
Journal of Internet Services and Applications, 2024, 15:1, doi: 10.5753/jisa.2024.3891
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Reducing Persistence Overhead in Parallel State Machine
Replication through Time-Phased Partitioned Checkpoint
Everaldo Gomes Jr. [University of São Paulo | everaldogjr@gmail.com]
Eduardo Alchieri [University of Brasília | alchieri@unb.br]
Fernando Dotti [Pontifical Catholic University of Rio Grande do Sul | fernando.dotti@pucrs.br]
Odorico Machado Mendizabal [Federal University of Santa Cata-
rina | odorico.mendizabal@ufsc.br]

 Departamento de Informática e Estatística, Universidade Federal de Santa Catarina, Eng. Agronômico Andrei
Cristian Ferreira, s/n, Florianópolis, SC, 88040-900, Brazil.

Received: 30 November 2023 • Accepted: 14 May 2024 • Published: 26 July 2024

Abstract Dependable systems usually rely on replication to provide resilience and availability. However, for long-
lived systems, replication is not enough since given a sufficient amount of time, there might be more faulty replicas
than the threshold tolerated in the system. In order to overcome this limitation, checkpoint and recovery techniques
are used to update and resume failed replicas. In this sense, checkpointing procedures periodically capture snapshots
of the system state during failure-free execution, enabling recovery processes to resume from a previously stored
and consistent state. Nevertheless, saving checkpoints introduces overhead, requiring synchronization with the
processing of incoming requests to prevent inconsistencies. This overhead becomes even more pronounced in high-
throughput systems like Parallel State Machine Replication, where workloads dominated by independent requests
leverage multi-threading parallelism. This work addresses the costly nature of checkpointing by proposing a novel
approach that divides the replica’s state into partitions and takes snapshots of only a few partitions at a time. Replicas
continue executing requests targeted to other partitions without interruption. Thus, incoming requests experience
delays during a checkpoint only if they access a partition currently being saved. Combining this approach with the
Parallel State Machine Replication yields reduced snapshot durations and lower client latency during checkpointing.
Additionally, the proposed approach accelerates replicas recovery through collaborative state transfer, enabling
workload distribution among replicas and parallel execution of transfer and installation of the recovering state.

Keywords: Checkpoint/restore, Recovery, State Machine Replication, High-availability

1 Introduction
Numerous contemporary distributed systems must operate at
a high level of availability, ensuring strong consistency even
in the face of failures. Particularly in large-scale systems,
failures are not uncommon, with service downtime carrying
significant repercussions, as documented in cloud services
incidents [Amazon, 2012a,b; Gitlab, 2017] and in the litera-
ture [Huang et al., 2017].
Replication is a crucial technique for ensuring availability

in the presence of faults. State Machine Replication (SMR)
[Lamport, 1978; Schneider, 1990] is a widely adopted repli-
cation approach, providing both availability and strong con-
sistency. In SMR, client requests are totally ordered and are
then delivered to service replicas that execute them in the re-
ceived order. Given that replicas initiate from the same state
and process requests deterministically and in identical order,
they progress through identical system states, thereby ensur-
ing linearizability [Herlihy and Wing, 1990].
In order to improve the performance of SMR, various

strategies have been proposed, aiming to execute requests
concurrently across replicas by benefiting from application
semantics. These strategies, referred to as Parallel State Ma-
chine Replication (PSMR) [Kotla and Dahlin, 2004; Kaprit-
sos et al., 2012; Marandi and Pedone, 2014; Alchieri et al.,

2017; Mendizabal et al., 2017a], parallelize the execution of
commands by categorizing them as either dependent or inde-
pendent. Commands are independent if they operate on dis-
joint portions of the replica’s state or only read shared state
without modifying it, and dependent otherwise. Maintaining
consistency requires dependent commands to be processed in
the same relative order across all replicas. Conversely, inde-
pendent commands can be executed concurrently, benefiting
from mainstream multi-core servers.
While replication strategies effectively mask failures, hav-

ing a quorum of correct replicas operational is indispensable
to maintain service functionality. To uphold the desired lev-
els of availability, recovery mechanisms should enable the
reintegration of faulty replicas into execution or the introduc-
tion of new replicas into the system. Otherwise, it could lead
to a situation where, over time, all service replicas may be-
come unavailable.
Recoverymechanisms implement techniques to ensure the

durability of the service state, encompassing methods like
logging, checkpointing, and state transfer [Elnozahy et al.,
2002; Bessani et al., 2014]. Throughout execution, replicas
maintain a log of executed operations, allowing a faulty or
new replica to restore a consistent state by replaying the log
obtained from a correct replica. However, the log may grow
indefinitely, rendering both storage and recovery procedures

https://orcid.org/0000-0002-0332-6220
mailto:everaldogjr@gmail.com
https://orcid.org/0000-0002-6022-3631
mailto:alchieri@unb.br
https://orcid.org/0000-0001-9061-4695
mailto:fernando.dotti@pucrs.br
https://orcid.org/0000-0002-6339-5156
mailto:odorico.mendizabal@ufsc.br

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

impractical. To impede unbounded log growth, checkpoint
procedures are imperative [Goulart et al., 2023a; Egwutuoha
et al., 2013]. Replicas periodically save a snapshot of their
states to persistent storage and truncate the log, discarding
operations that happened before the saved state. Upon re-
covery, a replica adopts a valid snapshot, processes logged
commands post-checkpoint and resumes handling incoming
requests just like other replicas.
Checkpointing, however, is expensive and introduces per-

formance degradation. Besides the increased latency and
limited throughput caused by intensive I/O operations, cre-
ating checkpoints requires synchronization with incoming
requests to establish a consistent and recoverable snapshot
of the system’s state. As the system’s state grows, the I/O-
intensive operations of creating checkpoints can evolve into
a bottleneck. Therefore, checkpoints play a dual role. Dur-
ing regular operation, they adversely impact the average sys-
tem throughput and introduce latency stalls and hiccups per-
ceived by clients [Bessani et al., 2014]. This calls for sparse
checkpoints, as seen in some systems, e.g., [Kapitza et al.,
2012; Tiwari et al., 2014; Frank et al., 2021]. Sparse check-
points, in turn, result in large logs, which can slow down the
recovery process.
Beyond these tradeoffs, checkpointing becomes even

more challenging with approaches that scale SMR’s through-
put, such as PSMR. In addressing such systems, our work
introduces a checkpointing strategy to reduce overhead dur-
ing regular operations while maintaining availability levels.1
The fundamental concept takes advantage of existing PSMR
architectures, allowing requests to be executed concurrently
with checkpointing. To do so, our strategy assumes a par-
titioned state, a common feature in PSMR, and coordinates
replicas to capture snapshots of subsets of partitions at a time.
While commands to partitions undergoing checkpointing ex-
perience momentary delays, requests addressed to other par-
titions can be executed in parallel, preserving strong consis-
tency.
The main contributions of our work are summarized as fol-

lows:

• The detailed presentation of a PSMR checkpoint/re-
covery approach based on the partitioned time-phased
checkpoint algorithm;

• The demonstration of correctness arguments showing
how our checkpoint algorithm preserves strong consis-
tency among replicas in a crash-recovery model; and

• A performance assessment that compares the time-
phased partitioned checkpoint with a traditional check-
pointing approach and a low synchronization cost
checkpoint using Copy-on-Write (CoW) [Bobrow et al.,
1972]. The main benefits of our checkpoint tech-
nique include reduced snapshot duration, higher aver-
age throughput during regular operation, decreased la-
tency for requests that are blocked waiting for check-
points to complete and faster recovery.

The rest of the paper is structured as follows. Section
2 introduces the system model and definitions. Section 3

1This paper is an extended version of previous research [Junior et al.,
2023], where we introduced the foundation of the proposed checkpoint strat-
egy.

discusses the main aspects of PSMR. Section 4 present our
checkpoint/recovery approach. Section 5 describes our ex-
perimental evaluation. Section 6 surveys related work, and
Section 7 concludes the paper.

2 System Model and Assumptions
We assume a distributed system composed of interconnected
processes. There is an unbounded set C = {c1, c2, ...} of
client processes and a bounded set S = {s1, s2, ..., sn} of n
server processes, also referred as replicas. Server processes
are multi-threaded. One dedicated thread runs a scheduler,
while the others are worker threads. The total number of
worker threads is given by the number of adopted state parti-
tions.
We assume the crash-recovery failure model [Hurfin et al.,

1998; Aguilera et al., 2000] and exclude malicious and arbi-
trary behavior, e.g., no Byzantine failures. When a replica
is correct, all associated threads and the scheduler are cor-
rect. When a server process crashes, all associated threads
also crash. Processes may crash and recover. Processes are
equipped with volatile memory and stable storage. In the
event of a crash, a process loses the content of its volatile
memory. In contrast, the content of its stable storage remains
unaffected, i.e., stable storage data cannot be corrupted or
lost. Also, logging-based mechanisms ensure consistency
by discarding changes from an update interrupted by fail-
ure. However, the access speed to stable storage, such as
Hard Disks or Solid State Drives, is slower than accessing
in-memory variables.
In the crash-recovery model, crashes are not necessarily

permanent. Therefore, a process pi that crashed at time tmay
recover at a later time t′ > t and resume operation. If pi re-
covers after t′, messages exchanged in the time interval [t, t′]
can be missed by pi. Moreover, the content of pi’s regular
variables before t′ is lost due to the use of volatile memory.
To prevent data loss when a process crashes, the essential in-
formation must be kept in stable storage. That way, the state
information saved on the stable storage device during failure-
free execution can be used for recovery. We assume f faulty
or recovering servers out of n = 2f + 1 servers.
Processes communicate by message passing, using ei-

ther one-to-one or one-to-many communication. One-to-one
communication is through primitives send(m) and recv(m),
where m is a message. If a sender sends a message enough
times, a correct receiver will eventually receive the mes-
sage. One-to-many communication is based on atomic broad-
cast [Défago et al., 2004], whose main primitives are broad-
cast(m) and deliver(m).
Atomic broadcast ensures that (i) if a process broadcasts

message m and does not fail, then there is some i such that
eventually every correct process delivers (i, m); and if a pro-
cess delivers (i, m), then (ii) all correct processes deliver
(i, m), (iii) no process delivers (i, m′) for m ̸= m′, and
(iv) some process broadcast m.
We implement atomic broadcast using Paxos [Lamport,

1998]. Paxos requires additional synchronous assumptions,
but our protocols rely on the atomic broadcast as a black box
and do not explicitly need these assumptions.

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

The consistency criterion for SMR is linearizability [Her-
lihy and Wing, 1990]. By design, the SMR approach keeps
consistency in the presence of a subset of failed replicas, ac-
cording to the assumptions. The mechanisms presented in
this paper are concerned with re-establishing the replication
level to keep system fault-tolerance in the long run: as such,
they are required to recover a failed replica to a valid state,
enabling it to further process commands delivered by the
atomic broadcast to all replicas. A valid state is one achieved
after having processed a prefix p of the total order of com-
mands delivered by atomic broadcast, i.e., a finite sequence
of commands applied from the initial state. Any two replicas
that processed (exactly) p, by the definition of SMR, have
identical states. To express in a general way the correctness
requirement to the mechanisms discussed in this paper, we
state that any two replicas, after having processed the same
prefix of the total order, regardless of crash-recovery events,
achieve the same state.

3 Parallel State Machine Replication
In traditional State Machine Replication [Lamport, 1978], a
bounded set of replicas receives deterministic requests from
an unbounded set of clients. These requests are ordered by
using, for example, consensus [Lamport et al., 2001; Ongaro
and Ousterhout, 2014] or atomic broadcast [Défago et al.,
2004; Hunt et al., 2010; Izraelevitz et al., 2022] algorithms,
establishing a total delivery order across replicas. By starting
from the same initial state and executing the requests in the
same order, replicas remain consistent.
Parallel State Machine Replication (e.g. [Kotla and

Dahlin, 2004; Marandi and Pedone, 2014; Alchieri et al.,
2017; Mendizabal et al., 2017a]) stems from the observa-
tion that only dependent requests need to be executed sequen-
tially, while independent requests can be executed in parallel.
Two requests are considered independent if they access dif-
ferent memory position in the application state or if both are
read operations. Otherwise, they are dependent.
This work follows an execution model similar to those

proposed in Mendizabal et al. [2017a]; Marandi and Pedone
[2014]; Li et al. [2018]. The application state, denoted as S,
is partitioned into k disjoint sets, here called partitions. The
set of partitions can be represented as P = {p1, p2, ..., pk}
where

∪k
i=1 pk = S. The system employs k worker threads,

with thread ti responsible for executing requests involving
partition pi. A request r operates on a set of memory posi-
tions, denoted as M(r), and each memory position m is as-
signed to a specific partition, denoted asP (m). Every thread
ti has its own queue qi. When a request r is delivered by the
atomic broadcast, it is placed in the queues of every thread
whose memory position are accessed by r, formally repre-
sented as r → qi∀i|pi ∈

∪
m∈M(r) P (m).

As an example, consider a system with state S =
{x, y, w, z} and a set of threads T = {t1, t2}. Figure 1(a)
represents a possible state partitioning, with threads t1 and
t2 responsible for updates in partitions p1 = {x, y} and
p2 = {w, z}, respectively. The figure also depicts the
queues of threads after receiving requests r1 to r7. Requests
are delivered to replicas in the same order and dispatched

to the appropriate queues respecting the delivery order. For
this illustration, the requests are defined by the commands
write(k, v) and swap(ki, kj), where write updates the vari-
able specified by the key k with value v, and swap exchange
the values of keys ki and kj . As shown, r1 accesses x, and
since x ∈ p1, r1 is dispatched to t1. Similarly, r3 accesses
w, and as w ∈ p2, r3 is dispatched to t2.

t1 t2
Partition p1

Queue q1

x y

r1: write(x, 1)

r2: swap(x, y)

r3: write(w, 1)

r4: swap(y, z)

r4: swap(y, z)

Partition p2

Queue q2

r5: write(z, 2)

...
...

w z

r6: write(x, 2) r7: write(w, 2)

(a) Requests scheduling across thread queues

t1

t2

...

...

r1

r3

r2

r4

r4

r5

r6

r7

(b) An execution trace for the scheduled requests
Figure 1. Example of PSMR requests scheduling and execution

In order to represent a wide range of applications without
lacking generality, requests are categorized into two types:
single-variable and multi-variable. Single-variable requests
involve accessing a single variable in the application state,
such as simple reads or writes. On the other hand, multi-
variable requests access two or more variables (e.g. swap or
range scan), which can be further divided into single parti-
tion and cross partition requests.

Single-variable requests access a single memory position,
so the cardinality of M(r) for a single-variable request r is
1. In Figure 1(a) requests r1, r3, r5, r6 and r7 are single-
variable requests. As the requests are delivered to the same
queue respecting the delivery order, deterministic execution
is guaranteed without the need for synchronization.

Multi-variable single partition requests involve access-
ing multiple variables that belong to the same partition, i.e.:
given a request r, ∀x, y ∈ M(r)|P (x) = P (y). These re-
quests can be executed by the same worker thread t. Request
r2 in Figure 1(a) is an example of multi-variable single par-
tition request. Since the request involves variables x and y,
both belonging to the same partition of thread t1, it can be
executed without synchronization.

Multi-variable cross partition requests access two or more
variables, with at least two of them belonging to different par-
titions, i.e.: ∃x, y ∈ M(r)|x ̸= y ∧ P (x) ̸= P (y). Request
r4 in Figure 1(a) is a cross partition request as it accesses vari-
ables y from the partition of thread t1 and z from the partition
of thread t2. These types of requests require threads’ syn-
chronization to maintain consistency by ensuring only one
thread will update the partitions involved while others are
blocked.
Figure 1(b) illustrates an execution trace for threads t1 and

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

t2 based on requests shown in Figure 1(a). Threads run in
parallel and single-variable requests r1, r3, r5, r6 and r7 are
executed as soon as they reach the head of their respective
thread queues. The multi-variable request r2 involves vari-
ables x and y, both of which are executed by t1. Hence, it
can be executed without synchronization. The cross parti-
tion request r4 is present in both t1 and t2 queues, so they
synchronize using a barrier. Here we depict that t2 retrieves
r4 from its queue and waits for t1 at the barrier, represented
by the dotted curve. Once t1 retrieves r4, all involved threads
are ready, and r4 is executed by a single thread (e.g. the one
with the the lowest id, in this case, t1). Afterwards, both t1
and t2 are allowed to continue. During the time t1 executes
r4, t2 remains idle.

4 Time-Phased Partitioned Check-
pointing

This section presents a checkpoint approach aiming at reduc-
ing overhead both during normal operation and at recovery
time. The idea is to split the service state into partitions, al-
lowing for successive snapshots at the partition-level. At reg-
ular intervals, the checkpointing procedure selectively saves
the state of a few partitions at a time. During the saving of a
partition’s state, only requests addressed to those specific par-
titions are temporarily blocked, while independent requests
targeted to other partitions can be executed in parallel with
the ongoing partitions checkpoint. Once a partition check-
point is complete, the blocked requests addressed to that par-
tition are released to execution.
Considering workloads composed mainly by single-

partition requests, partitions advance independently. Parti-
tion’s checkpoints are also taken independently and thus con-
solidate updates up to different heights of the delivered total
order. It is up to the recovery procedure to consistently con-
tinue from those heights.
In the presence of cross-partition requests, a checkpoint

procedure might overlook the need for cross-partition syn-
chronization, potentially resulting in inconsistent partition
checkpoints. For example, suppose a command swap(x, y)
is executed, the x partition has checkpointed, storing x with
its new value (i.e., the original y value), but y partition is
not checkpointed. In this case, the last checkpoint for par-
tition y still has the unmodified y value instead of the x
value swapped during the command execution. In such sce-
narios, resolving checkpoint inconsistencies during recovery
becomes necessary, requiring the assistance of advanced log-
ging and recovery mechanisms. This approach bears similar-
ities to the method described in Zheng et al. [2014], where
fuzzy checkpoints are employed (see Section 6 for more de-
tails).
In contrast, our work explores the concept of time-phased,

partitioned and consistent checkpoints. We ensure that if
a partition is being checkpointed and has executed cross-
partition requests since its last checkpoint, the affected par-
titions must be checkpointed at the same time. Depending
on the workload and number of partitions, this approach can
result in highly parallel checkpoint and request execution (in
the case of workload dominated by single-partition requests)

or, on the other side of the spectrum, follow the standard case
where all partitions need to be checkpointed simultaneously
(in the case of a high rate of cross-partition requests).

4.1 Replicas execution
To explore parallelism at partition level we assume the un-
derlying PSMR model explained in Section 3 and assume
that for each request it is known beforehand: (i) whether
it is an update (write) operation; and (ii) the partitions it
affects. Although any parallel SMR model fulfilling these
assumptions could be used, we adopt the PSMR model de-
scribed in Alchieri et al. [2017]. This model provides the
necessary information and parallel execution framework to
develop the partitioned checkpoint approach. Each replica
stores the complete service state, which is divided into static
partitions. Each object in the state is mapped to a specific par-
tition. In Alchieri et al. [2017] the notion of conflict classes
is also proposed. A conflict class defines a set of partitions
that have to synchronize to execute a command. Each com-
mand c is classified into a conflict class and this information
is stamped in c.type. Thus, the class indicates the workers
threads, i.e., partitions, that have to synchronize to execute c.
Given a finite set of workers, each possible combination of
workers maps to a single conflict class.
Algorithm 1 outlines the initialization of replicas. The ser-

vice state is divided into n partitions, with each partition as-
sociated with individual checkpoint and log files. We assume
that checkpoints are taken every ∆cp scheduled requests.
This interval could be expressed in time units without loss of
generality. In fact, the frequency of checkpointing partitions
could also be different among replicas once the recovery pro-
cedure searches for the most updated partitions, not necessar-
ily from the same replica. To handle cross-partition requests,
we propose the use of a conflict matrix to track which parti-
tions are involved by requests executed. Line 1 initializes the
conflict matrix as an identity matrix. More details about the
conflict matrix and checkpointing execution are presented in
Section 4.2. Worker threads’ queues are initially empty, and
each replica sets the next partition to be saved during a check-
point according to its identifier (lines 2-4), such that different
partitions are saved by different replicas at each checkpoint
interval ∆cp. No commands were executed in any partition
(line 5) and logs are initially empty (line 6). Before starting
the execution, the replica restores a consistent state by run-
ning the recovery procedure (line 7). In short, the recovery
procedure retrieves the most recent checkpoint and log files
for each partition. It installs state partitions from checkpoint
files and feeds the input queues of each worker thread with
the respective log of commands after the checkpoint. The
recovery procedure is presented in detail in Algorithm 8. Af-
ter recovery, the total order height of the last command pro-
cessed in each partition is stored in lstEx[]. Now the replica
requests the consensus (or atomic broadcast) layer to deliver
commands starting from the lowest lstEx[p], p ∈ 0..n − 1,
given by line 8. Finally, the worker threads and scheduler
are initialized (lines 9-11), each worker associated to a state
partition, and the scheduler delivers commands asked to the
consensus (or atomic broadcast) layer.
Algorithm 2 describes the behavior of the scheduler. This

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

Algorithm 1 init(rId, n, ∆cp)
{rId : replicaID, n : #partitions, ∆cp : checkpoint Interval}

1: conf [n][n]← I {Conflict matrix}
2: t_queue[0..n− 1]← ∅ {One queue per worker thread}
3: scheduled← 0 {Number of scheduled commands}
4: next_cp← rId mod n {Next partition to be saved}
5: lstEx[0..n− 1]← 0 {Last command executed in each partition}
6: Li, i ∈ 0..n− 1← ∅ {A log per partition}
7: recover() {Synchronize with other replicas}
8: restartT ODeliverF rom(lowestF rom(lstEx[0..n− 1]))
9: for i = 0..n do
10: start worker(i); {One worker per partition}
11: start scheduler(); {Initialize the scheduler}

thread receives a totally ordered sequence of requests from
clients and retrieves the list of threads involved c’s execution
(lines 1-2).2 Then, the scheduler adds c to the queues associ-
ated to each of these partitions (lines 3-5), if c is higher than
the last command executed at that partition (line 4). This is to
eliminate duplicates since, after recovery, different partitions
may be at different heights of the total order and we express
here that commands are retrieved from consensus or atomic
broadcast as a total order, after the lowest last command ex-
ecuted at each partition – as seen in line 8 of Algorithm 1.
To keep consistency among partitioned checkpoints, when-
ever a checkpoint for partition pi is created, any partition pj

that executed cross-partition commands accessing pi, since
pi’s last checkpoint, must be checkpointed together with pi.
Therefore, the scheduler keeps track of which threads have
to synchronize to execute c. This mapping of conflicts in-
volving multiple partitions is encoded in the conflict matrix
(lines 6-8), discussed in detail in Section 4.2.
Every ∆cp commands received, the scheduler decides to

take a snapshot of a service partition (line 10). The service
partition to be saved is determined by the value of next_cp,
which is updated in a round-robin fashion (line 16). The
scheduler creates a checkpoint command cp and associates
it to every thread responsible for the partitions in conflict
as recorded in conf (lines 11-14). Consequently, when exe-
cuted, these threads will save the partitions they manage in
individual image files during the checkpointing process.

Algorithm 2 scheduler()
1: while deliver(c) do {atomic broadcast delivers a command c}
2: cfW rkrs← getW rkrs(c.type) {one or more workers (cross)}
3: for i ∈ cfW rkrs do {add c, if not already}
4: if after(c.height, lstEx[i]) then {...processed to}
5: t_queue[i].add(c) {...the input queue}
6: for i ∈ cfW rkrs do {record each pair of workers}
7: for j ∈ cfW rkrs do {...that conflict}
8: conf [i][j]← 1 {for single-partition i=j, the identity}
9: scheduled← scheduled + 1
10: if scheduled mod ∆cp then {if it is checkpoint time}
11: partSet← conflictW ith(next_cp) {Alg 4.}
12: cpRreq ← ⟨CP, partSet⟩ {the checkpoint request}
13: for id ∈ partSet do {... is enqueued at each}
14: t_queue[id].add(cpReq) {... conflicting partition}
15: next_cp← (next_cp + 1) mod n

16: function getWrkrs(conflict class)
17: returns set of workers for a conflict class

2For the sake of simplicity, we do not demonstrate algorithms concern-
ing the client side. Typically, they issue requests to a proxy that broadcasts
requests to the replicas.

Algorithm 3 describes the worker threads behavior. Each
thread retrieves the first command from its queue and ex-
tracts the ids of all threads associated with the conflict class,
adding them to a list called crWrkrs (lines 1-3). The thread
with the lowest id among them is chosen to execute the com-
mand (line 4). A barrier is used to synchronize the execution
of the command, ensuring that the thread with the lowest id
waits for the other threads (lines 6-7). Once all threads have
reached the barrier, the selected thread executes c (line 8)
and records this command in the log associated with the cor-
responding partition (line 9). Finally, the thread signals the
other threads to proceed with their execution (lines 10-11). If
there are no other threads in cfWrkrs, the thread with low-
est identifier does not have to wait and can directly execute
and log the command. The workers that were not selected
to execute the command have to signal the executor thread
when they reach the barrier and await the command execu-
tion (lines 13-14).

Algorithm 3 worker(wid)
{wid : worker thread Id }

1: while true do
2: c← head(t_queue[wid]); {get command c to execute}
3: cfW rkrs← getW rkrs(c.type) {find workers to synchronize}
4: executor ← min(cfW rkrs) {defines which one executes c}
5: if wid = executor then {if this thread executes...}
6: for all d ∈ cfW rkrs ∧ d ̸= wid do
7: wait(td); {await signal from all others, if any, ...}
8: exec(c, wid); {...then execute c}
9: Lwid .add(c) {log it in the partition’s log}
10: for all d ∈ cfW rkrs ∧ d ̸= id do
11: sign(td) {signal other threads to continue}
12: else
13: sign(texecutor) {signal executor - in line 7}
14: wait(twid) {await it finished exec - signal in line 11}

4.2 Conflict matrix
As observed in Algorithm 2 (lines 6-8), the scheduler thread
is responsible for annotating which partitions were accessed
by cross-partition commands in the current execution inter-
val. These interactions are registered through a conflict ma-
trix, denoted as conf . The conflict matrix is a square ma-
trix of order n, where n is the number of state partitions.
Each line or column index represents a partition, and each
cell in the conflict matrix can assume either the value 0 or
1. A cell conf [i][j] = 1 indicates that partitions i and j
executed a cross-partition command, meaning there was in-
teraction between them during the current execution interval.
conf [i][j] = 0, otherwise. Initially, the conflict matrix is
initialized as an identity matrix.
To exemplify the use of a conflict matrix, consider the re-

quests r1 to r7 in Figure 1, along with the following matrix
that represents the replica conflict matrix after the execution
of these requests. Notice the matrix represents 4 partitions
while requests in the example were addressed only to parti-
tions p1 and p2.

conf =

1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

From the matrix, it can be observed that cross-partition
requests involved partitions p1 and p2. This information is
obtained from the values of cells conf [1][2] and conf [2][1]
which are set to 1. In this case, request r4 is the cross-
partition request that caused these cells to be set to 1. All
other requests in the execution example are single-partition.
Whenever ∆cp commands are executed by the replica, the

scheduler determines which partitions need to be saved in
the current checkpointing (Algorithm 2, line 11). Algorithm
4 describes how to determine which partitions need be saved
in the current checkpointing, based on the conflict matrix.
The input to the algorithm is next_cp, which represents

the initial partition to be saved in the checkpoint. Starting
withnext_cp in line 1, the algorithm calculates the set of con-
flicting partitions, be they directly conflicting with next_cp
or conflictingwith others already identified as conflicts. This
is done by repeatedly (line 3) evaluating for new conflicts
(lines 5 and 6) whenever a new conflict is added (in line 7).
After collecting the set of partitions directly or indirectly

involved with next_cp, these conflicts have to be cleaned
from the conflict matrix (lines 9–12) avoiding false-positive
interactions among partitions in the next checkpoint. Finally,
the list of partitions that must be saved in the current check-
point is returned (line 13).

Algorithm 4 conflictWith(next_cp)
{next_cp : initial partition to be saved in the checkpoint}

1: partitions← {next_cp} {starting with partition to save}
2: modif ← true
3: while modif do {whenever a conflict is found }
4: modif ← false {reevaluate to find further...}
5: for all p ∈ partitions, i ∈ 0..n− 1 do {conflicts...}
6: if conf [p][i] = 1 ∧ i /∈ partitions then {transitively}
7: partitions← partitions ∪ i {add it}
8: modif ← true {...and check again}
9: for i ∈ partitions do {clean these conflicts}
10: for j ∈ partitions do
11: if i ̸= j then {leave identity}
12: conf [i][j]← 0
13: return partitions {return list of partition ids to be saved}

4.3 Partitioned checkpointing algorithms
The scheduler dispatches checkpoint requests to the threads
responsible for the partitions whose states need to be saved.
These checkpoint requests are handled as regular commands,
and their execution is triggered by the execution of the
exec(c) function, as described in Algorithm 3, line 8. A typ-
ical command execution is illustrated by Algorithm 5. For
each command received, the command type is checked and
the appropriate procedure for executing the command is per-
formed (lines 1 to 5). If the command is a checkpoint intro-
duced by the scheduler, then Algorithm 6 is activated (lines
6 and 7). After executing the command, the thread updates
the index of the last command executed on the partition (line
8).
As described in Algorithm 6, the replica initiates a check-

point with the next id. For each partition to be saved, in-
formed as parameter, it stores: its current state and the last
command executed. Then the partition’s log is truncated.
After all partitions informed were saved, the checkpoint is

Algorithm 5 exec(c, pid)
{c : command to be executed, pid : partition to execute c}

1: if c.op = OP1 then
2: . . . {Execution code for the application command OP1}

3:
...

4: else if c.op = OPn then
5: . . . {Execution code for the application command OPn}
6: else if c = ⟨CP, partSet⟩ then
7: checkpoint(partSet) {Algo. 6}
8: lstEx[pid]← c.instance {record last executed command}

marked complete and finished. Notice that all partitions be-
ing saved are blocked for command execution.

Algorithm 6 checkpoint(partSet)
{partSet : set of partitions}

1: chkpid ← newChkp() {next id to chkp, init persistency}
2: chkpT h← ∅
3: for all p ∈ partSet do
4: chkpT h← chkpT h ∪ {new checkpoint thread}
5: new thread : {...for each partition, its thread}
6: S ← getSnapshot(p) {copy the partition state}
7: l← lstEx[p] {last command executed in p}
8: write(⟨chkpid, p, l,S⟩) {store it to stable device}
9: truncate(Lp) {trim partition’s log}
10: for each t ∈ chkpT h do
11: wait(t) {await all checkpoint threads to finish}
12: finishChkp(chkpid) {mark chkp as complete}

Algorithm 7 recv(ReqMetadata)
Replica rid receives ReqMetadata (Algo. 8) from recovering replica rrec

1: resp← ∅
2: for all partition p do
3: let chkpid ← id of newest complete checkpoint having p
4: let l← the last command in chkpid for p
5: resp← resp ∪ ⟨p, l, rid, chkpid⟩
6: send(RespMetadata, resp) to rrec

4.4 Recovery
During its normal execution, a service replica performs peri-
odic checkpoints, enabling recovery replicas to restore their
state based on the most recent partition checkpoints among
the correct replicas. The fact that the service snapshots are
individually stored favors rapid recovery, especially in multi-
core architectures, as the snapshots can be transferred and
installed in parallel. Besides speeding up recovery, collabo-
rative state transfer balances the workload among the correct
replicas during recovery.
Figure 1 illustrates how the recovery procedure works.

When initiating recovery, the recovering replica requests all
replicas to send metadata related to their partition check-
points, as shown by the ReqMetadata request in the figure.
Of particular interest for recovery is information about the
last command processed in each partition. Upon receiving
the metadata, the recovery replica compares the identifiers
for each checkpoint partition in the other replicas, identify-
ing the most up-to-date ones. In this illustration, replica r0
has the most up-to-date checkpoint for partition 0, indicated
by cp0 = 70, while in replica r1, cp0 lags at 20. However,
r1 possesses the most up-to-date snapshots for partitions 1

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

and n (cp1 = 50 and cpn = 50). The recovering replica
then requests the snapshot and log of the most updated parti-
tions from the replicas, denoted by the ReqPartState request.
As it receives the state images, the replica installs the check-
points and appends the commands in the logs to the worker
threads’ queues. Notice that transferring and installing par-
tition states occur in parallel, and some partitions may take
longer than others to be restored. A barrier ensures that the
recovering replica processes log commands only after all par-
tition checkpoints are restored.
Algorithm 8 describes the recovery process. Upon restart

(Algorithm 1), the replica triggers recovery, which sends the
ReqMetadata request to all replicas in the system (lines 2-3).
Other replicas respond to this as in Algorithm 7: in short,
it responds with the most recent checkpoint for each parti-
tion, informing also the last command of the total order in-
cluded in the state. Since a checkpoint may not include all
partitions, information from different checkpoints of the re-
sponding replica may be returned. After receiving responses
from the other replicas, the recovering replica chooses, for
each partition, to recover from the most advanced one (high-
est last command - line 9). Observe that some replicas might
crash before replying with their checkpoint information. It
does not affect the recovery as the recovering replica awaits
replies for a bounded time limit, represented by a timeout
(line 4). Still, suppose the replies take longer than the time-
out. In that case, the recovery replica will repeat the opera-
tion until at least one correct replica informs its checkpoint
metadata (see thewhile loop, lines 1-6). For each partition, in
parallel (line 11), it then requests the respective origin replica
for the partition, awaits its response (lines 12-13), installs the
state, feeds the recovery log to the input queue of the respec-
tive partition’s worker thread and records the last executed
command at each partition (line 16). The recovery finishes
once all partitions passed this process (lines 17-18).

Algorithm 8 recover()
1: while allRsps = ∅ do {Getting checkpoint metadata}
2: for each ri ∈ R where i ̸= id do {For all service replicas ...}
3: send(ReqMetadata) to ri {...request checkpoint metadata }
4: for each ri ∈ R where i ̸= id or timeout do
5: if recv(RespMetadata, m) then {...receive metadata m and}
6: allRsps← allRsps ∪m

7: rcvT hrds← ∅ {set of recovery threads}
8: for each partition p do
9: let ⟨p, l, rid, chkpid⟩ = entry with highest l for p in allRsps
10: rcvT hrds← rcvT hrds ∪ {starts recovery thread}
11: new thread : {...to request partition p to rid}
12: send(ReqPartState, p, chkpid) to rid {request and}
13: recv(RespPartState, C,L) {receives checkpoint and log}
14: install(C) {installs the received state}
15: t_queue[p]← L {assign log to input queue of p}
16: lstEx[p]← height of last command in L
17: for each t ∈ rcvT hrds do
18: wait(t) {await all recovery threads to finish}

4.5 Correctness arguments
Starting from the initial state, consider that the same prefix
p of commands is applied at any two replicas. The SMR ap-
proach ensures that at this point replicas have identical states.
Here we want to argue this same property considering that a

replica may have crashed and recovered before processing
the whole prefix p. In the following, we show this consider-
ing the use of the partitioned checkpoint and recovery mech-
anisms proposed.
Besides safety, we also argue about the liveness of the sys-

tem when the above mechanisms are employed.

