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Abstract In state-of-art anomaly detection research, prevailing methodologies predominantly employ Generative
Adversarial Networks and Autoencoders for image-based applications. Despite the efficacy demonstrated in the
visual domain, there remains a notable dearth of studies showcasing the application of these architectures in anomaly
detection within the sound domain. This paper introduces tailored adaptations of cutting-edge architectures for
anomaly detection in audio and conducts a comprehensive comparative analysis to substantiate the viability of this
novel approach. The evaluation is performed on the DCASE 2020 dataset, encompassing over 180 h of industrial
machinery sound recordings. Our results indicate superior anomaly classification, with an average Area Under the
Curve (AUC) of 88.16 % and partial AUC of 78.05 %, surpassing the performance of established baselines. This
study not only extends the applicability of advanced architectures to the audio domain but also establishes their
effectiveness in the challenging context of industrial sound anomaly detection.
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1 Introduction
The objective of anomaly detection is to discern and dis-
criminate anomalous samples from those that are represen-
tative of typical behavior [Chandola et al., 2009]. The pri-
mary purpose of anomaly detection is to differentiate be-
tween the expected and unexpected behaviour of a system,
enhancing robustness and reliability [Sabuhi et al., 2021]. In
contrast to problems involving majority or regular patterns,
anomaly detection focuses on minority, unpredictable, and
rare events, introducing unique complexities, such as: (i) un-
knownness, such as instances exhibiting abrupt behaviors,
unfamiliar data structures, and unpredictable distributions;
(ii) heterogeneous anomaly classes, resulting in the distinct
possibility that one class may manifest entirely different ab-
normal characteristics compared to another class; and (iii)
rarity and class imbalance, for being difficult, if not impossi-
ble, to collect a large amount of labeled abnormal instances
[Pang et al., 2021].
Anomaly detection holds paramount significance in the do-

mains of intelligent environments and Industry 4.0 applica-
tions. Noteworthy applications include, but are not limited
to, the identification of faults in industrial machinery [Puro-
hit et al., 2019], detection of road accidents [Rovetta et al.,
2020], multimodal approaches using video analysis [Kittler
et al., 2018], and the identification of faults in 5G signal trans-
mission [Zhou et al., 2021].
Within the realm of sound activity anomaly detection, au-

toencoders have emerged as a compelling approach [Zhou
and Paffenroth, 2017; An and Cho, 2015]. Autoencoders

(AEs), characterized as neural networks, exhibit the capac-
ity to acquire a condensed and high-fidelity representation
of input data [Schmidhuber, 2015]. This capability stems
from their inherent design, wherein they are explicitly tai-
lored to reconstruct the original input while minimizing infor-
mation loss within the compressed representation. Training
an AE on a dataset comprising normal sound instances en-
ables it to adeptly reconstruct these customary patterns [Xu
et al., 2021]. Consequently, anomalies are difficult to be re-
constructed from the resulting representations and thus have
large reconstruction errors. In this way, unknown patterns
in audio should generate reconstruction errors, which will be
used to identify and quantify the anomaly.
Proposed by Goodfellow et al. [2014], Generative Adver-

sarial Networks (GANs) represent a model architecture com-
prising two neural networks: the discriminator D and the
generator G. The latter is tasked with discerning authen-
tic data from synthetic data, while the former learns to pro-
duce artificial data that closely approximates authentic data,
thereby thwarting the discriminator’s ability to distinguish it
as counterfeit [Langr and Bok, 2019]. Although initially em-
ployed for content generation, predominantly in the realm
of images, the adversarial training paradigm has facilitated
the extension of GANs into diverse applications, notably
anomaly detection [Sabuhi et al., 2021]. The fundamental
concept revolves around the assumption that normal data in-
stances can be better generated than anomalies from the la-
tent feature space of the generative network in GANs [Pang
et al., 2021]. Thus, discriminators trained to differentiate be-
tween real and fake entities can be repurposed to discern the
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typicality of data, identifying anomalies in the latter scenario.
As per the literature, GANs have exhibited exceptional

proficiency in generating realistic instances, enabling the
identification of abnormal instances that exhibit suboptimal
reconstruction from the latent space. Furthermore, numer-
ous GAN-based models and theories can be repurposed for
anomaly detection [Sabuhi et al., 2021]. Nevertheless, the
majority of existing research in this domain has been devel-
oped and assessed primarily for images [Schlegl et al., 2019;
Liu et al., 2021; Akcay et al., 2019a,b]. These researchers
have conjectured the potential use of such models for audio
data, a point that has been remarked upon by some of them.
However, these studies do not detail the process of adapting
the proposed models to this new media type, nor do they pro-
vide reference evaluation metrics for this specific case.
In this context, we highlight the importance of exploring

methodologies to customize GANmodels for audio anomaly
detection, aiming to assess the feasibility of this approach
in the specified application domain. To harness the insights
into the task under consideration, this study presents experi-
mental results derived from adapting prominent anomaly de-
tection models from the literature. The comparison is con-
ducted using well-established challenge datasets, including
DCASE 2020 [Tanabe et al., 2021; Kawaguchi et al., 2021],
Urban Sound [Salamon et al., 2014], and AudioSet [Gem-
meke et al., 2017]. This is an extension of previous work
[Neto and Figueiredo, 2023] with improved descriptions, bet-
ter results from model customization for each audio class,
and discussions. The main contributions of this work are:

