
Journal of Internet Services and Applications, 2024, 15:1,doi: 10.5753/jisa.2024.3905
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Interoperable node integrity verification for confidential
machines based on AMD SEV-SNP
Davi Pontes [Universidade Federal de Campina Grande | davi.pontes@lsd.ufcg.br]
Fernando Silva [Universidade Federal de Campina Grande | fernando.silva@lsd.ufcg.edu.br]
Anderson Melo [Universidade Federal de Campina Grande | anderson.melo@lsd.ufcg.edu.br]
Eduardo Falcão [Universidade Federal do Rio Grande do Norte | eduardo@dca.ufrn.br]
Andrey Brito [Universidade Federal de Campina Grande | andrey@computacao.ufcg.edu.br]

 Laboratório de Sistemas Distribuídos, Universidade Federal de Campina Grande, Rua Aprigio Veloso, 882, Univer-
sitário, Campina Grande, PB, 58429-900, Brazil.

Received: 08 December 2023 • Accepted: 11 April 2024 • