Covid-19 [Kraemer et al., 2020].
These location embedded devices produce temporal-

dependent data, also known as traces [Mota et al., 2014],
whichmay contain GPS-Position over time, trajectories, tran-
sitions between base stations of a wireless network [Zheng
et al., 2009; Malandrino et al., 2018], transitions between
technical conference sessions [Scott et al., 2009; Ribeiro
et al., 2021], geo-localized social networks posts [Silva et al.,
2014], and traffic data applications. However, traces are
prone to errors, missing data, and more important, may con-
tain sensitive data, which limit their public sharing due to pri-
vacy concerns.

The implication of mobility in a given scenario can be as-
sessed through synthetic mobility models or by real mobil-
ity datasets traces. Synthetic mobility models range from en-
tirely random to models that aim to mimic social character-
istics [Solmaz and Turgut, 2019]. However, although syn-
thetic models allow studies on a larger scale with more re-
peatability, their realism is still limited. On the other hand,
real mobility data allow understanding the dynamics of mo-
bility effects with a greater degree of realism. There is an on-
going effort to make mobility data available in the public do-
main [Piorkowski et al., 2009; Luca et al., 2021].
Mobility data can be modeled as a time series where each

observation is ordered in time, such as position or traffic in
a road, in each instant. To overcome the aforementioned is-
sues and scale mobility trace datasets, classical time series
analysis, such as an AutoRegressive Integrated Moving Av-
erage (ARIMA) have been used tomodel and reproduce time-
dependent and predictable data [Song et al., 2010].
Recently, Generative Adversarial Networks (GANs) have

been used to generate synthetic data that mimics the charac-
teristics of the real dataset of images and videos [Goodfel-
low et al., 2014]. GANs consist of simultaneously training
a generative model and a discriminative model. The genera-
tive model captures the distribution of the data, while the dis-
criminative model calculates the probability of whether an
input comes from the generative model or the training base.

https://orcid.org/0000-0002-0298-9006
mailto:iran.ribeiro@edu.ufes.br
https://orcid.org/0000-0001-7612-9650
mailto:gc@inf.ufes.br
https://orcid.org/0000-0001-9314-4035
mailto:arocha@ic.uff.br
https://orcid.org/0000-0002-8341-8183
mailto:vinicius.mota@inf.ufes.br


Towards a Framework to Evaluate Generative Time Series Models for Mobility Data Features Ribeiro et al. 2024

Themain advantage of GANs relies on the ability to learn the
main characteristics of a real dataset and generate other (syn-
thetic) datasets that preserve such characteristics. For this
reason, GANs have been used to generate realistic images
and videos, text-to-videos, data imputation, and, generation
of time series in the most diverse application domains [Gupta
et al., 2018; Yoon et al., 2019; Song et al., 2019; Zhang et al.,
2022; Rao et al., 2020; Jauhri et al., 2020; Qu et al., 2020;
He et al., 2020].
However, each scenario may have its specificities, such

as different mobility patterns, weekdays and weekends, and
level of granularity of the movement. Such heterogeneity of
scenarios hinders a unique solution for mobility time series
modeling. Another challenge regards how to measure the
model’s suitability to generate synthetic mobility datasets. A
challenge that persists concerning the use of GANs for time
series is how to evaluate the fidelity and utility of the data
generated by a GAN model.
By fidelity, we mean that the synthetic data must present

similar statistical distributions to the real data. Furthermore,
it keeps key correlations between data headers and time. For
instance, if real data presents peaks or cycles, the synthetic
data must also present similar behavior. On the other hand,
by utility, we mean that a study based on synthetic data must
produce similar results as real data. For instance, a Machine
Learning-based model trained with synthetic data must deal
with the real data.

We can summarize the challenges on generative time se-
ries modeling for mobility features as: i) to deal with and pre-
serve the temporal and spatial characteristics of mobility; ii)
to deal with sensitive data by providing a model instead of
real data; iii) how to specialize the techniques used for mod-
eling time series; and iv) how to measure and evaluate the re-
sulting dataset based on proposed models.
To face these challenges, we propose the MobDeep, a

deep-learning-based framework for generative modeling of
time series of mobility data features, which allows evaluat-
ing and comparing the resulting models. Furthermore, Mob-
Deep aims to respond which modeling technique fits better
for a specific scenario. In such a way, MobDeep provides a
higher level of generalization concerning data characteristics.
To tackle the challenge of evaluating the fidelity and utility
of a model, we propose a set of quantitative and qualitative
metrics, which allow comparing the models. Given a dataset
of mobility data features as input, MobDeep fits several mod-
els by using a set of algorithms. The generative model must
generate datasets with acceptable variability while respecting
the temporality characteristics. Each model generates a num-
ber of distinct synthetic datasets. MobDeep compares the av-
erage and standard deviation of residual error with the origi-
nal dataset to measure this variability. The qualitative analy-
sis allows visualizing the variability of the resulting datasets.
Figure 1 depicts an overview of the proposed framework.
MobDeep implementation considers that mobility features

data can be, in some cases, predictable and regular. There-
fore, it implements the ARIMA model as a baseline for
comparisons against deep learning-based models. In addi-
tion, it provides three time-series generative models based
on GANs.
To assess MobDeep feasibility for data modeling and data

generation, we used MobDeep to model a public and a pri-
vate dataset with different characteristics: Bikesharing, an
open dataset with information on shared bicycle rentals in
USA cities, whichwe aimed tomodel the bike renting around
the stations; and VixCity, a dataset provided by the city hall
of Vitória, Brazil, with real-time traffic information, in which
we aimed to mimic the traffic jams flows. The utility of the
synthetic datasets can be measured by training the prediction
of bike rented in each station, for Bikesharing, or traffic flow
for a given street, for VixCity, using the respective synthetic
dataset and testing the model on the real data, that is, train on
synthetic and test on real data (TSTR).
For Bikesharing, two out of the three GAN-based models

were able to create synthetic datasets similar to the real one.
Meanwhile, for the traffic flows generation, we observe that
different GAN-based models perform better with a high traf-
fic intensity in the streets and avenues of the city. With this
approach, MobDeep allows determining which models pro-
duce data that resembles the original dataset while also incor-
porating sufficient variability.
The contributions of this work are summarized below:

• We present a unified framework to evaluate the per-
formance of deep learning-based models to reproduce
mobility features. We considered a classic stochastic
model, ARIMA, as a baseline and distinct GANs mod-
els to generate synthetic time series with characteristics
of the original dataset.

• We demonstrate that generative modeling techniques
for time series can reproduce time series of mobility
data features, capable of generating data similar to the
original dataset.

• By adopting MobDeep, data holders of private datasets
containing sensitive information could release only sam-
ples of synthetic dataset or their generative models.
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Figure 1. High-level view of MobDeep Framework. Given a real dataset
containing mobility features and a set of generative algorithms and its pa-
rameters, Mobdeep fits a generative model for each algorithm and generates
a set of synthetic data with it. Finally, Mobdeep evaluates the synthetic data
generated by each algorithm, comparing the fidelity and utility of each set
of synthetic data. Therefore, researchers can compare which deep learning
technique performs better for a specific scenario.

The rest of this article is organized as follows. Sec-
tion 2 presents the background and motivation. The related
work are presented in 3. Section 4 presents the design and
overview of MobDeep. We describe the dataset, methodol-
ogy, and time series GANs for generating time series data in
Section 5. The evaluation of MobDeep in the scenarios pro-
posed is presented in Section 6. Finally, Section 7 concludes
the paper and discusses future works.
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2 Background and Motivation
This section discusses the background to model mobility
data. First, we considered mobility data a type of time series,
which can be modeled by Generative Adversarial Network,
a Deep Learning technique. Finally, we present the limita-
tions of state-of-the-art concerning mobility data modeling,
specifically time series data of mobility data features, using
deep learning and how such limitations motivate this work.

2.1 Time Series
A time series X = [x1, x2, . . . , xn] is a set of observations
ordered in time, usually analyzed as a stochastic process
[Brockwell and Davis, 2009]. A time series has four main
characteristics:

• Seasonality: variations in data observations over a spe-
cific time or season.

• Cycles: variations that can occur at different times and
time intervals.

• Trend: a change in the time series mean occurring over
a long time. Time series average can increase (positive
trend), decrease (negative trend), or stay null (horizon-
tal trend).

• Irregularities: random changes in the data with no
identifiable pattern.

Furthermore, a stochastic process can be stationary or not,
which means whether the statistical properties of the process
change over time or not. In practice, most of the time series
are not stationary, which requires applying some technique,
such as differencing, to remove variations in the statistical
properties of the time series [Brockwell and Davis, 2009].
A common approach to model and predict values in time

series relies on autoregressive models, which assumes that
the present value of the series depends on past values to-
gether with a random error [Brockwell and Davis, 2009].
In this sense, an autoregressive integrated moving average
(ARIMA) is a common approach to model and forecasting
non-stationary time series.

2.2 Deep Learning Basics
Machine learning algorithms are techniques capable of ex-
tracting (or learning) relevant information about a dataset
and, subsequently, making predictions based on the learned
information. In this context, a Deep Learning algorithm can
be defined as a Neural Network with numerous hidden lay-
ers in its architecture or, from a learning standpoint, a learn-
ing process done through several layers of data representa-
tion [Chollet et al., 2018].
Recurrent Neural Networks (RNN) are a type of deep

learning architecture proposed to model sequential data in
which past observations influence future observations (e.g.,
time series). The main difference between an RNN and a
Neural Network is their recurrent connections, where the out-
put signals of a layer are also inputs to the same layer. In
this sense, the Long Short-Term Memory (LSTM) was intro-
duced in 1997 by Hochreiter and Schmidhuber [1997], dif-
fering from a conventional RNN by the presence of memory

cells, input, output, and forgetting gates, which are the main
components of an LSTM block.
The Generative Adversarial Networks (GANs) is a

framework proposed by Goodfellow et al. [2014] to opti-
mize the training of generative models. Through a min-max
game, two competing neural networks are trained simulta-
neously and indefinitely: a Generator (G), a multilayer per-
ceptron (MLP) that generates false data based on random in-
puts, and a Discriminator (D), another MLP that classifies
the generated data, considering a real dataset. The objective
of G is to generate samples whose distribution is so close to
the real data distribution that D cannot distinguish one from
another. The framework was initially evaluated with the
Toronto Faces Dataset (TFD) dataset [Susskind et al., 2010],
a dataset of gray scale images of peoples faces, and became
very successful in the computer vision field [Karras et al.,
2017; Brock et al., 2018].
Despite their performance, GANs are difficult to train

since it is hard to infer the generated data’s quality without
visually analyzing them periodically. Consequently, during
training, G can generate statistically indistinguishable data
from real ones that make no sense to a human observer. Thus,
training a GAN for more iterations does not imply better re-
sults.

2.3 Generative Time Series: Use cases and ap-
plications

Generative time series considers the temporal correlation of
the original data, while must be able to generate data with
some variability. Since GANs were originally proposed for
images, in high dynamic range across samples, traditional
GANs tend to output similar samples[Lin et al., 2020]. In
the domain of images and videos, Inception Score (IS) and
Fréchet Inception Distance (FID) are popular metrics to as-
sess the quality of fake data produced by GANs [Borji, 2022].
However, metrics to assess fake images are limited for syn-
thetic time series, due to the temporal dimension [García-Jara
et al., 2022]. Therefore, the application and feasibility of
Time Series GANs to provide models useful for data-driven
research depends on the fidelity and utility of the synthetic
data produced by the model.
The fidelity of a synthetic dataset can be measured by the

distance or divergence of its probability distribution from the
real dataset, such as Kullback-Leibler Divergence, Jensen-
Shannon Distance, and Wasserstein Distance [Cunha et al.,
2022]. However, even these metrics can fail to capture the
temporal correlation of the data [Borji, 2022]. Therefore, we
claim that qualitative analysis based on visual inspection of
random synthetic samples and real data is mandatory.
The utility of a synthetic dataset has been commonly mea-

sured by a metric Train on Synthetic - Test on Real (TSTR),
which means training a neural network model with the syn-
thetic data and testing on real data. For instance, a classifier
is trained using a synthetic dataset that is subsequently tested
on real data. Assuming that the trained model achieves satis-
factory results when compared with a model trained with the
real data, it means that the GAN model learns the character-
istics of the data, and synthetic data can be used for research
as the real one.
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Despite being a relatively recent technology, we present
several uses cases of generative GANs for time series1.
Music: One of the earliest GANs designed for generating

time series was the C-RNN-GAN [Mogren, 2016]. Its ar-
chitecture resembles a standard GAN, but with LSTMs and
fully connected layers serving as the Generator and Discrim-
inator. This model was specifically trained to generate songs
from classical composers in the MIDI format. During train-
ing, the songs were encoded into numerical representations,
enabling the learning process for the Generator to generate
fake songs and the Discriminator to classify them. To as-
sess the model, the author compared music features, includ-
ing polyphony, scale consistency, repetitions, and tone span,
between real and synthetic datasets.
Health: Given that initial conditions can influence the

data of a time series, [Esteban et al., 2017] proposed the
RGAN (for real-valued data) and the RCGAN (conditional
GAN). Unlike the C-RNN-GAN, the proposed models are
composed of only LSTMs. The general objective was the
generation of medical data. In addition to the conditional
aspect mentioned above, the privacy provided to the data
was an essential factor for the proposed model. To demon-
strate the model capabilities in potential hospital scenarios,
the authors used simulated datasets of sine waves and smooth
signals, along with the ICU dataset that contains medical
records. To evaluate the model’s performance, the authors
used the Maximum Mean Discrepancy (MMD) and the pro-
posed scores Train on Synthetic, Test on Real (TSTR), and
Train on Real, Test on Synthetic (TRTS).
Networking: More recently, in the context of networks,

Doppelganger [Lin et al., 2020] was proposed as an alter-
native for sharing network data, represented by multivari-
ate time series. The authors compared Doppelganger with
RGAN, TimeGAN, and Naive GAN, in terms of fidelity
and utility, using TSTR in conjunction with several machine
learning algorithms. In this sense, Doppelganger was used
by NetShare [Yin et al., 2022], an end-to-end tool for shar-
ing network datasets, such as flows and packet data. The effi-
ciency of NetShare was demonstrated through several quan-
titative measurements and by testing the synthetic dataset
against several classification and prediction algorithms.
Mobility: As mobility data is highly predictable and time-

dependent, we can approach the modeling of mobility data
features as a time series generation problem. However, in the
literature, GAN-based techniques for mobility generation of-
ten utilize approaches with limited capabilities to handle the
temporal dependencies of the data. One reason for this is the
notable success of GANs in generating static data, such as im-
ages. However, this approach proves inadequate for address-
ing the dynamic nature inherent in mobility data, potentially
resulting in models with restricted generalization across var-
ious scenarios. In this sense, recent work have showcased
how modeling mobility as time series can improve the data
generation. For example, the work by Feng et al. [2020]
presents a GAN to model peoples’ mobility trajectories dur-
ing the COVID-19 pandemic. Similarly, Yu et al. [2020]
presents a GAN to simulate taxi rides in urban area in Bei-

1Interested readers can refer to generative time series surveys [Navidan
et al., 2021; Zhang, 2003; Iglesias et al., 2023] for further details.

jing, China. These advancements in time series modeling us-
ing GANs, indicate that diverse types of time series can be
effectively modeled, thereby offering the potential to capture
a broad range of mobility data features.
General purpose: From the point of view of time se-

ries data modeling, a general purpose model for times se-
ries generation would be domain independent (i.e., if the
data is time-dependent, it should be possible to build a GAN
model capable of learning its distributions). Although this
issue was briefly discussed in C-RNN-GAN and RGAN,
the first general purpose model, named TimeGAN, was pro-
posed by Yoon et al. [2019]. TimeGAN has two additional
components besides the data generator and discriminator:
the Embedding and Recovery network so that the network
learns the internal temporal dependencies of the data through
its low-dimensional representations. The authors compare
TimeGAN with the previous two models using four datasets
with different characteristics (periodicity, discreteness, noise
level, regularity of time steps, and correlation across time
and features) to test TimeGAN’s performance. The evalua-
tion includes three types: i) visualization (t-SNE and PCA)
to compare the distributions in a 2-dimensional space; ii) dis-
criminative score, where a post-hoc time series classification
model is trained to distinguish between sequences from orig-
inal and generated datasets; and iii) predictive score, where
a post-hoc sequence-prediction model is trained on the gen-
erated dataset and tested on the original one. More recently,
Jeon et al. [2022] proposed the GT-GAN model to deal with
regular time series, in which each time interval has an obser-
vation, and irregular time series, where there are no observa-
tions in one or more time intervals. Among the models in the
literature, this was one of the first to deal with the problem of
irregularity in time series, which is common in several real-
world problems. GT-GAN was compared with several state-
of-the-art models for generating time series, considering vi-
sual (T-SNE) and quantitative (discriminative and predictive
scores) evaluations.
We highlight the C-RNN-GAN was of the first generative

time series GANs. Therefore, we considered C-RNN-GAN
as a baseline to evaluate other generative models. Mean-
while, R-GAN have gained attention as one of the main gen-
erative time series model [Brophy et al., 2023]. Finally,
TimeGAN represents a general purpose generative time se-
ries. Our proposed framework considers these three genera-
tive time series GAN adapting them to focus on the problem
of generative mobility synthetic datasets.

2.4 Problem Formulation
Let D = {d1, d2, · · · , dn} be a multivariate time se-
ries dataset, where each di represents a tuple di =
{ti, {f1, f2, · · · , fm}} with a timestamp ti for which ti <
ti+1 and a set of features fm. Furthermore, consider M =
{M1, M2, · · · , Mn} generative time series models, where
each Mi receives D as input to fit a model able to produce
synthetic datasets ZMi . The problem can be defined as:
Given a set of M generative models, how to compare and

evaluateM fitted models according to three main criteria: i)
fidelity, as Z, a set of ZMi

synthetic datasets generated by
a specific trained model Mi, must be similar to D consid-
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Table 1. Related work. Note that our method use different GANs models and each one of them have its architecture
Application Reference Generator Discriminator Data type

Trajectories

[Song et al., 2019] CNN CNN Images
[Zhang et al., 2022] CNN CNN Images

[Feng et al., 2020] Embedding, concat,
self-attention, Linear Embedding, CNN Time series

[Rao et al., 2020] Embedding, Feature Fusion,
LSTM, Regression

Embedding, Feature Fusion,
LSTM Time series

Rides
[Yin et al., 2018] Dense Dense Matrices
[Yu et al., 2020] LSTM LSTM Time series
[Jauhri et al., 2020] Dense Dense Images

Contacts
[Lei et al., 2019] GCN, LSTM, FC GCN, LSTM, FC Temporal graphs
[Zhang, 2019] Dense, LSTM LSTM Temporal graphs
[Qu et al., 2020] MLP MLP Temporal graphs

Urban traffic [He et al., 2020] MLP MLP Matrices
Our method Agnostic Agnostic Time series

ering its distributions and temporal characteristics; ii) vari-
ability, as is desired that each dataset ZMi

∈ Z produced by
Mi should be distinct among themselves and; iii) utility, ma-
chine learning algorithms, such as those for predictions, clas-
sifications, and clustering, trained with the synthetic dataset
must present good results when applied to the real dataset.
Although the above general problem definition fits for

any generative time series model, this work focuses on mo-
bility features, since mobility datasets usually contain sensi-
tive data or the features that are time-dependent among them.
For instance, a city traffic dataset containing a tuple d1 =
{1, {10, 20, 30, · · · }} representing that in time t = 1 there
are 10, 20, and 30 cars in streets 1, 2, and 3, respectively, as
features. In such scenario, the traffic jam on a street reflects
on other streets.

3 Related work
We classify the related work on generative gan-based mod-
els of mobility dataset into four categories: trajectories gen-
eration, transport data generation, contacts generation, and
urban traffic generation. In this sense, Luca et al. [2021]
present an in-depth study on the generation of trajectories
and urban traffic, using different deep learning models.
Trajectories generation: this category aims at generat-

ing trajectories made by people or vehicles from geolocation
datasets. Early works employed similar methodologies to ap-
proach the problem: the region from the actual trajectories
was modeled as an image, allowing the data to be viewed as
a N ×N matrix. Thus, this approach allows the application
of already known GANmodels for image generation. For ex-
ample, Song et al. [2019] use locations of people in 5 cities
of South Korea, and Zhang et al. [2022] use data of taxi tra-
jectories. Using a distinct approach, Feng et al. [2020] pro-
poses a specific GAN architecture for trajectory generation.
Concerning privacy issues, Rao et al. [2020] proposes the
LSTM-TrajGAN, a model for generating trajectories based
on GPS locations.
Rides generation: this category addresses the generation

of geolocation data produced by taxis and riding-sharing ser-
vices (i.e., origin and destination points of a ride). In Yin
et al. [2018] the authors focus the study on privacy preserva-
tion of the generated data using a vanilla GAN with a loss
function based on Wasserstein distance [Vallender, 1974].

In Yu et al. [2020] the authors simulate taxi demand data,
considering the origin and destination locations of users, us-
ing GANs composed by Conditional GANs (CGANs) and
LSTMs. For the ride-sharing problems, Jauhri et al. [2020]
developed a model of ride request generation using datasets
from 4 cities in the USA. The data is modeled as a sequence
of images, and GANs models for image generation are used.
Contact generation: works in this category investigate

the simulation of contacts among nodes (people, devices, or
vehicles) in a network. For example, Lei et al. [2019] model
mobility data as a dynamic graph and combine a GAN with
a Graph Convolutional Network (GCN) to simulate the con-
tacts made within the network. On the other hand, consider-
ing a dynamic network structure, Zhang [2019] models the
contacts between passengers of the Washington Metro sys-
tem using LSTM-based GANs. Considering the data privacy
in a person-to-person contact dataset, Qu et al. [2020] pro-
poses a GAN with differential privacy during the mobility
data generation, ensuring a higher level of privacy compared
to other anonymization methods.
Urban traffic generation: to the best of our knowledge,

only He et al. [2020] refers to the generation of data regard-
ing the traffic dynamics of a city. The authors use GANs to
retrieve general traffic information based on specific intersec-
tions between streets in the studied region. The data used are
static and modeled as matrices. Since our approach seeks to
generate mobility data referring to urban traffic data (number
of bicycles rented in a time interval and number of cars on
the streets in a time interval), the present falls in the category
of urban traffic generation. Our approach, however, consid-
ers the potential of using GAN models to generate time se-
ries data in this context, with efficiency and a sufficient level
of generalization for such type of mobility data.
Table 1 presents a non-exhaustive list of related works,

providing a comparison of their main characteristics. Each
row shows the main paper’s application, the reference, the
GAN’s main components on the generator and discriminator,
and the data type expected by the model. Note that, although
we do not propose a new architecture, we define our method
as agnostic, since we can use any time series GANmodel for
the data generation. In summary, we provide a method of
training and evaluating different time series GAN models as
a way of easing the training and generation process, as well
as providing evaluation techniques more consistent for time-
dependent data.
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4 MobDeep Design
In this section, we describe the main components of Mob-
Deep, the models used to generate the synthetic data and
present an overview of the metrics we use to evaluate the
trained models.

4.1 Overview
We propose a framework to train and evaluate deep learn-
ing models for modeling time series of mobility data features
(MobDeep). To achieve its goal, MobDeep receives a time
series of mobility data features as input, attempts to fit the
dataset model with an autoregressive (baseline) and a set of
deep learningmodels (C-RNN-GAN, RGAN and TimeGAN,
described previously), and generates nz synthetic datasets
for each model. As a result, it allows identifying which tech-
nique fits better for a specific dataset. Figure 2 depicts Mob-
Deep’s components:

• Model Generator: generates a fitted model, taking
as input a dataset D of dimensions n × t × m (n
days of observations, t observations per day, and m
features per observation) and a model Mi ∈ M =
{M1, M2, ..., Mn}, where Mi is the ith model used.
Furthermore, given that each Mi may require different
parameters’ setup, a setup file (PM ) is also given as a
parameter to the Model Generator. PM has, besides the
model’s hyperparameters, specific information to ease
the training and evaluation of a Mi, for example, the di-
rectory where the generated data and plots will be saved.
The Model Generator Component returns a generative
model Mi.

• Data Generator: given a generative model Mi and the
number of desired datasets (nz), it outputs a set Z =
{ZMi , ..., ZMn} of synthetic datasets, where ZMi will
have nz samples.

• Model Evaluation: evaluates the residual error of
datasets generated by a specific Mi model or by a set of
Mi trained models (Mi).

Model Generator

Data Generator

Model Evaluation
Qualitative

Quantitative

Raw Data

Residual errors

M1 M2

…

Mn

Mi

ZM

Z1

Zn

Zi

i

Figure 2. The overview of MobDeep framework.

Details of each component implementation are shown in
Algorithm 1. Due to the number of parameters in the models,
each component works based on a setup file (PM ), which de-
fines a list of model parameters and other information to ease
the training and evaluation, for example, a specific folder to

Algorithm 1: data generation and evaluation.
Input: Dataset D, Model Mi, Model setup PM

1 function ModelGenerator(D, Mi, PM , np):
2 PM ← read parameters list from Setup file;
3 for j := 0 to np do
4 Mi[j]← train model Mi using P j

M and D;
5 returnMi;
6 end function
7 function DataGenerator(nz , Mi,Mi):
8 if Mi is defined then
9 for j := 0 to nz do
10 z ← generates a sample of D using Mi;
11 ZMi

[j]← z;
12 Z[Mi]← ZMi ;
13 else
14 foreach Mi ∈Mi do
15 for j := 0 to nz do
16 z ← generate a sample of D using Mi;
17 ZMi

[j]← z ;
18 Z[Mi]← ZMi

;

19 return Z;
20 end function
21 function ModelEvaluation(D, Z, nz):
22 SIW

D ← compute SI of D using Equation 4;
23 for ZMi

∈ Z do
24 for j := 0 to nz do
25 z ← ZMi

[j];
26 Resj ← residual error of z (Equation 1);
27 Plot residual error for Resj ;
28 SIW

Z ← compute SI of z;
29 Compare SIW

Z against SIW
D ;

30 end function

save the model, its synthetic data and eventual plots. This
information allows MobDeep to generate models (Mi) with
distinct parameters’ setup (PM ). Besides, it allows Model
Evaluation component to know which set of synthetic data
to analyze. In our implementation, this setup is done through
predefined JSON files and, for the sake of simplicity, we
show the setup file only in theModelGenerator component.
Further details of each component are presented below.

4.2 Model Generator

The Model Generator component receives a dataset D, the
model (Mi), and experiment setup (PM ). As previously
stated, D has the dimension of n × t × m. Mi indicates
the model that attempts to fit the original dataset (D). For
each parameter set of a model, P j

M ∈ PM , the ModelGener-
ator component trains a generative model and saves it in the
disk (i.e., we train the same model with k different parame-
ters sets). For the sake of simplicity we omitted, in the Algo-
rithm, the filtering and the pre-processing of the dataset be-
fore passing it as an argument.
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4.3 Data Generator
The Data Generator component receives a set of trained
models (Mi), in the general case or, optionally, a specific
trained model (Mi). It receives, also, the number (nz) of
synthetic data the user aims to generate. In this way, for the
general case, the Data Generator will generate nz synthetic
datasets using each Mi model inMi or nz synthetic datasets
using the specified Mi model. Furthermore, MobDeep can
call this component directly after training a model, as shown
in the downward arrow of Figure 2.
A good generative model should create synthetic datasets

with variability while preserving the statistical properties of
the original dataset. Each generative model must create at
least one set of synthetic data. Thereby, the ModelEvalua-
tion component can evaluate the performance of a generative
model.

4.4 Model Evaluation
The ModelEvaluation component generates quantitative
and qualitative analysis based on the synthetics datasets Z.

4.4.1 Quantitative Analysis

The quantitative analysis considers the residual errors of the
trained models, computing its mean and residual standard de-
viation. A residual error (Res) of a model can be defined as
the difference between the expected output of a model (D)
and what the model actually produces (z):

Res = |D − z| (1)

Thus, AnalysisGenerator computes the residual mean
of the models (MeanRes) considering each of the generated
synthetic data as shown in Equation 2.

MeanRes =
∑nz

i=1 Resi

nz
(2)

where nz is the number of datasets to be evaluated, and
Resi is the residual error (Res) of the i-th synthetic dataset.
Similarly, the residual standard deviation is calculated with
Equation 3:

StdRes =

√∑nz

i=1(Resi −MeanRes)2

nz
(3)

For the data generation problem, we consider a good
model the one that can generate synthetic data similar to the
real ones and that have variability (i.e,MeanRes and StdRes

are ≈ 0). In this way, MobDeep can define thresholds to
MeanRes and StdRes, which allows it to indicate the best
model. We observed, as discussed in Section 5, models with
a lower MeanRes tend to produce better synthetic data.

4.4.2 Qualitative Analysis

In the qualitative analysis, MobDeep produces comparative
visualizations between synthetic and real data. To visualize
whether the synthetic dataset follows the pattern of the orig-
inal data, we propose a metric that allows visualizing of the

dataset each day of the week, separately, called Sum by In-
tervals (SI), given as below.
Sum by Interval (SI) Definition: Consider a matrix

D of dimensions k × l where each k row contains all
events of a day, from 0am to 11h59pm. In D, di,j =
[timestampi, value] and timestampi < timestampi+1.

D =

d0,0 . . . d0,l

...
. . .

...
dk,0 . . . dk,l


Since we aim to visualize the behavior of the time series

features for each day of the week, we group the rows that
correspond to a specific day of the week. Let Dw (Fig. 3a)
be a matrix with a dimension k × l′, where w is the day of
the week, k is the number of days in Dw with l′ values in
each day. Each Dw contains all data of a day of the week w,
where |w| = 7 (Monday, Tuesday, …, Sunday).

For each day of the week w, the Sum by Interval (SI) vec-
tor is given by the sum of all values in each column of the re-
spective Dw matrix, that is

SI[j] =
k∑

j=0
Dw

j,i (4)

as depicted in Figure 3b.

d0,0 … d0,lʼ

d1,0 d1,lʼ

… … …

dk,0
… dk,lʼ

…

d0,1

d1,1

…

dk,1

Dw =

7 days 
difference

(a) Each matrix row Dw is a day of the week W .

d0,0
… d0,lʼ

d1,0
d1,lʼ

… … …

dk,0
… dk,lʼ

…
d0,1

d1,1…

dk,1

Dw =

7 days 
difference

SIw =

(b)Matrix for computing the SI for a specific W .
Figure 3. Illustration of the matrices used to compute SI.

The visualizations generated from SI allow the identifi-
cation of properties and patterns in the data, such as peaks
and differences between each day of the week. Another ad-
vantage of SI is the use of the entire dataset to perform the
comparisons. It is expected that a good model will be able to
generate synthetic data with similar properties, for example,
peaks during working days and possible differences between
working days and weekends. Table 2 shows a summary of
parameters used in this paper.
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Table 2. Summary of Parameters and Metrics
Variable Description
D A matrix where each row is a day of observation
Dw Dataset that correspond to the day of the week w

n Number of days of observation in D

t Number of observations per day
m Number of features in each observation
z A synthetic dataset
M Set of trainable models
Mi A specific model
Mi Set of trained Mi models
PM Set of parameters for a model M

np Number of parameters sets
nz Number of synthetic dataset to be generated
ZMi Set of nz synthetic datasets from a Mi model
Z Set of ZMi datasets
SIW

D Sum by interval for every day for real data
SIZ

D Sum by interval for every day for synthetic data
Res Residual error
MeanRes Mean residual errors
StdRes Standard deviation residual errors

5 Experiments

5.1 Datasets
We used two datasets to carry out the experiments to evaluate
MobDeep. The first one contains information about rentals
of bicycles in 7 cities in the United States (Washington, Ar-
lington, Alexandria, Montgomery, Prince George’s County,
Fairfax County, and Falls Church) between January 2011 and
February 2020, through the Bikesharing service2. The data
from January 2011 to December 2012 were obtained from
Fanaee-T and Gama [2014], and from January 2013 to De-
cember 2019, from the Capital Bikeshare website. The at-
tributes of this dataset and their respective descriptions can
be seen in Table 3. Our objective was to model the number
of bicycles rented every hour of a day in the seven cities. We
split this dataset into two parts. Bikesharing (from 2012 to
2019) is used for model training and Bikesharingt (January
01 to February 28, 2020), which will be used to validate the
use cases proposed in the Section.

Table 3. Description of Bikesharing dataset.
Attribute Description
Duration Trip duration
Start Date Date and time of the start of the rental
End Date Date and time of the end of the rental
Start Station Name and number of the origin station
End Station Name and number of the destination station
Bike Number Identifier of the bicycle used on the trip
Member Type Membership type (registered or casual)

Figure 4 shows the SI of the base Bikesharing from Mon-
day to Sunday. We can see that the weekdays have very simi-
lar number of rentals, with more rented bicycles around 8am,
and 5pm, with peaks ranging between 350k and 450k rentals
at 8am and 420k and 480k at 3pm. In addition, there is a clear
difference between working days and weekends and a higher
bicycle rental around 1pm in the latter case, with peaks of,
approximately, 300k rentals.