1. Establishment of a methodology for the adaptation of
GAN models to the audio domain;

2. Standardization of architectures of GAN models for
the assessment of Area Under the Curve (AUC) of
the Receiver Operating Characteristic and partial-AUC
(pAUC) metrics;

3. Results of the modified architectures are presented and
also introduced as a baseline for future research and
comparisons in the audio domain;

4. Performance benchmarks for these adapted GAN archi-
tectures are provided using the best hyperparameters.

The subsequent sections of this paper are structured as fol-
lows: Section 2 provides an overview of the related work.
Section 3 delineates the proposed approach, while Section
4 outlines the experimental results. Lastly, Section 5 elu-
cidates the conclusions and provide directions for future re-
search.

2 Related Work
The task of anomaly detection can be approached through
various learning paradigms. In the realm of supervised
learning, the assumption is made that a training dataset is
available, comprising labeled instances for both normal and
anomaly classes. This scenario poses two major challenges:
(i) the scarcity of anomalous instances compared to normal
instances in the training data, and (ii) the difficulty in ob-
taining accurate and representative labels, particularly for
the anomaly class [Chandola et al., 2009]. In unsupervised

learning anomaly detection, the main challenge of this task is
to detect unknown anomalous instances under the condition
that only typical samples have been provided as training data
[Koizumi et al., 2020b].
Audio anomaly detection is typically approached through

the latter strategy, where training data includes normal in-
stances, while anomaly samples are unavailable. This is re-
flective of real-world scenarios where anomalous sounds are
infrequent and highly diverse. Consequently, creating or col-
lecting comprehensive patterns of anomalous sounds inten-
tionally is impractical or impossible [Koizumi et al., 2020b].
Towards learning directly from an embedding layer, Wilk-

inghoff [2023] proposed an Anomalous Sound Detection
(ASD) system. Utilizing two distinct feature representa-
tions from raw waveforms, it incorporates magnitude spec-
trograms and spectra of entire signals. The neural network
consists of two sub-networks, each specialized for different
representations and trained to discriminate machine types,
sections, and attributes. The design choices prevent learn-
ing trivial mappings, ensuring sensitivity to anomalies. Con-
catenating sub-network outputs yields single embeddings for
each file. Anomaly scoring strategies in source and target do-
mains utilize k-means clustering and cosine distance calcula-
tions. Implemented with mixup data augmentation. How-
ever, the processing of 2D spectrograms entails significant
computational overhead due to the large input dimensional-
ity and convolutional operations.
In the same context, Chen et al. [2024] proposed an en-

hancement of the previous work, utilizing the same neural
network as a backbone. They designed and added an atten-
tion module called the Multi-Dimensional Attention Module
(MDAM), which focuses on specific frequency bands to re-
trieve semantic information. This module infers attention
along three independent dimensions: time, frequency, and
channel. However, like the previous work, this approach
also suffers from the limitation of using a 2D spectrogram
as input.
Recent advancements in this field have notably enhanced

the efficacy of generative models for this task. Typically, this
process entails training a deep AEmodel to reconstruct input
data and then utilizing the reconstruction error for anomaly
detection [Cheng et al., 2021]. The works of Koizumi et al.
[2020a] and Suefusa et al. [2020] fall into this category, us-
ing regular AE architecture, and the work of Müller et al.
[2021] uses memory cells. To amplify the differentiation be-
tween the reconstruction errors of authentic data and anoma-
lies, trained discriminators from GANs were integrated into
the architectures of AEs [Schlegl et al., 2019]. The aforemen-
tioned methodology has demonstrated success in the domain
of image anomaly detection, and some works are better de-
scribed as follows.
The Efficient GAN-Based Anomaly Detection (EGBAD)

proposed by Zenati et al. [2018] is an example of GAN-based
model in which the AE network is utilized to acquire the la-
tent representation of the data. Diverging from conventional
GANs, theDiscriminator in EGBADalso considers the latent
representation in addition to the image. The underlying hy-
pothesis posits that anomalous data exhibit latent vectors that
lack correlation with the corresponding images. During the
computation of anomaly scores, the author employs a com-
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posite metric involving Discriminator classification and the
distance between the generated and real images.
GANomaly [Akcay et al., 2019a] represents another in-

stance of a combined AE and GAN architecture. A notable
aspect is the design of the generator G network, incorporat-
ing a blend of AE networks with two outputs: the generated
image and a corresponding latent representation. The au-
thors illustrate that the latent space of the generated image
exhibits significant distinctions from the latent space of the
original image when the original image deviates from nor-
mal data. SKIP-GANomaly [Akcay et al., 2019b] emerges
as an advancement over the prior related efforts. Its genera-
tor network adopts a U-NET architecture [Ronneberger et al.,
2015], enabling the recreation of input images with enhanced
detail compared to a conventional AE network, courtesy of
residual connections within the model layers. This approach
underscores the benefits of adversarial training in contrast to
solely training a standard AE network.
Table 1 compiles a summary of these noteworthy contribu-

tions in the anomaly detection domain. It becomes apparent
that the prevailing trend involves the application of genera-
tive architectures primarily in the context of images, while
AE architectures find predominant usage in audio applica-
tions.
In reviewing the body of literature related to the subject

matter, some observations emerge:

1. The use of GANs for anomaly detection in acous-
tic events and scenes has been explored less compre-
hensively compared to the advancements achieved in
anomaly detection in images;

2. Although studies in this area are still limited, existing
research suggests that the application of GANs in the
acoustic domain may also hold promise;

3. The combination of encoder and generative architec-
tures has proven effective in creating latent representa-
tions and generating realistic audio data;

4. A greater research effort is needed to explore and adapt
GANs to the specific nuances of acoustic events and
scenes, aiming to achieve more accurate and reliable re-
sults in anomaly detection within this context;

5. It is important to emphasize that the application of
GANs for anomaly detection requires careful consider-
ation and specific practices when training models in dif-
ferent domains, such as images and audio. While train-
ing techniques for images are widely studied and estab-
lished, adapting these approaches to the audio domain
presents additional challenges. One of the key consider-
ations is the appropriate selection of loss functions, tak-
ing into account the characteristics and nature of audio
signals;

6. It is necessary to adjust the hyperparameters and archi-
tectures of GANs to effectively capture the nuances of
the acoustic domain, such as temporal representation
and spectral complexity.

A previous work Neto and Figueiredo [2023] showed that
this approach is feasible in audio domain by presenting com-
petitive results when compared to literature. This work ex-
tends that research by increasing experiments and parameter
optimization to achieve better performance metrics.

3 Proposed Solution
The proposed solution within the scope of this study in-
volves the adaptation of GAN-based models from the liter-
ature [Zenati et al., 2018; Akcay et al., 2019a,b] for sound
anomaly detection. While there are established results re-
garding their performance in the domain of images, a gap ex-
ists in understanding their effectiveness in the audio domain,
as well as the requisite adaptations for this specific data type.
The following stages are comprised in the proposed solution:

1. Pre-processing. It involves standardizing audio in-
stances into feature vectors. This not only enables
GANs to process this type of information but also fa-
cilitates the utilization of the same datasets across vari-
ous GAN architectures. This step also encompasses the
partitioning of training and testing examples;

2. ArchitecturesAdaptation andTraining. In this phase,
the architectures are initially instantiated for the type
of input data and trained solely with examples of typi-
cal audio behavior. We will consider the approach of
creating a model for each class of each considered ar-
chitecture. During training, the generators G faithfully
reproduce input sets, while the discriminator networks
D assess the similarity of the generated data to the origi-
nals. As a result of each unsupervised training, two neu-
ral models are obtained: one for generating data close
to typical instances and another for classifying them;

3. Validation and Evaluation. The objective is to assess
the efficacy and effectiveness of sound anomaly detec-
tion GAN-based models. To achieve this, each genera-
tor model G takes the audio inputs from the test parti-
tion and produces an output. The distance between the
input and its generated representation is then calculated.
Considering the entire test set, the average errors will
be measured to derive metrics such as the Area Under
the Curve (AUC) and partial AUC (pAUC).

The subsequent sections will illustrate each phase of the
proposed solution.

3.1 Pre-Processing Phase
As shown in Figure 1, the pre-processing is conducted
through a pipeline consisting of five steps: (1) reading the
digital audio signal; (2) applying the Short-Time Fourier
Transform (STFT) function to the audio; (3) mapping the sig-
nal magnitude to decibels and converting the signal to a loga-
rithmic scale; (4) time-windowed concatenation of generated
spectrograms; and (5) transformation of these matrices into
vectors. The goal of this phase is to transform audio signals
in a standardized vector of features to be processed by all
models. This method is based on DCASE challenge for au-
dio anomaly detection [Koizumi et al., 2020a].
In the first stage, the audio is read from the dataset, and

the signal is converted into amatrix representing the time and
frequency of the signal, known as the short-time spectrogram.
In the second stage, feature extraction takes place with STFT
which divides the signal into small time segments and, in
each segment, calculates the Fourier transform, as shown in
Eq. (1) for x[n]:
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Table 1. Comparison of studies on Anomaly Detection using Deep Learning architectures.