4.5.1 Safety

Proposition 1. A partition’s snapshot and log are consis-
tent.
The system initiates with initial state and empty logs at all

replicas, at all partitions. From Algorithm 3 we have that
partitions process commands sequentially and from lines 8
and 9 we have that whenever a command is executed at a
partition, it is logged at the partitions log. Thus, a partitions
log reflects the set of commands applied against the initial
state.
From Algorithm 2, line 10, we have that at each ∆cp com-

mands a checkpoint command is scheduled at involved par-
titions. Partitions process the checkpoint command as any
other command, i.e., sequentially (see Algorithm 5) and thus
without interference. This means that the snapshot taken is
a consistent state and comprises the cumulative effect of all
commands before the checkpoint. The checkpoint is in Algo-
rithm 6. Notice from line 8 the snapshot taken keeps, besides
the state of the partition, a reference to the last command ex-
ecuted. Notice that a checkpoint is considered valid if it is
complete, see line 12. We assume that line 12 is atomic w.r.t.
crashes, i.e., either the snapshot is marked complete or not.
In the second case it does not exist for recovery. Right af-
ter the snapshot, the log is truncated at line 9. Inductively
the last snapshot can be regarded as a new initial state, and
thus a partitions log reflects at any time the set of commands
applied against the respective last snapshot taken.

Proposition 2. Commands are executed exactly once at
partitions, in order, regardless of crash recovery.
Supposing no crash-recovery events, from Proposition 1

we have that at each partition, at each replica, a command is
applied exactly once, in consensus order, against the state.
In the event of a recovery, according to Algorithm 8, the

recovering replica searches the highest checkpoint for each
partition and then retrieves and installs each one. In line 13
we have that a partition snapshot and respective log are re-
trieved from a chosen source replica. Due to Proposition 1,
the snapshot and log are consistent. The snapshot is installed
as state and the log is processed next, as it is feed in the in-
put queue of that partition. Thus, after this, the partition will
have executed exactly the prefix of commands until the last
one of the retrieved log.
According to Algorithm 1, after processing the log further

commands are retrieved from consensus, starting from the
lowest one needed to continue processing the snapshots used
(line 8). Then, according to the scheduler thread Algorithm
2, line 4, a command arriving from consensus is only sched-
uled at a partition if it is higher than the last command ap-
plied to that partition. With this, it is ensured that commands
after the log are correctly applied to each partition as appro-
priate. Since logging is sequential, according to consensus

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

t0

t1

tn

new replica

r1

r0

cp0 [70] log0 [71,80]

cp1 [30] log1 [31,48]

cpn [40] logn [41,60]

install cp

install cp log

cp0 [20] log0 [21,60]

cp1 [50] log1 [51,75]

cpn [50] logn [51,90]

ReqMetadata ReqPartState

install cp

barrier

log

log

c81
...

c76
...

c91
...

Figure 2. Recovery through collaborative state transfer.

order, log processing is equally sequential, and commands
retrieved from consensus also in consensus order, it follows
that each command is applied at a partition once and in con-
sensus order regardless of crash-recovery events at the parti-
tion.

Proposition 3. For independent workloads, it is possible
to recover from any combination of partition snapshots re-
trieved.
If partitions evolve independently, i.e., without cross par-

tition commands, by Proposition 2 one can derive that any
combination of consistent pairs ⟨ snapshot, log ⟩ for differ-
ent partitions can be used for recovery. If all partitions finish
processing up to a given height of the total order, then each
partition processed exactly once, in order, all commands ad-
dressed to it up to this height.

Proposition 4. Snapshots taken are consistent for cross
partition commands.
From system initial state, or inductively after a checkpoint,

a replica applies commands to partitions and records, from
the previous point, which partitions are involved in cross-
partition commands. This is performed by Algorithm 2, lines
6-8. When the next checkpoint moment comes, the set of
conflicting partitions is calculated, line 11. Algorithm 4 re-
turns the conflicting partitions since the last checkpoint (as
well as resets the conflict matrix to start recording conflicts
from the current checkpoint on). For the conflicting parti-
tions, the checkpoint command CP is executed as a conflict-
ing command, i.e., the involved partitions process their in-
puts up to CP and synchronize. This is ensured by Algo-
rithm 3, by the conflicting command execution procedure,
and results that any cross-partition commands before CP are
processed in all partitions involved. Therefore, a replica gen-
erates checkpoints to partitions that are consistent with cross-
partition commands: i.e., either a cross-partition command is
reflected in the snapshot of all partitions involved, or none (it
comes after CP).

Proposition 5. Snapshots adopted during recovery are con-
sistent for cross partition commands.
The recovery procedure chooses the most advanced snap-

shot of each partition, regardless of replica, to recover from.
This, and further processing procedures, are argued sufficient
for independent commands at Propositions 2 and 3. Now we
argue that it is also sufficient for cross partition commands.
By Proposition 4, a checkpoint generates snapshots of dif-

ferent partitions that are consistent w.r.t. cross-partition com-
mands. Complementing, notice that a checkpoint is consid-
ered complete only after all needed partitions were check-
pointed as stated in Algorithm 6, last line. Considering com-
plete checkpoints, notice that if any partition pi has a more
advanced checkpoint w.r.t. any other partition pj it is be-
cause pi progressed with independent commands, otherwise
whey would have both the snapshots taken at the same com-
plete checkpoint. Therefore, recovering the most advanced
snapshot for each partition – which is what the algorithm
specifies – results in checkpoints that consistently preserve
cross-partition commands.
From the above, we derive that if a replica has processed

up to a given prefix of the total order, irrespectively of cross-
partition commands and crash-recovery events, it will reflect,
at each partition, exactly the same sequence of commands
that another replica without any crash-recovery event.

4.5.2 Liveness

According to SMR a request can be executed and responded
to the client once the previous ordered ones were executed.
We assume the total order of commands to be ensured by con-
sensus. Therefore, provided consensus instances are decided,
liveness at SMR level is ensured. Additional assumptions for
consensus termination are outside this discussion as we rely
on consensus as a black box.
Regarding the recovery mechanisms proposed, we have

to argue that recovery is always possible and finishes. Re-
call that any past command can be retrieved from consensus.

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

Also, according to discussed in Section 4.5.1 provided check-
points are complete, i.e., consistent w.r.t. cross partition
commands, the technique can use partition information from
different checkpoints by different replicas. With this, it is
possible to recover from any complete checkpoint provided,
even older ones, in the extreme case the initial state. Obvi-
ously more recent checkpoints favor faster recovery. Since
n = 2f +1 is assumed, there are always operational replicas
that can provide recent partitions snapshots and accompany-
ing logs.

5 Experimental evaluation
This section evaluates the time-phased partitioned check-
pointing technique, comparing its performancewith the tradi-
tional checkpointing model. The behavior of both strategies
combined with the copy-on-write (CoW) is also evaluated,
as this strategy aims to reduce synchronization costs during
command execution while saving state. For comparison pur-
poses, the following aspects were considered:

• How the frequency of checkpoints affects the average
system throughput;

• The influence of the CoW technique in both partitioned
and traditional checkpointing techniques;

• How the checkpointing overhead affects the system for
different numbers of partitions; and

• How the recovery time is affected by the technique.

5.1 Prototype implementation
To evaluate the performance, the proposed protocols were in-
tegrated in BFT-SMaRt [Alchieri et al., 2017; Bessani et al.,
2014] and a key-value store prototype was implemented. It
consists of a set of key-value tables, where keys are rep-
resented by integer numbers and values are arrays of 1024
bytes, offering the following operations:

• put(table, key, value) - inserts into table a ⟨key,value⟩
pair;

• get(table, key) - retrieves the value associated with key
from table. If the key or the table is not found, it returns
null;

• swap(table1,key1,table2,key2) - exchange the values as-
sociatedwith the keys key1 and key2, belonging to tables
table1 and tables2, respectively;

• multi_table_put(table[t1, t2, ...], key[k1, k2, ...],
value[v1, v2, ...]) - inserts into tables tablei the pairs
⟨keyi,valuei⟩ following the respective order of the pa-
rameters;

For the partitioning of the service state, each key-value
table is considered a partition. For example, the operation
checkpoint(0) stores on persistent storage the data contained
in table 0. In the traditional approach, the checkpoint op-
eration saves all tables of the service. This application fits
well with representative examples of key-value store services
broadly used in many large online services (e.g., Twitter
[Schuller, 2014], Amazon [DeCandia et al., 2007], and Face-
book [Masti, 2021]) and their states are easy to shard based
on the range of keys values.

Any two single-partition operations on the same partition
are executed sequentially according to the total delivery or-
der. Any cross-partition operation is ordered at all partitions
involved, that cooperate to execute it, following the protocol
of Section 4.1. For example, the operation swap(0, 1, 3, 5)
performs the swap between the values of key 1 in table (par-
tition) 0 and key 5 in table (partition) 3. This operation is
enqueued to both respective worker threads of partitions 0
and 3 and these workers synchronize when both reach the
command to execute it.

Checkpoint operations also force synchronization among
partitions. In the case of traditional checkpointing, all worker
threads must synchronize. In the proposed technique, only
the threads that executed cross-partition commands have to
synchronize, as discussed in Algorithm 2, Section 4.
For load generation, a multi-threaded client randomly gen-

erates requests to be sent to the service, according to selected
read and conflict rates.3 Read commands are given by get
operations and write commands are represented by put op-
erations when accessing single-partition or multi_table_put
when accessing cross partitions.
For this evaluation, the total size of the service state is 1GB

divided into 4 equal size partitions (256MB), Table ids are
unique and belong to the interval [1..4]. Tables are created
and populated at initialization. To insert the keys, the com-
mand put(table, key, value) is used. Operations put and
multi_table_put were used to update the tables. Since each
key (key) maps to an array (value) of 1024 bytes, each table
has 250, 000 distinct keys. The state size does not change
over time. This assumption is made to restrict the number of
varying elements on the experiments.

5.2 Test environment
We used the Emulab platform [White et al., 2002] with 4
physical machines for the experiments, consisting of 3 server
replicas and 1 client replica. The choice of 3 server replicas
is due to the fact that the service replicas are part of the con-
sensus protocol, and it requires 2f + 1 replicas to tolerate f
faults. With this configuration, the service can tolerate the
failure of 1 node without compromising its availability. The
client machine instantiated a load generator with a variable
number of threads responsible for generating requests. Dur-
ing the experiment, the Java Virtual Machine (JVM) heap
memory was set to 32 GB. The machine specifications for
the service replicas and the load generator are the same: 2
Intel Xeon 2.4 GHz 64-bit 8-core processors, 64 GB RAM,
and a 200 GB 6Gbps SATA SSD disk.

5.3 Workload characterization
Given the application and deployment above, we ran experi-
ments to ranging the number of client threads to reach the sat-
uration point. These experiments were set up without check-
points and failures. Each execution lasts 1 minute, consisting
of 100% write operations. The service replicas were config-
ured with 4 execution threads (4 partitions). Figure 3 shows
the system’s saturation point. We can observe the average

3We use ‘conflict’ or ‘cross-partition operation’ as synonyms.

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

throughput (horizontal axis) expressed in kilo commands ver-
sus the 90th percentile of latency (vertical axis) expressed in
milliseconds.

Vazão média (kcmds/s)

90
th

 p
er

ce
nt

il
la

te
nc

ia
 (m

s)

0

2

4

6

8

2 4 6 8

Figure 3. Saturation point for service configuration with 4 workers threads
and exclusively written workload.

As we observed, after 8k commands/s response times
clearly increase, indicating saturation. Further experiments
were conducted at 70% of the saturation load, corresponding
to 22 client threads.
The characteristics of workloads generated for the experi-

ments differ in two aspects: (i) read or write operations; and
(ii) single or cross-partition operations. In total, four differ-
ent workloads were used, as listed next.

• 100% read, single-partition (100r0c) - this workload
represents the best-case scenario in terms of perfor-
mance, as reads are lightweight and the absence of cross-
partition operations eliminates the need for thread syn-
chronization;

• 90% read operations and 1% cross-partition (90r1c) -
meaning, 90% reads and 10% writes, and within the to-
tal number of writes, 1% are cross-partition, involving
two or more partitions. This workload represents sce-
narios mainly consisting of reads, with few updates and
few conflicts. This setup fits well with the representa-
tive examples of key-value stores commented at Sec-
tion 5.1. For example, Twitter uses a key-value store
to store tweets that are usually written once and read
multiple times. Consequently, such applications have a
workload that contains mostly read operations. More-
over, the choice for 1% of conflicts stems from obser-
vations from the literature. Moraru et al. [2013] state
that from the available evidence, dependency probabili-
ties between 0% and less than 2% are the most realistic.
For instance, in Chubby, for traces with 10 minutes of
observation, fewer than 1% of all commands could pos-
sibly generate conflicts [Burrows, 2006]. In Google’s
advertising back-end, F1, which uses the geo-replicated
table store Spanner, fewer than 0.3% of all operations
may generate conflicts [Corbett et al., 2012];

• 0% read operations and 100% cross-partition (0r100c)
- this workload generates only write operations, all
cross partitions, represented by multi_table_put involv-
ing two randomly selected partitions. This scenario rep-
resents the worst-case in terms of synchronization, as
all requests require coordination between threads;

• 0% read operations and 0% cross-partition (0r0c) - this
workload consists only of write, single-partition opera-
tions.