2https://www.capitalbikeshare.com
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Figure 4. Sum by Interval (SI) for the Bikesharing dataset.

The second dataset, named VixCity, consists of a dataset
composed of information about traffic in Vitória, Espírito
Santo, Brazil. The dataset results from a partnership between
the city of Vitória and the transit app for mobile devices,
Waze.

In the VixCity dataset, users report atypical events on
the roads (e.g., accidents, flooding, and traffic jams). The
dataset also contains congestion levels by counting the ap-
proximate number of cars on congested roads. As a crowd-
sourced service, the application’s efficiency depends on
the number of connected users generating traffic informa-
tion [Lenkei, 2018]. Thus, Waze provides three types of
datasets through an API: one with alerts, one with conges-
tions, and one with irregularities.

Table 4. Description of alerts dataset
Attribute Description
uuid Unique alert identifier
street, city Street and city where the event was reported

confidence Confidence of the event based on feedback
from users. Ranges between 0 – 10.

reliability Reliability of the event based on feedback
from users. Ranges between 0 – 5

type, subType Event type and subtype
roadType Type of street (street, avenue).
location Coordinates of the event
eventDate Event timestamp

speed Current average speed in the jammed section
of the road.

reportDescription Short event description

We use the alerts dataset, whose description can be seen in
Table 4. In this case, our objective was to model the number
of cars in 30-minute time intervals in each street. For that,
we use the column uuid to count the number of cars in each
street, the column street to specify the streets to use, and the
column eventDate to select a specific time range and group
the data by day of the week. Due to the number of streets
present in the dataset, we selected those with a total number
of reported events greater than 25000. The selected streets
are depicted in Figure 5.
Figure 6 shows the SI of the most representative streets

in the VixCity dataset. The patterns seen in St. I (Figure 6a)
are similar to the ones in St. VI and St. VIII, where there
are few cars for most of the day and peaks starting around
the interval 40. Also, St. III (Figure 6c) and St. VII are
similar and resemble the Bikesharing dataset, with peaks in
the mornings and afternoons. The streets St. II (Figure 6b)
and St. V on the other hand, do not present clear patterns.
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Figure 5. Vitória city map highlighting the eight streets used.

Aswith the Bikesharing dataset, working days and weekends
are quite distinct.

5.2 Pre-processing
The first processing applied to the data was the division of the
VixCity dataset into two categories. The first one is a univari-
ate dataset consisting of the streets from I to III (we named
these datasets as St. I, II, and III, respectively). The sec-
ond one is a multivariate dataset, formed by streets from IV
to VIII, where each street represents a feature in the dataset
(named as VixStreets). We use this approach to evaluate how
the models would perform on similar datasets, (of traffic in
streets) but in different scenario (univariate andmultivariate).
For the purpose of evaluating the use cases, we selected 5
more streets from the VixCity dataset, which are not used for
training the GANs models. We call this dataset VixStreett.
Next, we deal with the missing data. In this case, for both

the Bikesharing and VixCity dataset, we entered 0 where
there was no data. As the purpose of generating models is
to capture the main characteristics of a dataset, they must be
able to reproduce the difference of observations in a given
period if this is relevant in the actual data (e.g., the missing
data).
Specifically for ARIMA, we verified if the univariate

datasets, where it would be applied, were stationary. The
tests showed that no differentiation was necessary before us-
ing this model. However, we applied the log function to sta-
bilize the high variance present in the Bikesharing dataset.
For the GAN models, the main pre-processing performed

was the data normalization. In this sense, we use min-max
normalization to ensure that the data vary within the range
[0, 1]. Furthermore, as previously mentioned, the datasets
must have the dimensions n× t×m. Thus, the dimensions
for the Bikesharing, St. I, St. II, St. III, and VixStreets are,
respectively, (3287×24×1), (250×48×1), (230×48×1),
(257× 48× 1), and (250× 48× 5).

5.3 Hyperparameters
We sought to identify which parameters presented the best
results for the evaluated models in the experiments. For
ARIMA, as all datasets used were stationary, it was defined

that d = 0. Finally, we use the pmdarima [Smith et al., 17 ],
a library that automatically identifies the combination of pa-
rameters that best fit the data. The best parameters for each
dataset are shown in Table 5.

Table 5. ARIMA parameters p, d, and q for each dataset.
Parameters Bikesharing St. I St. II St. III

p 2 2 3 2
d 0 0 0 0
q 3 1 3 3

For the GANs, we first verified the parameters that most
influenced the training and defined different values for each
one of them. Thenwe train themodels on the different param-
eters and evaluate the results. A preliminary analysis helped
define the parameters.

Table 6. GAN parameters with the batch size, learning rate, hidden
dimensions, and epochs.
Dataset Model bs lr hd ep

Bikesharing
C-RNN-GAN 28 .0001 100 50
RGAN 28 0.1 25 3000
TimeGAN 28 0.0005 24 5000

St. I, II and III
C-RNN-GAN 50 .0001 100 300
RGAN 50 0.1 32 3000
TimeGAN 50 0.0005 72 4000

VixStreets
C-RNN-GAN 50 0.0001 28 200
RGAN 50 0.1 64 3000
TimeGAN 50 0.0005 72 3000

Table 6 shows the best performance parameters for the
Bikesharing, St. I to III, and VixStreets datasets. As each
model has many parameters, we only display those that have
the most influence on the training performance. It is note-
worthy that, given the random behavior of the GANs, the ep
parameter indicates the approximate number of iterations in
which it was possible to obtain good results from the model.

In this sense, the behavior of the GANs, regarding the dif-
ferent parameters, will be similar to the behavior of a Neu-
ral Network. For example, data with very complex relation-
ships may require models with more ability to learn, such
as higher values for the hd parameter. Also, decreasing the
value of the lr parameter makes the models take longer to
update their weights and, consequently, take longer to gen-
erate good synthetic data. On the other hand, a high lr can
cause overfitting, decreasing the variability of the generated
data. Similarly, a large bs reduces the model’s generaliza-
tion [Keskar et al., 2016].