Work Architecture Domain

Akcay et al. [2019a] AEE+GAN Image
Akcay et al. [2019b] U-Net+GAN Image
Zenati et al. [2018] AE+GAN Image
Cheng et al. [2021] AE Image
Liu et al. [2021] U-Net(DSC+CBAM)+GAN Image
Wilkinghoff [2023] ResNet+KNN Audio
Chen et al. [2024] ResNet+KNN+MDAM Audio
Koizumi et al. [2020a] AE Audio
Suefusa et al. [2020] AE(IDNN) Audio
Müller et al. [2021] AE(DRINK) Audio

Figure 1. Pre-processing pipeline.

X(m, k) =
∑
m

x[n]W [m − n] exp
(

−j
2π · n · k

N

)
, (1)

where m is the number of time samples, k is the number
of frequency samples, W [n] is the window size and N is
the number of samples of total frequencies. We assume that
W [n] is a fixed time window [Zhao et al., 2015]. As a result,
the audio is represented by one or more Mel-Frequency Cep-
stral coefficients, a set of features developed at MIT during
the late 1960s, widely used in tasks such as speech recog-
nition, sound source separation, and sound event detection
[Dwivedi et al., 2023]. By providing detailed information
about the spectral distribution of audio over time, the Fourier
transform and spectogram play a fundamental role in feature
extraction and audio pre-processing. [Chachada and Kuo,
2014].
During the third stage, the signal underwent mapping to

decibels, constraining the signal values to audible frequen-
cies for humans, as depicted in Equation (2). Following this,
the function m(·) was applied as a threshold for negative fre-
quencies, as illustrated in Equation (3).

d(S) = 10(log10(S) − log10(|S|)) (2)

m(x) =
{

x, −80 dB ≤ x ≤ 130 dB,
−80 dB, x < −80 dB.

(3)

This stage was designed to amplify lower frequencies, ren-
dering weaker signals comparable to stronger ones, thereby
enhancing feature visualization on the spectrogram.
The fourth step involves the concatenation and time-

windowing of the spectrograms. For this to be feasible, the
spectogram needs to have its total size reduced along the time
axis, and then this axis is shifted for each new concatenated
spectrogram. From ad hoc experimentation in order to en-
sure that each spectrogram has a different temporal charac-
teristic from the others, it was observed that a proper con-
catenation considers time windows of length ℓ = 5. Figure 2
illustrates that the spectrograms differ from each other along
the y-axis as new spectrograms are added along the x-axis.
Finally, the resulting matrix is separated into vectors,

where each row corresponds to 128 Mel-frequency features
at ℓ = 5 different time instances. Each audio instance has a
standardized duration of 10 s, divided into frames of 64 ms,
with a 50 % overlap between frames, using the Hop algo-
rithm. A total of 1024 points were utilized for Short-Time
Fourier Transform (STFT), and 128 Mel coefficients were
derived for each audio frame. Subsequently, ℓ = 5 frames
were concatenated, yielding a 5 × 128 matrix that was then
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Figure 2. Example of Step 4.

flattened into a 640 feature vector. Following these outlined
procedures, the resultant vector serves as a standardized in-
put for all architectures.

3.2 Architectures Adaptation and Training
The adaptations enabling the use of GANs for anomaly detec-
tion in audio were based on the model proposed by Koizumi
et al. [2020a], who introduced an AE network for audio.
Consequently, the networks comprising the generator G and
the discriminator D present an architecture consisting ex-
clusively of Fully Connected Layers (FCN), encompassing
three hidden layers in addition to the input and output layers.
Except for the output layer of the decoder, all other layers uti-
lize the Rectified Linear Unit (ReLU) activation function and
Batch Normalization. Each hidden layer comprises 128 neu-
rons and has a dimension of 8 in the latent space. This archi-
tecture, illustrated in Figure 3, was chosen for its relatively
low number of parameters compared to the original networks,
reducing computational cost and enabling the handling of au-
dio instances prepared in the previous stage. These adapta-
tions were incorporated to all architectures for comparison
and standardization across the same dataset.

3.2.1 EGBAD

The audio anomaly detection for the EGBAD model con-
sisted in changing the generator G, discriminator D and En-
coderE as illustrated in Figure 4a. This architecture canmap
the input instance to a latent representation z during the train-
ing of the G and D networks. Unlike conventional GANs,
this strategy involves specifying the input to the D network
with real data, generated data, and the latent representation.

The training dynamics rely on the discriminator’s ability to
classify the input instance along with the latent vector. The
process begins with sampling from the latent space z′. After
that, an artificially generated instance is created from a ran-
dom latent space z. Finally, the D network takes as input a
real or artificial instance along with its corresponding latent
vector.