Read commands are given by get operations and write
commands are represented by put operations when access-
ing single-partition or multi_table_put when accessing cross
partitions. For the defined workloads, read operations do not
cause conflicts between partitions. Therefore, a conflict rela-
tionship involving multiple partitions can only occur during
the execution of write operations on multiple data.
To evaluate the impacts of the checkpoint interval, all pre-

viously described workloads were evaluated with intervals
∆cp set at every 50,000, 100,000, 150,000, and 200,000 com-
mands. Considering i as the i-th command received by the
service replica, whenever i mod ∆cp = 0, the checkpoint
procedure is executed.

5.4 Performance evaluation
Experiments were conducted using both traditional and par-
titioned checkpointing techniques. In the first case, a check-
point containing a full image of the service state is taken
every ∆cp requests. In the partitioned approach, a target
partition is saved every ∆cp requests. Although known log-
ging/checkpointing optimizations could be incorporated in
our prototypes (e.g., optimistic logging, incremental check-
points, system-level checkpointing, and dynamic or adaptive
checkpoint intervals) [Goulart et al., 2023a], we are inter-
ested in evaluating the impacts caused by our technique, then
avoiding the interference caused by other techniques.
Figure 4 shows how the checkpoint periodicity (horizon-

tal axis) affects the average throughput (vertical axis) for the
100r0c workload, which means a workload with 100% read
operations and no conflicts between partitions. The graph
displays the throughput as a function of the checkpoint inter-
val for the following replica configurations: Traditional (tra-
ditional checkpointing technique), Partitioned (time-phased
partitioned checkpointing technique), GP-Traditional (tra-
ditional checkpointing technique with conflicts involving
disjoint groups of partitions), GP-Partitioned (partitioned
checkpointing technique with conflicts involving only dis-
joint groups of partitions). Note that we differentiate the
chances of conflicts involving any partitions from situations
where conflicts always involve the same disjoint groups of
partitions. In the second case, a swap command can involve
only partitions 1 and 2, or partitions 3 and 4, but never par-
titions 1 and 3 or 4, or 2 and 3 or 4. In other words, group
{1, 2} is disjointed from {3, 4}.
It can be observed that the time-phased partitioned check-

pointing outperforms the traditional technique in all evalu-
ated scenarios. Furthermore, with larger checkpoint inter-
vals, the traditional checkpointing achieves higher through-
put, as expected. Note that even with partitioned check-
points and a checkpoint interval of 50,000 commands, the
throughput is approximately 4 times higher than that ob-
tained with the traditional technique. Even when considering
larger checkpoint intervals, such as 200,000 commands, the
partitioned technique still shows improvement compared to
the traditional technique. Since as the checkpoint intervals

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

0

5000

10000

15000

20000

25000

50000 100000 150000 200000

Tradicional Particionado GP-Tradicional GP-Particionado

Checkpoint interval (# of commands)

Av
er

ag
e

th
ro

ug
hp

ut
 (

co
m

m
an

ds
/s

)

Partitioned PartitionedTraditionalTraditional

Figure 4. Average throughput using the workload 100r0c and 4 partitions.

become smaller, the cost of log reprocessing during recov-
ery becomes less expensive, the reported result suggests that
adopting a more frequent checkpointing intervals with the
proposed approach can be advantageous. When comparing
strategies with conflicts involving any partitions or disjoint
groups of partitions, no significant differences are observed
since the workload (100r0c) does not cause any conflicts.
Other techniques, such as copy-on-write (CoW) [Bobrow

et al., 1972], can reduce the overhead of checkpoint creation.
This technique reduces the required synchronization by mak-
ing copies of the state during checkpoint creation, allowing
new commands to be executed in parallel with state saving.
With CoW enabled, when a checkpoint thread needs to copy
a memory page from the application to the snapshot, it maps
it into the target address space and marks it read-only. If a
worker thread tries to write to that page, it will notice that
the page is a CoW page and thus (lazily) allocate a new page,
fill it with the data, and map this new page into the applica-
tion address space. The checkpoint procedure then continues
copying data from its private copy of the page, which is un-
modified.
However, a large amount of memory may be needed for

duplicating data during state saving. Figure 5 compares
the throughput results achieved with the CoW technique
and our approach. The graph displays the throughput ver-
sus the checkpoint interval for the following replica config-
urations: Traditional-CoW (traditional checkpointing tech-
nique with CoW), Partitioned-CoW (partitioned checkpoint-
ing technique with CoW), GP-Traditional-CoW (traditional
checkpointing technique with CoW and conflicts involving
disjoint groups of partitions), GP-Partitioned-CoW (parti-
tioned checkpointing technique with CoW and conflicts in-
volving disjoint groups of partitions).
The use of Copy-on-write benefited the traditional check-

pointing strategy in particular. Compared to Figure 4, the tra-
ditional technique showed higher throughput for all scenar-
ios with checkpoint intervals equal to or greater than 100,000
commands. This optimization provided a slight gain for the
cases where the time-phased partitioned checkpointing tech-
nique was used. Another experiment was conducted compar-
ing different heap configurations. It was found that the tradi-
tional technique requires a larger amount of memory for state
copies, causing the system to fail whenever the heap configu-
ration was less than 6.5 GB. On the other hand, the proposed
checkpointing technique requires less memory due to check-
points at partition-level. It was necessary to configure the

0

5000

10000

15000

20000

25000

50000 100000 150000 200000

Tradicional - CnE Particionado - CnE GP-Tradicional - CnE GP-particionado - CnE

Av
er

ag
e

th
ro

ug
hp

ut
 (

co
m

m
an

ds
/s

)

Partitioned PartitionedTraditionalTraditional

Checkpoint interval (# of commands)

Figure 5. Average throughput using CoW with the workload 100r0c and 4
partitions.

memory heap to 4.5 GB for the system to operate normally.
For the next evaluated scenarios, we opted to not present the
results using CoW. In general, the technique brings perfor-
mance improvements to both approaches and can be consid-
ered an orthogonal optimization for both checkpointing ap-
proaches.
Figure 6 presents the result for the 0r0c scenario, where

all client operations are writes. It can be observed that,
due to the absence of conflicts, the partitioned checkpoint-
ing technique shows higher average throughput compared to
the traditional model. Furthermore, it can be noticed that
the average throughput of the partitioned checkpointing tech-
nique remains relatively stable, with minor variations in the
checkpoint period. As expected, the average throughput is
lower than in the previous scenario, where the workload was
100r0c. It is because write commands are more costly than
read commands.

0

2000

4000

6000

8000

50000 100000 150000 200000

Tradicional Particionado GP-Tradicional GP-Particionado

Av
er

ag
e

th
ro

ug
hp

ut
 (

co
m

m
an

ds
/s

)

Partitioned PartitionedTraditionalTraditional

Checkpoint interval (# of commands)

Figure 6. Average throughput using the workload 0r0c and 4 partitions.

Figure 7 shows the results obtained with the workload
0r100c, where 100% of the commands are write and in-
volve multiple partitions. For request generation, variables
are randomly selected to access two different partitions us-
ing the multi_table_put request. This scenario represents
the most costly case in terms of synchronization since 100%
of the commands involve multiple partitions. The measured
throughputs are similar to those observed in Figure 6, where
no conflict occurs. This result suggests that despite the need
to anticipate checkpoints from other partitions at each inter-
val, the partitioned checkpointing provides gains as it stores
state partitions in parallel, reducing the checkpoint duration.
Although there are periods when all commands are blocked,
this period is shorter with our technique. When a checkpoint

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

ends, queued commands are processed quickly, as the system
is able to process more than the 6000 commands/s. What is
unnoticed in this graph is the latency impact the clients ob-
serve while their requests are blocked during the checkpoint-
ing. Figures 9 and 10 demonstrate how latency and through-
put values vary over time.

0

2000

4000

6000

8000

50000 100000 150000 200000

Tradicional Particionado GP-Tradicional GP-Particionado

Checkpoint interval (# of commands)

Av
er

ag
e

th
ro

ug
hp

ut
 (

co
m

m
an

ds
/s

)

Partitioned PartitionedTraditionalTraditional

Figure 7. Average throughput using the workload 0r100c and 4 partitions.

Figure 8 shows the results obtained for the workload
90r1c. Even the average throughput is lower compared to
the best case 100r0c due to the presence of write operations
and conflicts between partitions, it is still higher than the
traditional model. Once again, the parallelism while saving
partition states enables rapid checkpointing, which incurs a
higher average throughput with our approach than the tradi-
tional one. A slight gain in performance is observed when
conflicts involve disjoint groups of partitions. It indicates
that some requests are processed while some partitions have
their states saved.

0

5000

10000

15000

20000

50000 100000 150000 200000

Tradicional Particionado GP-Tradicional GP-Particionado

Av
er

ag
e

th
ro

ug
hp

ut
 (

co
m

m
an

ds
/s

)

Partitioned PartitionedTraditionalTraditional

Checkpoint interval (# of commands)

Figure 8. Average throughput using the workload 90r1c and 4 partitions.

Figure 9 presents the response latency of requests consid-
ering an interval of 50,000 commands between checkpoints
and a workload of 90r1c. The latency is measured per re-
quest throughout the execution, with values given in millisec-
onds. The latency peaks represent the instants when a request
was waiting for an ongoing checkpoint to finish. In the tradi-
tional technique, saving a checkpoint takes at least 6 seconds
to complete (observe the peaks near 9s, 17s, and 26s on the
graph). This time for saving the state affects the latency ob-
served by clients. During the checkpointing process, the ob-
served latency with the time-phased partitioned checkpoint-
ing is lower than with the traditional technique. This gain
is obtained because requests that do not involve saving state

partitions can execute in parallel with the execution of the
checkpointing procedure.

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

PartitionedTraditional

Execution time (s)

La
te

n
cy

 (
m

s)

Figure 9. Response latency for a checkpoint interval of every 50, 000 com-
mands, using the workload 90r1c and 4 partitions.

Figure 10 presents the throughput behavior, measured in
executed commands, over time in seconds. The dashed line
indicates the execution of the traditional technique, while the
solid line represents the throughput of the technique with par-
titioned checkpointing. Note that the average throughput for
the traditional strategy drops to 0 at the 5-secondmark and re-
mains at this level for approximately 6 seconds. The service
replica stores its state during this period and stops processing
new requests. In the proposed checkpointing strategy, there
is a decrease in throughput, but the service replica can still
process new requests. The partitioned checkpointing tech-
nique produces smaller peaks of response latency because
checkpoints of portions of the state are performed at differ-
ent time instants.

0

10000

20000

30000

40000

50000

20 40 60 80 100 120

PartitionedTraditional

Execution time (s)

E
xe

cu
te

d
 c

o
m

m
a
n

d
s

Figure 10. Throughput over time for a checkpoint interval of every 50, 000
commands, using the workload 90r1c and 4 partitions.