5.4 Use cases
As already mentioned, the main motivations regarding the
evaluation of the generation of synthetic datasets is how and
if they really have the potential to be used in real situations.
In this context, we propose the following use cases: i) with
the synthetic data of rented bicycles, is it possible to train a
model to predict the number of rented bicycles in the coming
months? (for example, for resource allocation and bicycle
maintenance) ii) with the synthetic data of cars on the streets,
is it possible to train a model to predict the number of cars
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Figure 6. Sum by intervals for the St. I (a), St. II (b) and St. III (c) datasets and one of the streets in VixCity dataset (St. IV) (d). The x-axis represents the
intervals (every 30 minutes of a day).
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Figure 7. Confidence interval for the mean of SI from 1000 synthetic data generated by ARIMA (a), C-RNN-GAN (b), RGAN (c), and TimeGAN (d) for
the Fridays of Bikesharing dataset and; Confidence interval for the mean of SI from 1000 synthetic data generated by ARIMA (e), C-RNN-GAN (f), RGAN
(f), and TimeGAN (h) for the Fridays of St. III dataset.

on the streets in the coming months? (for example, for traffic
control and assisting in urban planning).
For this, we train an RNN on each synthetic dataset gen-

erated by each of the GAN models (C-RNN-GAN, RGAN,
TimeGAN) for the respective datasets. In this case, we
chose to use only the data referring to the Bikesharing and
VixStreets datasets. The first, because it is a dataset with a
longer time interval and the second because it already rep-
resents the street scenarios (St. I, St. II and St. III) and is
a multivariate dataset. This way, we train the RNN to pre-
dict, from one day of data as input, the next hour (in the
case of Bikesharingt) or the next 30 minutes (in the case of
VixStreetst). Finally, each trained model is validated using
the respective test datasets, applying the Mean Absolute Er-
ror (MAE). As a baseline, we trained an RNN on the original
training data (Bikesharing and VixStreets datasets).
Thus, if the models have, indeed, learned the main char-

acteristics of the original data, we expect to observe, by us-
ing the synthetic datasets, consistent results in the quantita-
tive and qualitative evaluations and the scenarios proposed
as use cases. In other words, if a model performs better in
quantitative and qualitative analysis, this should also be ob-
servable in the use case analysis.

6 Evaluation
First, this section presents the results of the qualitative eval-
uation, considering SI of synthetic data generated by each

model. Next, we discuss the quantitative evaluation, with
the models’ residual mean (MeanRes) and standard devia-
tion (StdRes).

6.1 Qualitative Analysis
To evaluate the performance of the models in generating
synthetic data with the same characteristics as the real ones,
we performed the SI of 1000 synthetic datasets of Fridays,
that is, the SIw=F riday of only days that are Fridays in the
dataset. For each model, we calculated the mean and stan-
dard deviation of the SI for the synthetic data. Initially, we
verified the performance of the models in the Bikesharing
dataset, which has the highest variance, with evident char-
acteristics, and the longest duration. Next, we present the
performance for the St. III dataset, which represents a sce-
nario with a minor variance but with identifiable character-
istics. Finally, we discuss the most complex scenario in the
VixStreets dataset, in which the models must learn the char-
acteristics of more than one street simultaneously.
Thus, Figure 7 shows the confidence interval of SI from

1000 synthetic Bikesharing (Figures from a to d) and ST. III
datasets (Figures from e to g). For the Bikesharing dataset,
the figure shows that only RGAN (Figure 7c) and TimeGAN
models (Figure 7d) generate synthetic data similar to the real
data, with peaks around 8am and 6pm. On the other hand,
both ARIMA (Figure 7a) and C-RNN-GAN (Figure 7b)
could not reproduce the characteristics of the real data. In
this case, ARIMA is generally more efficient in stationary
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Figure 8. Confidence interval for the mean of SI from 1000 synthetic data generated by C-RNN-GAN (a), RGAN (b), and TimeGAN (c) for the Fridays of
the St. IV dataset.

Table 7. MeanRes (left) and StdRes (in parentheses). The best results are in bold.
Model ARIMA C-RNN-GAN RGAN TimeGAN
Bikesharing 0.423 (0.01) 0.136 (0.115) 0.103 (0.091) 0.104 (0.084)
St. I 1.225 (0.03) 0.033 (0.015) 0.027 (0.005) 0.048 (0.028)
St. II 0.08 (0.004) 0.300 (0.010) 0.316 (0.011) 0.315 (0.10)
St. III 0.597 (0.018) 0.015 (0.011) 0.068 (0.004) 0.068 (0.019)
VixStreets - 0.061 (0.017) 0.041 (0.018) 0.024 (0.020)

and linear datasets and datasets with short-term dependen-
cies [Ho et al., 2002]. Similarly, the C-RNN-GAN model is
basically an RNN version of a vanilla GAN, which is known
to be susceptible to problems such as the vanishing gradient
problem andmodel collapse [Cao et al., 2018], whichmay be
preventing the model to capturing long-term dependencies.
For the St. III datasets, Figure 7g shows the TimeGAN has

the best performance, reproducing the peaks in the morning
(up to around interval 20) and in the late afternoon, around
interval 40.
Finally, in Figure 8 we present the confidence interval

for the mean SI of 1000 synthetic VixStreets datasets and,
specifically, for the sake of visualization, we display only the
results of the St. IV. Among the 3 models, TimeGAN was
the one that managed to generate synthetic data closer to the
real data (Figure 8c), with the lower peak between intervals
20 and 30 and the higher one around interval 40. The other
models did not reproduce the expected trend for the data,
and generated data with negative values. The generation of
negative numbers can be justified by the implementation of
the models, which were originally designed to work with
datasets allowing negative values. However, during training,
these models should learn to generate values that are greater
than or equal to 0. Although it would have been possible to
correct this during implementation, we emphasize that it was
not within the scope of this work. Furthermore, we used the
original implementations on the other models, which could
also generate negative numbers. It is important to emphasize
that, in this case, the models were trained to learn the char-
acteristics of each street in the dataset simultaneously. Thus,
although the other two GANs were unable to reproduce the
data characteristics, TimeGAN’s performance on this prob-
lem exceeded our expectations.
Qualitative evaluations show that TimeGAN tends to be

the best model used in MobDeep in the different proposed
scenarios. In this sense, the models’ architecture is the most
likely justification for the results obtained. As mentioned
earlier, TimeGAN is the most complex model. The C-RNN-

GAN and RGAN codes’ follows the original implementation
of their respective authors, and the modifications made to
integrate them into MobDeep do not influence their training.