3.2.2 GANomaly

The adaptation can be observed in Figure 4b, where it in-
volves changing theGE andE networks to the FCNEncoder,
while the GD and D models are converted to the FCN De-
coder. The remaining details of the architecture remain un-
changed from the original. The training dynamics are based
on the assumption that the latent space generated by E(z′)

accumulates more significant errors than those generated by
GD(x′).
Detailing the training process of this network, in the gen-

erator network G, the training instance x is encoded into a
latent space z and decoded, thus generating an artificial ver-
sion of the training instance called x′. The next step is the
encoding of this artificial instance, called z′. In this way,
the optimization can be performed for both the reconstruc-
tion of audio features and its latent representation. The dis-
criminator network D classifies the training instances (typi-
cal data) and the artificial instances generated in the previous
step. This classification occurs synthetically, as the labels for
typical and artificial data are always considered as 0 and 1,
respectively. The generator converges to create increasingly
realistic audio features.
The feature combination of weights in the optimization

functions is performed as defined by Eq. (4). We determined
the weights of λadv , λcon, and λenc through empirical values
obtained during hyperparameter adjustments.

Lgen = λadv · Ladv + λcon · Lcon + λenc · Lenc, (4)

where Ladv , Lcon and Lenc denotes, respectively, the adver-
sarial, contextual and encoder loss functions given in Eqs.
(5)-(7). The first one ensures that theG network reconstructs
the data as realistically as possible, while the D network cor-
rectly distinguishes between real or generated (fake) spectro-
grams; the second loss function calculates the L1 distance
between the real data x and the generated data; and the en-
coder loss function calculates the distance of original and re-
constructed data representation at latent space.

Ladv = Ex∼px
[log D(y)] + Ex∼px

[1 − log D(ŷ)] (5)
Lcon = ∥x − G(x)∥1

1 (6)
Lenc = ∥z − ẑ∥2 (7)

3.2.3 SKIP-GANomaly

In SKIP-GANomaly, the networks GE and GD have been
modified to Fully Connected Network (FCN) Encoder and
Decoder networks, respectively. The FCN Encoder network
has replaced the model D. Additionally, connections and
concatenations have been introduced between the GE and
GD networks, facilitating significant advantages in informa-
tion transfer between the layers preserving local and global
information. The adaptations in SKIP-GANomaly architec-
ture are illustrated in Figure 5 where dotted lines represent
copies of layer content extended to subsequent layers, and
red blocks indicate layer concatenation. This architecture
aims at enabling reconstructions that are closer to the audio
sample.
This architecture’s training dynamics are detailed as fol-

lows: In the generator network G, the network GE captures
and learns the distribution of the input data x (restricted to
typical instances) and then maps them to latent representa-
tions z. Simultaneously, the discriminator network D clas-
sifies the received instances, differentiating between real
images (x) and images generated in the previous step (x′).
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Figure 3. Architecture proposed by Koizumi et al. [2020a].

(a) EGBAD Adaptation (b) GANomaly Adaptation
Figure 4. Adaption of GAN-based architectures.

While serving as a classifier, this network also operates as
a feature extractor, approximating latent representations be-
tween an input audio and a reconstructed audio. This classi-
fication process mirrors that of the previous architecture.
Regarding feature combination of weights in the optimiza-

tion functions, we implemented exactly the sameGANomaly
method described before and showe in Equation 4.

4 Evaluation Metrics

The ROC (Receiver Operating Characteristic) curve is a
graphical representation used in binary classification tasks
to illustrate the performance of a classifier across different
discrimination thresholds. It is a plot of the True Positive
Rate (TPR) against the False Positive Rate (FPR) for various
threshold values. TPR and FPR are calculated as follows:

TPR = TP
TP + FN

, (8)

FPR = FP
FP + TN

, (9)

where TP, FN, FP and TN denotes the possible outcomes of
a binary classification task: True Positive, False Negative,
False Positive and True Negative. The ROC curve shows
how the TPR changes as the FPR varies [Fawcett, 2006].
The Area Under the ROC Curve (AUC) assesses the sep-

arability between classes and the probability of the learning
model having greater confidence in the predicted class. The
partial AUC (pAUC) quantifies the proportion of the ROC
curve over a range of interest. It mainly deals with class im-
balance, giving more emphasis to TPR [Fawcett, 2006]. In
the present work, this metric will be calculated over the low
quantity of FPR, thus p = 0.1.



Anomaly Detection in Sound Activity with Generative Adversarial Network Models Oliveira Neto et al. 2024

Figure 5. Skip-GANomaly Adaption in Generator Network.

5 Experiments
Python, in conjunction with the TensorFlow and PyTorch
frameworks, served as the primary tools for training and eval-
uating the proposed models [Van Rossum and Drake, 2009;
Abadi et al., 2015; Paszke et al., 2019]. Implementations
were executed on a computational system equipped with an
Intel® CoreTM i7-8700 CPU running at a clock speed of
3.2 GHz, supported by 32 GB of primary memory, 2 TB of
secondary memory and 2NVIDIAGTX 1080 Ti with 11 GB
VRAM each to promote hardware speedup when training the
models.