Table 1 presents a simulation of the percentage of the state
stored at each checkpoint. It shows the total number of con-
flicts involving partition p1, assuming that p1 is the target
partition to be saved in the checkpoint. Based on the con-
flict matrix maintained by the scheduler, the total number of
partitions that had commands conflicting with p1, directly or
transitively, was calculated. The table shows the total per-
centage of the state stored at each checkpoint, using inter-
vals between checkpoints of 50,000, 100,000, 150,000, and
200,000 commands. The # partitions column presents the
partitioning configurations used. The workload 90r1c was
used for this experiment, meaning that 1% of the generated
requests involve pairs of partitions.
With a conflict rate of 1% for 4 and 8 partitions, the entire

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

Table 1. Simulation of the number of partitions involved before
executing a checkpoint for configurations with the workload 90r1c
and 4 partitions.

partitions Percentage of the state stored per interval ∆cp

∆cp = 50000 ∆cp = 100000 ∆cp = 150000 ∆cp = 200000
4 100 100 100 100
8 100 100 100 100
16 87,5 100 100 100
32 31,25 78,12 87,50 96,87
64 7,81 26,56 35,94 40,62
128 0,78 3,90 7,03 17,19
256 0,39 0,78 1,17 1,56

application state needs to be stored regardless of the check-
point interval used. For 16 partitions and a checkpoint inter-
val of 50,000 requests, 87.5% of the state was stored, while
in the other intervals, all partitions were checkpointed in ad-
vance. This observation highlights the advantage of using
short checkpoint intervals. Furthermore, increasing the num-
ber of partitions leads to a greater dispersion in conflicts in-
volving pairs of partitions. Consequently, fewer partitions
need to be checkpointed at each interval, allowing the pro-
cessing of more commands during the checkpoint execution.
As can be seen, even with a low conflict rate, the high

throughput to which the system is subjected causes the stor-
age of one partition’s state to force the anticipation of storing
other partitions’ states. Therefore, the throughput of both the
traditional and the proposed checkpointing techniques is very
similar in configurations with few partitions since the entire
state is saved at each checkpoint interval in both cases. By
assuming that conflicts involve disjoint groups of partitions,
a considerable increase in the average service throughput is
observed, especially for small checkpoint intervals.
To evaluate how state partitioning affects the recovery pro-

cedure, Figure 11 presents the results. Each vertical bar rep-
resents the total time required to perform the recovery proce-
dure. For the partitioned case, the results for each partition
are presented separately for better visualization. The total
recovery time is divided into two periods. The first period,
Partition Transfer, represents the time required to request a
partition from a correct replica and receive this partition. The
Install CP indicates the time required to install the received
checkpoint.

Traditional Partition 0 Partition 1 Partition 2 Partition 3 o
0

2

4

6

8

10

12

14

Install checkpoint State transfer

T
im

e
(s

)

Figure 11. Recovery time with the time-phased partitioned checkpoint.

The partitioned checkpointing technique requires less time
for recovery. To complete recovery, the time required for
the last partition (partition 3) is shorter than in the tradi-
tional technique. While the traditional recovery took approx-
imately 13 seconds, the partitioned checkpointing technique
took about 9 seconds due to overlapping tasks. Or example,

the recovery of partitions 0 and 1 is completed, while the
checkpoints of partitions 2 and 3 still need to be received. It
is noteworthy that the time required to receive the complete
state in the traditional model is similar to the time required to
receive a partition. This effect occurs because although state
fragments are transmitted, the threads responsible for receiv-
ing the partitions compete to access the network controller
interface. Performance could be improved by using multiple
network interfaces to receive and send state partitions.
A final remark concerns the specifics of the workload pat-

terns, as the application behavior and workload can influ-
ence performance. Assuming that the distribution of requests
among partitions is evenly distributed, the checkpoint sizes
of the partitions would be similar, and consequently, the time
to save the state of any partition is comparable. However, in
scenarios where a few partitions are heavily updated while
others are rarely accessed, the time to save the heavier par-
titions may represent almost the time to save the entire state
of the application, while saving the other partitions occurs al-
most instantaneously. Although the technique’s benefits may
be less noticeable in this scenario, the system behavior dur-
ing checkpointing would still be analogous to the traditional
checkpointing approach. Thus, in the worst case, a similar
performance can be expected as in traditional checkpointing
techniques.
To maximize the benefits of the partitioned checkpointing

technique, state partitioning policies should provide a bal-
anced load distribution among partitions while reducing the
probability of commands involving multiple partitions. Al-
though it is beyond the scope of this work, efficient partition-
ing strategies can be combined with the partitioned check-
pointing technique [Curino et al., 2010; Kumar et al., 2013;
Quamar et al., 2013; Le et al., 2019; Marandi et al., 2014;
Li et al., 2018; Coelho and Pedone, 2018; Goulart et al.,
2023b]. Regarding the reduction of conflicts involving mul-
tiple partitions, several applications fall into the case where
conflicts concentrate between disjoint groups of partitions,
such as message queue systems and streaming processing
systems, where a large portion of messages is directed to
subsets of queues, with these subsets being disjoint [Eugster
et al., 2003; Sachs et al., 2010; Chen et al., 2011; Viel and
Ueda, 2014; Cheng et al., 2017].

6 Related work
This section provides an overview of techniques found in
the literature that aim to reduce checkpoint costs and accel-
erate the recovery of replicas in the system. Finally, we also
present checkpointing strategies for PSMR.

6.1 General checkpoint/recovery techniques
In [Bessani et al., 2013], the authors propose a strategy in
which each replica of the service performs a checkpoint at a
different point in time, ensuring a minimum quorum of avail-
able replicas to guarantee progress in choosing new com-
mands to be processed. Towards this end, the proposed pro-
tocol assumes a fixed amount, for example, n write opera-
tions performed between each checkpoint, plus an interval

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

representing a time lag between the replicas. The authors
achieved improved throughput during normal system exe-
cution because, at each interval between checkpoints, only
one replica interrupts its execution to save the application
state while other replicas continue executing normally. Per-
formance was improved by introducing a time lag between
checkpoints among the replicas of the service, and the tech-
nique proposed in this work is inspired by this approach.
However, in the time-phased partitioned checkpointing tech-
nique, each service replica performs a checkpoint of a differ-
ent partition at each checkpoint interval, meaning the time
lag is not between independent replicas but between parti-
tions of the same replica.
In Mendizabal et al. [2017b], authors propose two strate-

gies to reduce recovery time. The first one, called speedy
recovery, is based on observing dependencies between the
requests in the command log and new requests. If there is
no dependency between a new request and the commands
in the log, the new request can be executed in parallel with
the log processing. Thus, recovering replicas can anticipate
the execution of some new commands if they do not affect
the state to be reconstructed from the recovery log. Before
reprocessing the commands from the log, the replica must
restore a state from a recent checkpoint. The second strat-
egy, on-demand State Recovery, allows the checkpoint to be
installed in parts as needed. With this strategy, a state par-
tition, represented by a checkpoint segment, is installed the
first time a request operates on the data space of that seg-
ment. Similar to our work, the authors save snapshots of
saved partitions in separate files, enabling their transfer and
installation in parallel. However, they do not plan saving
these partitions with a time lag, which would allow the exe-
cution of commands that do not involve the partitions being
saved. Although both techniques enable the parallel trans-
fer and installation of checkpoints, saving partitions with a
time lag, as proposed in this paper, is less detrimental to the
replicas throughput during normal execution.
In the proactive replication strategy [Castro and Liskov,

2000], replicas frequently restore their states based on a quo-
rum of correct replicas to remove potentially compromised
states due to malicious processes. Therefore, the efficiency
of this process is crucial to enable frequent recoveries. So,
to recover a replica, the state transfer mechanism checks the
stored state of the replica and determines which portions of
the state are updated and uncorrupted. The authors have de-
veloped a hierarchical partitioning to reduce the amount of
transmitted information. The root partition corresponds to
the complete state of the service, and each node corresponds
to a partition. Each node is further divided into sub-partitions
s of equal size. For each checkpoint, each replica maintains a
copy of the partition tree. A checkpoint makes a new copy of
the tree and discards it when the checkpoint becomes stable.
Nodes of the checkpoint’s partition tree store tuples contain-
ing metadata with the partition summary, and the copies of
the partition tree only store the modified tuples, reducing the
space and time required to maintain these checkpoints. This
approach improves recovery by reducing the amount of data
to be transferred. Partial recovery is possible because state
transfer aims to replace only parts of the state that were cor-
rupted or affected by arbitrary or malicious behavior. On the

other hand, our approach does not assume Byzantine behav-
ior, and the recovery consists of constructing a complete and
consistent state for a new replica in the system.
In UpRight [Clement et al., 2009], authors reduce the

throughput overhead during checkpointing by adding helper
processes to the system. Primary and helper processes re-
ceive the same sequence of requests. In the primary instance,
checkpointing is ignored, while in the second instance (the
helper), the responses to these requests are disabled, allow-
ing the node to perform checkpointing while the primary is
processing new requests. This approach, like the one pro-
posed in this paper, improves the system throughput during
normal replica execution. However, in UpRight, the number
of processes and communication in the system is doubled,
incurring additional costs.
The checkpoint mechanism in the SiloR in-memory

database [Zheng et al., 2014] utilizes threads responsible for
storing the application’s state. Checkpoints execute at pre-
defined time intervals; each thread stores a state partition in
different storage units. In this model, a management thread
assigns the state partitions to each checkpoint thread respon-
sible for creating the checkpoint. For load balancing, each
checkpoint thread traverses a fixed number of database keys.
However, in this approach, commands can modify the state
while checkpoints are being stored, resulting in inconsistent
saved states. This results in fuzzy checkpoints and the need
for a more complex recovery protocol. We used only one
storage unit to evaluate our checkpointing technique. There-
fore, it is impossible to assert whether the technique would
present better performance like in Zheng et al. [2014]. In fu-
ture work, we should investigate the impacts on performance
by using parallel I/O and multiple storage devices.

6.2 Checkpointing in PSMR
The PSMR model proposed in Marandi et al. [2014] paral-
lelizes not only the processing of commands but also the de-
livery of requests via the consensus protocol. Two check-
pointing strategies were proposed for this model, as de-
scribed in Mendizabal et al. [2014]. The first strategy is co-
ordinated, meaning that all service replicas must reach the
same common state for a checkpoint to occur. In the second
approach, replicas perform checkpoints independently. The
coordinated approach introduces a checkpoint command into
the consensus protocol to ensure that replicas generate equiv-
alent checkpoints. In the uncoordinated approach, the execu-
tion of the checkpoint request occurs at different times since
each replica of the service generates it independently, and the
consensus protocol does not order it. In our approach, similar
to the presented model, the checkpoint request is generated
periodically by each service replica. However, there is no
divergence between the states created by the service replicas
because there is only one sequence of requests delivered by
the consensus protocol. Another advantage of the partitioned
checkpoints strategy is its ability to be used independently of
the PSMRmodel, unlike the strategy designed for the PSMR
model proposed in Marandi et al. [2014].
In Kotla and Dahlin [2004], service replicas receive re-

quests through a parallelizing process. The parallelizer is
responsible for serializing the execution of dependent com-

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

mands and ensuring that their execution order respects the
order in which the requests were received. Independent com-
mands can be processed in parallel by the set of worker
threads. Due to the sequencing of requests created by the con-
sensus protocol, all replicas produce the same states, yielding
identical checkpoints. Although the authors do not present a
checkpoint approach for this RMEP model, the system al-
lows the definition of commands that conflict with any other
command waiting for execution. Therefore, the checkpoint
can be executed as a synchronizing command with all oth-
ers, as discussed in Mendizabal et al. [2016]. Thus, during
the execution of a checkpoint, it is guaranteed that the worker
threads have executed all commands preceding this event. In
this strategy, checkpoints can be created at each fixed and de-
terministic interval, for example, every n executed requests
since the last checkpoint. This approach blocks all worker
threads while executing the checkpoint, resembling the tradi-
tional checkpoint strategy used for comparison with our time-
phased partitioned checkpoint.
The checkpointing strategy outlined in Kapritsos et al.

[2012] also resembles the traditional checkpointing strategy
presented in Section 5. Replicas progress through command
processing, and the checkpointing process occurs at regular
intervals between checkpoints, determined by time intervals
or the number of commands executed. However, in this strat-
egy, requests are grouped into batches. Like the other strate-
gies described in this section, this approach requires halting
the execution of new commands while saving the applica-
tion state. In contrast, our approach only suspends the execu-
tion of requests involving the state partitions currently being
saved. This allows the throughput of each replica to be less
impacted by the checkpointing procedure, resulting in lower
latency observed by clients. In Mendizabal et al. [2016], the
authors compare the performance of checkpoint techniques
designed for the PSMR models proposed in Marandi et al.
[2014]; Kotla and Dahlin [2004]; Kapritsos et al. [2012].