6.2 Quantitative Analysis
Table 7 shows the MeanRes and StdRes of each model. For
these metrics, we assume that the models have learned the
main characteristics of real data, such trends and seasonality.
This way, a predictive model trained on real data should have,
for example, good accuracy when predicting future fake data.
A good generative model, evaluated on these metrics, will
have a residual with mean and standard deviation close, but
not equal, to 0. Therefore, the best model is the one with the
lower MeanRes.
Table 7 demonstrates that, in general, GANs had best

results than ARIMA, with RGAN model performing bet-
ter on Bikesharing and St. II datasets, C-RNN-GAN
and TimeGAN models performing better on St. III and
VixStreets datasets, respectively, and ARIMA on St. I. It is
worth mentioning that, as previously shown in the qualitative
analysis, TimeGAN tends to generate fake data that are more
similar to the real ones. We can see, for the example, that
TimeGAN model had MeanRes and StdRes are very close
to the RGAN model for Bikesharing dataset.
For the St. I and III datasets, the table shows that the

RGAN and the C-RNN-GAN were the models that best cap-
tured the properties of the real data, respectively. However,
in the qualitative evaluations, we showed that, in general,
TimeGAN generates better synthetic datasets. In this sense,
the performance of the models in both datasets is justified
by one main factor: both C-RNN-GAN and RGAN tend to
generate data with less variability than TimeGAN. Conse-
quently, the residual errors in these datasets will have lower
standard deviations. Finally, the table shows that, except for
St. II, the MeanRes of ARIMA for each dataset are the high-
est compared to the GAN models. This result corroborates
the ones shown in the qualitative evaluations, in which the
ARIMA model could not generate any synthetic data with
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Figure 9. Cumulative Distribution Functions of residuals distributions for Bikesharing (a), St. I (b), St. III (c), and (d) VixStreets datasets.

similar to the real data.
Although the previous result summarizes the performance

of the models concerning the residual means and standard de-
viations, the visualization of the cumulative distribution func-
tions of residuals in Figure 9 can provide valuable insights
about each model. For example, we can see that for the Bike-
sharing (Figure 9a), St. I (Figure 9b), and St. III (Figure 9c)
datasets, the CDFs of all GANs models shows that ≈ 90%
of residuals are in the range of [≈ 0.1,≈ 0.2]. However, for
the same datasets, the ARIMA residuals have a much higher
distribution, with ≈ 90% less than or equal to ≈ 0.45, ≈
1.3, and ≈ 0.51, respectively. On the other hand, Figure 9d
shows that for the VixStreets dataset, the GANs models had
CDFs with ≈ 90% of residuals less than or equal to ≈ 0.07
(C-RNN-GAN), ≈ 0.06 (R-GAN), and ≈ 0.05 (TimeGAN).
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Figure 10. Boxplot of MAE for C-RNN-GAN, RGAN, TimeGAN e the
real data for the Bikesharingt dataset.
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Figure 11. Boxplot ofMAE for C-RNN-GAN, RGAN, TimeGAN e the real
data for the VixStreett dataset.

6.3 Use Case Analysis

Considering the case described in Section 5.4, we aim to as-
sess whether synthetic datasets can perform as well as or bet-
ter than the real dataset in a task that involves predicting fu-
ture values based on a certain number of past values. Specifi-
cally, we use a full day of data to predict the number of bikes
rented in the next hour (in the case of Bikesharingt) and the
total number of cars on the streets in the next 30 minutes (in
the case of VixStreetst).
Regarding the first case, Figure 10 illustrates the boxplot

of MAE for the three models used, as well as the real dataset
(baseline). The figure indicates that C-RNN-GAN has the
highest MAE, with a median of ≈ 409 and an interquartile
range of 78. In contrast, the MAE for the other two models
is significantly smaller. Specifically, RGAN has an MAE of
≈ 66with an interquartile range of 196, while TimeGAN has
an MAE of ≈ 77 with an interquartile range of 185. Note
that both RGAN and TimeGAN exhibit MAE values slightly
lower than the baseline (111). Identifying the exact cause of
this is beyond the scope of this article. However, we believe
that the primary factor contributing to this result is the poten-
tial overfitting of the model trained with the real dataset, de-
spite we applied measures to mitigate it. Furthermore, in our
previous results, particularly the qualitative ones shown in
Figure 7, we observed that TimeGAN outperformed RGAN
in the Bikesharing dataset although RGAN’s MAE still was
lower. One possible explanation for this is that, as demon-
strated earlier, TimeGAN effectively captures weekday pat-
terns but struggles in representing the weekends. On the
other hand, RGAN, while not capturing weekdays as effec-
tively, tends to represent weekends slightly better, resulting
in fewer errors in the model’s predictions.
For the second case, Figure 11 presents the box plot of

MAE for the three models concerning the VixStreetst dataset.
We can see from the figure that both C-RNN-GAN and
RGAN have the highest MAE. Specifically, C-RNN-GAN
has an MAE of≈ 19.28 with an interquartile range of 0.078,
and RGAN has an MAE of ≈ 19.31 with an interquartile
range of 0.036. Similar to the first case, TimeGAN’s MAE
is very close to the baseline (≈ 0.914). It’s important to
note that in this second case, only TimeGAN performed sat-
isfactorily. This outcome was expected, as qualitative evalu-
ations had already indicated that the other two models strug-
gled to learn the characteristics of the VixStreet dataset. Fur-
thermore, it’s worth noting that TimeGAN’s performance ex-
ceeded our expectations in this use case. VixStreet itself is a
complex dataset, and we anticipated that theMAE calculated
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on new data points from the same streets as in the dataset
would be higher than the baseline. Thus, when using data
from five entirely different streets, we expected the MAE
value to be considerably higher

7 Conclusions
In this paper, we present MobDeep, a framework for gen-
erating and evaluating time series of mobility data features
models based on deep learning. MobDeep achieves a reason-
able model generalization on different time-series from the
datasets. We evaluated MobDeep using a classic and three
deep-learning-based models trained using two datasets with
distinct characteristics: an open one with information about
bicycle sharing and a private one with traffic of cars in the
streets of a city.
Our results show that MobDeep can train models to gen-

erate synthetic datasets, producing essential evaluations to
identify the best model. We also show that deep learning
models can capture the main characteristics of the datasets.
However, in reproducing datasets with congestion flows,
their performance depends on the intensity of cars on the
streets. Furthermore, the use cases demonstrated that, in gen-
eral, synthetic data generated by GANs can be effectively
used in real scenarios, often exhibiting performance compa-
rable to or even surpassing that of real datasets.
Considering the current state of MobDeep, it is important

to point out some of its limitations. The first one concerns
the type of mobility data expected by the framework. Cur-
rently, the carried-out experiments consider that the mobility
time series correspond to some type of data summarization
(e.g., the number of cars on a street in a given time interval).
Thus, the framework needs to be evaluated on data contain-
ing geographic locations, for example.
Another limitation refers to the models’ evaluation,

mainly the qualitative analyses, which need a manual evalu-
ation to assess the efficiency of the models. Thus, datasets
with many variables can make qualitative assessment very
costly. Finally, as we use models that can be suitable to any
types of time series, it is important to understand how to opti-
mize the models for generating mobility time series properly.
As additional future research, we can mention the addi-

tion of new models in MobDeep, such as ARIMAX and
Variational Autoencoders; the evaluation of the framework
in datasets with different characteristics, for example, with
geolocation information; evaluation of mobile network data
generation as well as the performance of mobile network al-
gorithms on the generated data and; study of optimizations
to the models used for the specific problem of mobility.
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