5.1 Architectures and Dataset
We adapted the architectures of the semi-supervised learning
models EGBAD [Zenati et al., 2018], GANomaly [Akcay
et al., 2019a], and SKIP-GANomaly [Akcay et al., 2019b]
as depicted in the previous section. To validate such adapta-
tions to the audio domain, we utilized real-world audio sam-
ples from ToyADMOS and MIMII datasets [Koizumi et al.,
2019; Purohit et al., 2019]. The audio data comprises six
types of industrial machinery: (i) Fan; (ii) Pump; (iii) Slide
Rail; (iv) ToyCar, (v) ToyConveyor; and (vi) Valve. The
first two classes mentioned belong to ToyADMOS, while
the remaining classes are from the MIMII dataset. Audio in-
stances were divided into typical and anomalous categories,
each lasting approximately 10 s. However, it is important
to note that during the training phase, only audio data repre-
senting typical operation was utilized. The data is structured
based on identifiers (ID), labels, and the intended purpose of
use.
Table 2 presents the distribution of labels between the

training and test sets, where each label represents a specific
type of object or event to be detected. The quantities of train-
ing and test examples differ for each class. For instance, the
class ToyCar comprises of 4000 examples in the training set
and 2459 examples in the test set, while the label ToyCon-
veyor has 3000 training examples and 3509 test examples.
Similar variations exist for the remaining classes between
the training and test sets. These variations were taken into

account when obtaining the weighted average metric used in
the models evaluation.

Table 2. Dataset size stratified by train and test.

Labels Train Test
Samples % Samples %

Fan 3675 66.21 % 1875 33.79 %
Pump 3349 79.65 % 856 20.35 %
Slide Rail 2804 68.50 % 1290 31.50 %
ToyCar 4000 61.92 % 2459 38.08 %
ToyConveyor 3000 46.09 % 3509 53.91 %
Valve 3291 78.93 % 879 21.07 %

5.2 Baselines

DCASE[Koizumi et al., 2020a] is one of the main compe-
titions involving machine learning in audio tasks. Particu-
larly, the anomaly detection task was started in 2020, and
among the solutions presented, it was observed that the com-
petition itself presented a base model (DCASE baseline) and
the winning solution was GMADE. Besides the fact that any
DCASE solution is based on GANmodels, we selected these
models to use as metric baselines to conduct a comparative
analysis. They are described as follows:

• DCASE baseline. This model is the official baseline
of the DCASE 2020 Challenge that involved unsuper-
vised learning. As the initial baseline, its results helps
validating the adaptations to GAN-based networks es-
tablishing inferior performance limits.

• GMADE: By incorporating metadata from the train-
ing set to classify audios, this model employs a semi-
supervised learning method [Giri et al., 2020]. Thus, in
the context of the comparative evaluation, it represents
the upper limit, assuming the availability of additional
information not typically present in anomaly detection
problems.
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5.3 Experimental Results
All models underwent training on each audio class, and as-
sessments were exclusively carried out on the test data par-
tition. This guarantees that a model comprehensively learns
the typical operations associated with each industrial machin-
ery type. Consequently, the performance of a single model
may differ across various audio types. It is crucial to empha-
size that model training is conducted solely on audio sam-
ples, without the inclusion of any metadata. This is intended
to demonstrate the effectiveness of these adaptations on real-
world datasets.

The entire set of evaluated models were applied to data us-
ing the optimal parameters identified through a grid search
methodology. The unique characteristics of the audio classes
require different hyperparameters to achieve improved re-
sults from customized models for each case. The search
space for hyperparameters are detailed in Table 3.

Table 3. Hyperparameters grid search space.
Parameters Range
Epochs {10, 20, 30, 90}

Learning Rate {0.0002, 0.001, 0.005}
Latent space dimension {8, 16, 100}
Dropout regularization {0, 0.25, 0.5}
Weight Initialization {Glorot Uniform, Random Normal }

Exponential Decay Rate {0.3, 0.5}
Hidden Layers (HL) {3, 4}

λadv {1, 50}
λcon {1, 50}
λenc {1, 50}

Batch Size (Batch) {8, 16, 32, 128, 512, 1024}

Several optimizers were evaluated, considering their im-
pact on training convergence, convergence speed, the abil-
ity to handle different gradient scales, and computational ef-
ficiency [Sutskever et al., 2013]. However, the Adam op-
timizer demonstrated superior performance across all cases
evaluated [Kingma and Ba, 2015]. Some grid search results
for hyperparameters were consistent across different archi-
tectures. These common parameters include LR (0.0002),
latent space dimension (8), λ value (1.0), weight initializer
(Glorot Uniform), Dropout regularization (0), and exponen-
tial decay rate (0.5).
The evaluation outcomes for all audio categories of the