7 Conclusion
This work presented a new checkpointing and recovery ap-
proach that aims to reduce the overhead of checkpointing by
partitioning the service state and introducing a lag in the state-
saving process for different partitions. Divide the checkpoint
execution into smaller state partition checkpoints reduces the
throughput overhead of the running replicas. Additionally,
processing commands in parallel with partition checkpoint-
ing provides lower request latency for clients. Besides the
state-saving process being faster because only a portion of
the state is stored at a time, the time-phased checkpoint en-
ables some partitions continuously to serve client requests.
Another important observation of the proposed strategy

is the faster recovery. By partitioning the service state, the
state transfer during recovery can involve multiple replicas,
distributing the workload among more than one replica. Fur-
thermore, both the transfer and installation of the state can be
executed in parallel, making better use of architectures with
multiple processing cores.
A performance evaluation compared the impact of our ap-

proach on throughput, latency, and recovery time with the

traditional checkpointing model. In scenarios with a low in-
cidence of cross-partition requests, the latency of pending
requests during checkpointing, as noticed by clients, is re-
duced proportionally to the number of partitions. In less fa-
vorable scenarios, the incidence of cross-partition commands
involves multiple service partitions per checkpoint. Thus,
triggering a partition checkpoint will force the checkpoint-
ing anticipation of the other partitions. In the worst-case sce-
nario, all partitions interact with each other, either directly
or transitively. Even so, unlike traditional techniques where
a single thread saves the application state, state saving oc-
curs in parallel in our technique. The parallel execution of
checkpointing procedures demonstrated less interference in
the execution of replicas, and the proposed strategy proved
more efficient than the traditional technique, yielding gains
in all evaluated scenarios.

Declarations

Funding
This work was financed in part by the Fundação de Amparo à
Pesquisa do Estado Do Rio Grande do Sul – FAPERGS PqG 07/21;
Conselho Nacional de Desenvolvimento Científico e Tecnológico –
CNPq Universal 18/21; and Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior – CAPES Brasil, Finance Code 001.

Authors’ Contributions
All the authors developed the work as a whole in a collaborative
effort.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Data can be made available upon request.

References
Aguilera, M. K., Chen, W., and Toueg, S. (2000).
Failure detection and consensus in the crash-recovery
model. Distributed computing, 13:99–125. DOI:
10.1007/s004460050070.

Alchieri, E., Dotti, F., Mendizabal, O. M., and Pedone, F.
(2017). Reconfiguring parallel state machine replication.
In 2017 IEEE 36th Symposium on Reliable Distributed
Systems (SRDS), pages 104–113. IEEE. DOI: 10.1109/S-
RDS.2017.23.

Amazon (2012a). Summary of the december 24, 2012 ama-
zon elb service event in the us-east region. Available
at:https://aws.amazon.com/message/680587/.

Amazon (2012b). Summary of windows azure ser-
vice disruption on feb 29th. Available at:https:
//azure.microsoft.com/en-us/blog/summary-of-
windows-azure\-service-disruption-on-feb-
29th-2012/.

https://doi.org/10.1007/s004460050070
https://ieeexplore.ieee.org/document/8069073
https://ieeexplore.ieee.org/document/8069073
https://aws.amazon.com/message/680587/
https://azure.microsoft.com/en-us/blog/summary-of-windows-azure\ -service-disruption-on-feb-29th-2012/
https://azure.microsoft.com/en-us/blog/summary-of-windows-azure\ -service-disruption-on-feb-29th-2012/
https://azure.microsoft.com/en-us/blog/summary-of-windows-azure\ -service-disruption-on-feb-29th-2012/
https://azure.microsoft.com/en-us/blog/summary-of-windows-azure\ -service-disruption-on-feb-29th-2012/

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

Bessani, A., Sousa, J., and Alchieri, E. E. P. (2014). State
machine replication for the masses with bft-smart. InDSN,
pages 355–362. DOI: 10.1109/DSN.2014.43.

Bessani, A. N., Santos, M., Felix, J., Neves, N. F., and Cor-
reia, M. (2013). On the efficiency of durable state machine
replication. In USENIX ATC, pages 169–180. Available
at:https://www.usenix.org/conference/atc13/
technical-sessions/presentation/bessani.

Bobrow, D. G., Burchfiel, J. D., Murphy, D. L., and Tomlin-
son, R. S. (1972). Tenex, a paged time sharing system for
the pdp-10. Communications of the ACM, 15(3):135–143.
DOI: 10.1145/361268.36127.

Burrows, M. (2006). The chubby lock service for loosely-
coupled distributed systems. In Proceedings of the
7th Symposium on Operating Systems Design and
Implementation, OSDI ’06, pages 335–350, Berke-
ley, CA, USA. USENIX Association. Available
at:https://www.usenix.org/legacy/event/osdi06/
tech/full_papers/burrows/burrows_html/.

Castro, M. and Liskov, B. (2000). Proactive recovery in
a byzantine-fault-tolerant system. In Proceedings of
the 4th conference on Symposium on Operating System
Design & Implementation-Volume 4, page 19. USENIX
Association. Available at:https://www.usenix.org/
conference/osdi-2000/proactive-recovery-
byzantine-fault-tolerant-system.

Chen, J., Arumaithurai, M., Jiao, L., Fu, X., and Ramakr-
ishnan, K. (2011). Copss: An efficient content ori-
ented publish/subscribe system. In 2011 ACM/IEEE Sev-
enth Symposium on Architectures for Networking and
Communications Systems, pages 99–110. IEEE. DOI:
10.1109/ANCS.2011.27.

Cheng, D., Chen, Y., Zhou, X., Gmach, D., and Milojicic,
D. (2017). Adaptive scheduling of parallel jobs in spark
streaming. In IEEE INFOCOM 2017-IEEE Conference
on Computer Communications, pages 1–9. IEEE. DOI:
10.1109/INFOCOM.2017.8057206.

Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi,
L., Dahlin, M., and Riche, T. (2009). Upright clus-
ter services. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, SOSP
’09, pages 277–290, New York, NY, USA. ACM. DOI:
10.1145/1629575.1629602.

Coelho, P. and Pedone, F. (2018). Geographic state ma-
chine replication. In 2018 IEEE 37th Symposium on Re-
liable Distributed Systems (SRDS), pages 221–230. DOI:
10.1109/SRDS.2018.00034.

Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost,
C., Furman, J., Ghemawat, S., Gubarev, A., Heiser, C.,
Hochschild, P., Hsieh, W., Kanthak, S., Kogan, E., Li,
H., Lloyd, A., Melnik, S., Mwaura, D., Nagle, D., Quin-
lan, S., Rao, R., Rolig, L., Woodford, D., Saito, Y., Tay-
lor, C., Szymaniak, M., and Wang, R. (2012). Spanner:
Google’s globally-distributed database. In OSDI. DOI:
10.1145/249124.

Curino, C., Jones, E., Zhang, Y., and Madden, S. (2010).
Schism: a workload-driven approach to database repli-
cation and partitioning. Proceedings of the VLDB
Endowment, 3(1-2):48–57. Available at:https://

dspace.mit.edu/handle/1721.1/73347.
DeCandia, G., Hastorun, D., Jampani, M., Kakulap-
ati, G., Lakshman, A., Pilchin, A., Sivasubramanian,
S., Vosshall, P., and Vogels, W. (2007). Dynamo:
Amazon’s highly available key-value store. ACM
SIGOPS operating systems review, 41(6):205–220. DOI:
10.1145/1323293.1294281.

Défago, X., Schiper, A., and Urbán, P. (2004). Total order
broadcast and multicast algorithms: Taxonomy and sur-
vey. ACM Computing Surveys (CSUR), 36(4):372–421.
DOI: 10.1145/1041680.1041682.

Egwutuoha, I. P., Levy, D., Selic, B., and Chen, S.
(2013). A survey of fault tolerancemechanisms and check-
point/restart implementations for high performance com-
puting systems. Journal of Supercomputing, 65(3):1302–
1326. DOI: 10.1007/s11227-013-0884-0.

Elnozahy, E. N., Alvisi, L., Wang, Y.-M., and Johnson,
D. B. (2002). A survey of rollback-recovery protocols
in message-passing systems. ACM Computing Surveys
(CSUR), 34(3):375–408. DOI: 10.1145/568522.568525.

Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermar-
rec, A.-M. (2003). The many faces of publish/subscribe.
ACM computing surveys (CSUR), 35(2):114–131. DOI:
10.1145/857076.857078.

Frank, A., Baumgartner, M., Salkhordeh, R., and Brinkmann,
A. (2021). Improving checkpointing intervals by consid-
ering individual job failure probabilities. In IPDPS. DOI:
10.1109/IPDPS49936.2021.00038.

Gitlab (2017). Gitlab.com databse incident. Available
at:https://about.gitlab.com/blog/2017/02/01/
gitlab-dot-com-database-incident.

Goulart, H., Álvaro Franco, and Mendizabal, O. (2023a).
Checkpointing techniques in distributed systems: A syn-
opsis of diverse strategies over the last decades. In
WTF, pages 15–28, Porto Alegre, RS, Brasil. SBC. DOI:
10.5753/wtf.2023.785.

Goulart, H. S., Trombeta, J., Franco, A., and Mendiza-
bal, O. M. (2023b). Achieving enhanced performance
combining checkpointing and dynamic state partition-
ing. In 2023 IEEE 35th International Symposium on
Computer Architecture and High Performance Comput-
ing (SBAC-PAD), pages 149–159. DOI: 10.1109/SBAC-
PAD59825.2023.00024.

Herlihy, M. P. andWing, J. M. (1990). Linearizability: A cor-
rectness condition for concurrent objects. ACM Transac-
tions on Programming Languages and Systems (TOPLAS),
12(3):463–492. DOI: 10.1145/78969.78972.

Huang, P., Guo, C., Zhou, L., Lorch, J. R., Dang, Y., Chinta-
lapati, M., and Yao, R. (2017). Gray failure: The achilles’
heel of cloud-scale systems. In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems, pages 150–
155. DOI: 10.1145/3102980.310300.

Hunt, P., Konar, M., Junqueira, F. P., and Reed, B.
(2010). Zookeeper: Wait-free coordination for
internet-scale systems. In USENIX annual technical
conference, volume 8. Boston, MA, USA. Available
at:https://www.usenix.org/legacy/event/atc10/
tech/full_papers/Hunt.pdf.

Hurfin, M., Mostefaoui, A., and Raynal, M. (1998).

https://ieeexplore.ieee.org/document/6903593
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bessani
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bessani
https://doi.org/10.1145/361268.36127
https://www.usenix.org/legacy/event/osdi06/tech/full_papers/burrows/burrows_html/
https://www.usenix.org/legacy/event/osdi06/tech/full_papers/burrows/burrows_html/
https://www.usenix.org/conference/osdi-2000/proactive-recovery-byzantine-fault-tolerant-system
https://www.usenix.org/conference/osdi-2000/proactive-recovery-byzantine-fault-tolerant-system
https://www.usenix.org/conference/osdi-2000/proactive-recovery-byzantine-fault-tolerant-system
https://ieeexplore.ieee.org/document/6062723
https://ieeexplore.ieee.org/document/8057206
http://doi.acm.org/10.1145/1629575.1629602
https://ieeexplore.ieee.org/document/8613971
https://doi.org/10.1145/249124
https://dspace.mit.edu/handle/1721.1/73347
https://dspace.mit.edu/handle/1721.1/73347
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1007/s11227-013-0884-0
https://doi.org/10.1145/568522.568525
https://doi.org/10.1145/857076.857078
https://ieeexplore.ieee.org/document/9460459
https://about.gitlab.com/blog/2017/02/01/gitlab-dot-com-database-incident
https://about.gitlab.com/blog/2017/02/01/gitlab-dot-com-database-incident
https://doi.org/10.5753/wtf.2023.785
https://ieeexplore.ieee.org/document/10306094
https://ieeexplore.ieee.org/document/10306094
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3102980.310300
https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.pdf
https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.pdf

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

Consensus in asynchronous systems where processes
can crash and recover. In Proceedings Seventeenth
IEEE Symposium on Reliable Distributed Systems
(Cat. No. 98CB36281), pages 280–286. IEEE. DOI:
10.1109/RELDIS.1998.740510.