modified EGBAD architecture [Zenati et al., 2018] are de-
picted in the bar chart shown in Figure 6a. The model ex-
hibited satisfactory performance solely for the Valve class,
achieving AUC and pAUC metrics of 69% and 57%, respec-
tively. However, its performance on the ToyConveyor, Fan,
and Pump classes proved inadequate, with results falling be-
low 50%. Additionally, it demonstrated AUC percentage
deteriorations of 118.48 %, 64.83 %, and 125.70 %, respec-
tively, when compared to the DCASE baseline. These find-
ings suggest that the model faced challenges in distinguish-
ing between typical and anomalous audio across the majority
of the dataset.
The previously mentioned experimental result emphasizes

the crucial role of the latent vector in anomaly detection, as
elaborated in Section 4.1. The EGBAD architecture relies
on latent representations, either as a generator input or from
the encoder, to gauge the discriminator’s confidence in deter-

mining if a sample originates from the typical data distribu-
tion. Nevertheless, this direct comparison of audio instances
leads to an increased error score during the training phase,
impeding the EGBAD architecture from attaining high met-
rics. Given its subpar performance compared to the baseline,
this architecture was not chosen for the hyperparameter grid
search.
After carrying out the grid search, the adapted GANomaly

architecture [Akcay et al., 2019a] demonstrated promising re-
sults, as illustrated in Figure 6a. The bar chart shows the per-
formance of this model across all labels. AUC exceeded 90%
for both Toycar and fan classes, while all remaining labels
have AUC metrics above 75%. These results indicate the
model’s capacity of identifying and distinguishing anoma-
lous data from typical data. The pAUCmetric showed results
above 75%, for most classes, with lower results noted for
the pump and valve classes. Although these last results are
higher than 50%, they suggests that the neural network faced
challenges in generalizing cases where anomalous noise are
close to typical frequencies in sound. Table 4 presents the
best parameters for each audio label, exhibitingminimal vari-
ation compared to other evaluated models.

Table 4. Hyperparameters for the best performing GANomaly adapted
architecture.

Labels Epochs HL λadv λcon λlat Batch

Fan 10 3 1 50 1 16
Pump 10 3 50 1 50 1024

Slide Rail 10 3 1 50 1 16
ToyCar 90 4 1 50 1 512

ToyConveyor 30 4 1 50 1 512
Valve 10 3 1 50 1 16

Figure 6b illustrates the evaluation of the adapted SKIP-
GANomaly architecture [Akcay et al., 2019b] using a bar
chart detailing results for all labels. The model presented
both AUC and pAUC metrics exceeding 75% and 64%, re-
spectively, for all audio types. The slider class achieved the
highest AUC metric, and the fan label achieved the highest
pAUC metric. Table 5 outlines the optimal parameters se-
lected for each audio class. This model showed a higher pa-
rameter variation among the classes, requiring specific ad-
justments in batch size and weights assignment to the opti-
mization function. This can be due to the residual structure
of the model.

Table 5. Hyperparameters for the best performing SKIP-GANomaly
adapted architecture.

Labels Epochs HL λadv λcon λlat Batch

Fan 10 3 1 50 1 16
Pump 10 3 50 1 50 1024

Slide Rail 10 3 50 50 50 512
ToyCar 20 3 1 1 50 128

ToyConveyor 30 4 1 50 1 512
Valve 30 4 1 50 1 512

5.3.1 Overall Performance

In order to present an overall performance comparison
among themodels, we present the weighted average and stan-
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dard deviations computed for all evaluated models in Fig-
ure 6d and Table 6. Once the test datasets present different
amount of data, this results hold significance as higher results
in extensively populated datasets have more statistical rele-
vance. The evaluation reveals that the adapted GANomaly
architecture has a slightly better performance than GMADE
model in theAUCmetric, and SKIP-GANomaly lags slightly
behind. Additionally, the standard deviation of the AUC
metric in the GANomaly and SKIP-GANomaly models are
lower than that in the GMADE model, with values of 4.19%
and 3.73%, respectively. Similar behavior can be observed
with pAUC metric, but now GANomaly is behind GMADE
with a little higher standard deviation. We can conclude that
the GANomaly model has the best overall results by not us-
ing metadata as GMADE does, and this can be attributed to
its characteristic of comparing latent vectors to analyse the
context of an audio.

Table 6. Weighted Average Performance.

AUC pAUC

DCASE 73.81 % ± 6.31 60.47 % ± 14.76
EGBAD 46.23 % ± 14.12 52.55 % ± 15.47
GANomaly 88.16 % ± 4.19 78.05 % ± 11.77
SKIP-GANomaly 86.11 % ± 3.73 72.64 % ± 10.86
GMADE 88.02 % ± 7.18 79.63 % ± 11.05

Table 7 summarizes the model results for every audio
dataset. It shows that GMADE has the best results for many
audio classes on both AUC and pAUC metrics. As it uses
metadata for anomaly detection, which is not a feasible ap-
proach for real applications based only on audio samples, it
can be seen as a superior limit in our comparative evaluation.
The adapted GANomaly and SKIP-GANomaly architectures
present the best performance in the ToyConveyor, fan, and
pump classes for both AUC and pAUC metrics, except by
pAUC in pump class. Besides, they have superior perfor-
mance than the other models used as baseline.
Regarding the results presented in previous work[Neto

and Figueiredo, 2023], we can see that customising model
training through grid search was important to achieve sig-
nificant better results. Particularly, GANomaly increased
overall AUC from 72 to 88%, and pAUC from 69 to 78%.
SKIP-GANomay increased overall AUC from 66 to 86%,
and pAUC from 54 to 72%. These results are import to show
that the GAN architectures must be trained on the specific au-
dio class to better detect anomalies.
These results indicate that approaches relying on GAN net-

works have high potential for addressing anomaly detection
in audio. The use of architectures, mainly GANomaly and
SKIP-GANomaly, proved the possibility to perform anomaly
detection in various industrial machinery contexts. It is
worth mentioning that selecting the appropriate hyperparam-
eters, i.e. learning rate, batch size, and the number of epochs,
through the experimentation process was relevant to achieve
satisfactory results. On the other hand, results also empha-
size that challenges persist in anomaly detection in acoustic
events. For instance, we can observe different model per-
formances for different audio datasets, which indicates that
some specific model characteristics are better for specific au-

dio characteristics. Particularly, DCASE dataset comprises
different but repetitive industrial sound, and this is a charac-
teristic that may differ in different scenarios such as urban
sounds. This is a limitation of the present work that can be
evaluated in future work. Besides, there is an open road to
new research, such as building ensemble models and adopt-
ing other data pre-processing.

6 Final Remarks
This study demonstrates the effectiveness of GAN-based
models for audio anomaly detection. Three GAN-based
anomaly detection models, originally designed for images,
were successfully adapted to the audio domain. The evalua-
tion utilized the well-established DCASE Challenge Dataset.
The adaptedGANomaly and SKIP-GAnomalymodels exhib-
ited superior performance compared to the baselines from the
literature.
The research presented herein offers performance bench-

marks for GAN models in the audio domain, distinguishing
them from their original applications and other works in the
literature. By adapting these models, we have established
metric benchmarks that will serve as a foundation for future
advancements. It worth to mention that the observations are
limited for the DCASE challenge dataset, which was used
to compare proposals in literature, but it comprises a partic-
ular type of repetitive industrial audio. So, there is an open
road for new research to obtain experimental results in other
scenarios.
Future work may encompass: (i) assessing the outcomes

of employing data augmentation techniques on original au-
dio. Many classification and regression works use data aug-
mentation techniques in detecting anomalies, such as [Bakır
et al., 2024; Wang et al., 2023; Nanni et al., 2020]. However,
careful data augmentation is crucial, given the high sensi-
tivity of the task in the latent space of typical occurrences.
Sound activities, in particular, are sensitive to distortions,
such as frequency patterns and temporal variations, requir-
ing a balance between the amount of data and the preserva-
tion of relevant characteristics [Wei et al., 2020]; (ii) explor-
ing variations or combinations of adversarial models in en-
sembles. The current objective of this work was to evaluate
several GANs models. However, ensembles may enhance
performance by combining multiple models, each with its
unique approach and strengths, to mitigate model biases and
errors. In the context of audio analysis, ensembles can cap-
ture diverse aspects of sound patterns and spectral features;
(iii) investigating diverse preprocessing techniques for au-
dio features, including the use of varying numbers of Mel
coefficients and assessing their impact.
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Table 7. Baseline comparison.

Fan Pump Slide Rail ToyCar ToyConveyor Valve

AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC

DCASE 65.15 % 52.59 % 72.00 % 60.00 % 84.00 % 66.00 % 80.09 % 67.22 % 72.68 % 60.65 % 66.00 % 50.00 %

EGBAD 39.50 % 59.40 % 31.90 % 51.10 % 62.00 % 53.40 % 59.40 % 52.60 % 32.40 % 47.70 % 69.80 % 57.30 %

GANomaly 91.00 % 80.00 % 86.19 % 75.81 % 87.16 % 85.11 % 91.00 % 78.10 % 88.80 % 81.20 % 75.00 % 53.00 %

SKIP-GANomaly 84.00 % 84.00 % 89.52 % 71.04 % 90.49 % 88.09 % 87.41 % 67.42 % 83.90 % 64.60 % 86.00 % 74.00 %

GMADE 82.33 % 78.97 % 86.94 % 79.60 % 97.28 % 89.54 % 95.04 % 90.39 % 80.67 % 65.90 % 97.38 % 91.21 %

(a) EGBAD (b) GANomaly

(c) SKIP-GANomaly (d) Overall evaluation, showing weighted averages and standard
deviations for each class.

Figure 6. Evaluation results for adapted models.

Availability of data and materials
The DCASE 2020 challenge and MIMII datasets used in
the current work are available at https://dcase.community/
challenge2020/index and https://zenodo.org/records/
3384388.
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