Izraelevitz, J., Wang, G., Hanscom, R., Silvers, K., Lehman,
T. S., Chockler, G., and Gotsman, A. (2022). Acuerdo:
Fast atomic broadcast over rdma. In Proceedings of
the 51st International Conference on Parallel Processing,
pages 1–11. DOI: 10.1145/3545008.3545041.

Junior, E. G., Alchieri, E., Dotti, F., and Mendizabal, O.
(2023). A time-phased partitioned checkpoint approach
to reduce state snapshot overhead. In Proceedings of the
12th Latin-American Symposium on Dependable and Se-
cure Computing, LADC ’23, page 100–109, New York,
NY, USA. Association for Computing Machinery. DOI:
10.1145/3615366.3615417.

Kapitza, R., Behl, J., Cachin, C., Distler, T., Kuhnle, S., Mo-
hammadi, S. V., Schröder-Preikschat, W., and Stengel, K.
(2012). Cheapbft: resource-efficient byzantine fault toler-
ance. In Eurosys. DOI: 10.1145/2168836.2168866.

Kapritsos, M., Wang, Y., Quema, V., Clement, A.,
Alvisi, L., Dahlin, M., et al. (2012). All about eve:
Execute-verify replication for multi-core servers.
In OSDI, volume 12, pages 237–250. Available
at:https://www.usenix.org/conference/osdi12/
technical-sessions/presentation/kapritsos.

Kotla, R. and Dahlin, M. (2004). High throughput byzan-
tine fault tolerance. In DSN, pages 575–584. IEEE. DOI:
10.1109/DSN.2004.1311928.

Kumar, K. A., Deshpande, A., and Khuller, S. (2013).
Data placement and replica selection for improving co-
location in distributed environments. arXiv preprint
arXiv:1302.4168. DOI: 10.48550/arXiv.1302.4168.

Lamport, L. (1978). Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565. DOI: 10.1145/3335772.3335934.

Lamport, L. (1998). The part-time parliament.
ACM Trans. Comput. Syst., 16(2):133–169. DOI:
10.1145/279227.279229.

Lamport, L. et al. (2001). Paxos made sim-
ple. ACM Sigact News, 32(4):18–25. Available
at:https://lamport.azurewebsites.net/pubs/
paxos-simple.pdf.

Le, L. H., Fynn, E., Eslahi-Kelorazi, M., Soulé, R., and
Pedone, F. (2019). Dynastar: Optimized dynamic par-
titioning for scalable state machine replication. In 2019
IEEE 39th International Conference on Distributed Com-
puting Systems (ICDCS), pages 1453–1465. IEEE. DOI:
10.1109/ICDCS.2019.00145.

Li, B., Xu, W., and Kapitza, R. (2018). Dynamic
state partitioning in parallelized byzantine fault tolerance.
In 2018 48th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks Workshops
(DSN-W), pages 158–163. IEEE. DOI: 10.1109/DSN-
W.2018.00056.

Marandi, P. J., Bezerra, C. E., and Pedone, F. (2014).
Rethinking state-machine replication for parallelism.
In 2014 IEEE 34th International Conference on Dis-

tributed Computing Systems, pages 368–377. IEEE. DOI:
10.1109/ICDCS.2014.45.

Marandi, P. J. and Pedone, F. (2014). Optimistic parallel
state-machine replication. In SRDS, pages 57–66. IEEE.
DOI: 10.1109/SRDS.2014.25.

Masti, S. (2021). How we built a general purpose key
value store for facebook with zippydb. Available
at:https://engineering.fb.com/2021/08/06/core-
infra/zippydb/.

Mendizabal, O. M., De Moura, R. S., Dotti, F. L., and Pe-
done, F. (2017a). Efficient and deterministic scheduling
for parallel state machine replication. In IPDPS, pages
748–757. IEEE. DOI: 10.1109/IPDPS.2017.29.

Mendizabal, O. M., Dotti, F. L., and Pedone, F. (2016). Anal-
ysis of checkpointing overhead in parallel state machine
replication. In Proceedings of the 31st Annual ACM Sym-
posium on Applied Computing, SAC ’16, page 534–537,
New York, NY, USA. Association for Computing Machin-
ery. DOI: 10.1145/2851613.285187.

Mendizabal, O. M., Dotti, F. L., and Pedone, F. (2017b).
High performance recovery for parallel state machine
replication. In ICDCS, pages 34–44. IEEE. DOI:
10.1109/ICDCS.2017.193.

Mendizabal, O. M., Marandi, P. J., Dotti, F. L., and Pe-
done, F. (2014). Checkpointing in parallel state-machine
replication. In International Conference on Principles
of Distributed Systems, pages 123–138. Springer. DOI:
10.1007/978-3-319-14472-69.

Moraru, I., Andersen, D. G., and Kaminsky, M. (2013).
There is more consensus in egalitarian parliaments. In
SOSP. DOI: 10.1145/2517349.2517350.

Ongaro, D. and Ousterhout, J. (2014). In search
of an understandable consensus algorithm. In
2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 305–319. Available
at:https://www.usenix.org/conference/atc14/
technical-sessions/presentation/ongaro.

Quamar, A., Kumar, K. A., and Deshpande, A. (2013).
SWORD: scalable workload-aware data placement for
transactional workloads. In Proceedings of the 16th Inter-
national Conference on Extending Database Technology,
pages 430–441. DOI: 10.1145/2452376.2452427.

Sachs, K., Appel, S., Kounev, S., and Buchmann, A.
(2010). Benchmarking publish/subscribe-based messag-
ing systems. In International Conference onDatabase Sys-
tems for Advanced Applications, pages 203–214. Springer.
DOI: 10.1007/978-3-642-14589-621.

Schneider, F. B. (1990). Implementing fault-tolerant ser-
vices using the state machine approach: A tutorial.
ACM Computing Surveys (CSUR), 22(4):299–319. DOI:
10.1145/98163.98167.

Schuller, P. (2014). Manhattan, our real-time, multi-
tenant distributed database for twitter scale. Avail-
able at:https://blog.x.com/engineering/en/a/
2014/manhattan-our-real-time-multi-tenant-
distributed-database-for-twitter-scale.

Tiwari, D., Gupta, S., and Vazhkudai, S. S. (2014).
Lazy checkpointing: Exploiting temporal locality in fail-
ures to mitigate checkpointing overheads on extreme-

https://ieeexplore.ieee.org/abstract/document/740510?casa_token=Q_JQ344FF8EAAAAA:ROkVhFYhqVsjq03ADq9dsIDZcJ9mUqBfulyjG9UKFJg_CJcIq9yxqG_h3dRWlJl-Ox57R4QCoQ
https://doi.org/10.1145/3545008.3545041
https://doi.org/10.1145/3615366.3615417
https://doi.org/10.1145/2168836.2168866
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kapritsos
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kapritsos
https://ieeexplore.ieee.org/abstract/document/1311928?casa_token=SbghHtQqrYwAAAAA:RAn1gsbhDNouwoe6SNp6CGlNgc3_7T83Vj_Jmzmw3rXqp-XFyHoBuK6pHrcEPmLjcQwsHxCayQ
 https://doi.org/10.48550/arXiv.1302.4168
 https://doi.org/10.1145/3335772.3335934
http://doi.acm.org/10.1145/279227.279229
https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
https://ieeexplore.ieee.org/abstract/document/8885110?casa_token=KrgmmpVNujoAAAAA:zEgMR0fNX5Ac13J7ZrT6dOFaEAnoyTZjnSSIM01YcnJcZK_4Ten-D_fB3EsZ0uiUWhj_tu2olQ
https://ieeexplore.ieee.org/abstract/document/8416241?casa_token=bPkHdMWgXywAAAAA:5pmCYRZF27xyqpGzD-XDF4mF9cVkRHZdBg5MrDWlpiGgA6BqExCYD3wib_euuG-9-h8IKKLaeA
https://ieeexplore.ieee.org/abstract/document/8416241?casa_token=bPkHdMWgXywAAAAA:5pmCYRZF27xyqpGzD-XDF4mF9cVkRHZdBg5MrDWlpiGgA6BqExCYD3wib_euuG-9-h8IKKLaeA
https://ieeexplore.ieee.org/abstract/document/6888913?casa_token=Usk-DIxjOCQAAAAA:r_f6aqzCir5cKIypbwIu4fmZnGKtqRsJdpzz3jW-7_YP8XvXZAQSF12Jpux7jP2KYotYVgyavQ
https://ieeexplore.ieee.org/abstract/document/6983380?casa_token=EmrPwkHpZSQAAAAA:abEo20W7yPzCXdisDWFLVwubuMPLERdBBRV3PUhNVFv7V9l8lQgwv0jRCkH4qYQbI5Yxx6GWcw
https://engineering.fb.com/2021/08/06/core-infra/zippydb/
https://engineering.fb.com/2021/08/06/core-infra/zippydb/
https://ieeexplore.ieee.org/abstract/document/7967165?casa_token=bMJQ6DbvukAAAAAA:zAxA3SYedl0j8R_eRpziOQ4yKcgiKO1_8gIw4GrXctb-NqpA3Ub6_JMoEx3CbMxw8UkKuiBLIg
https://doi.org/10.1145/2851613.285187
https://ieeexplore.ieee.org/abstract/document/7979953?casa_token=5M2DZHLWPTAAAAAA:7Wc-w2Zf5ZHRSoZQLU4Oy-64BVCyLvlRqqIZGSTs62Z5FMxhQJpMXI7KTbo-JWvb5jnE9-6EcA
https://doi.org/10.1007/978-3-319-14472-6_9
https://doi.org/10.1145/2517349.2517350
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1145/2452376.2452427
https://doi.org/10.1007/978-3-642-14589-6_21
https://doi.org/10.1145/98163.98167
https://blog.x.com/engineering/en/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale
https://blog.x.com/engineering/en/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale
https://blog.x.com/engineering/en/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale

Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint Gomes et. al., 2024

scale systems. In DSN, pages 25–36. IEEE. DOI:
10.1109/DSN.2014.101.

Viel, E. and Ueda, H. (2014). Data stream partition-
ing re-optimization based on runtime dependency min-
ing. In 2014 IEEE 30th International Conference on
Data EngineeringWorkshops, pages 199–206. IEEE. DOI:
10.1109/ICDEW.2014.6818327.

White, B., Lepreau, J., Stoller, L., Ricci, R., Gu-
ruprasad, S., Newbold, M., Hibler, M., Barb, C., and
Joglekar, A. (2002). An integrated experimental envi-
ronment for distributed systems and networks. ACM
SIGOPS Operating Systems Review, 36(SI):255–270.
DOI: 10.1145/844128.844152.

Zheng, W., Tu, S., Kohler, E., and Liskov, B. (2014).
Fast databases with fast durability and recovery through
multicore parallelism. In OSDI, pages 465–477. Avail-
able at:https://www.usenix.org/conference/
osdi14/technical-sessions/presentation/
zheng_wenting.

https://ieeexplore.ieee.org/abstract/document/6903564?casa_token=OSL7MN06_ooAAAAA:6gZrsaROjGUuY6DHED-BwPl_817wgZW0N70YgySH1SeqSBn9XywJ0X80sxgD1moIpk8mWoncQw
https://ieeexplore.ieee.org/abstract/document/6818327?casa_token=sy-DrE3qXGUAAAAA:YveRYy6R7QjKU13lS9WxgvrB5faxS6YRNwuxoopSw_9VsH6lvNoL0fXMuriAi2OhAk88te56yg
https://doi.org/10.1145/844128.844152
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_wenting
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_wenting
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_wenting

	Introduction
	System Model and Assumptions
	Parallel State Machine Replication
	Time-Phased Partitioned Checkpointing
	Replicas execution
	Conflict matrix
	Partitioned checkpointing algorithms
	Recovery
	Correctness arguments
	Safety
	Liveness

	Experimental evaluation
	Prototype implementation
	Test environment
	Workload characterization
	Performance evaluation

	Related work
	General checkpoint/recovery techniques
	Checkpointing in PSMR

	Conclusion

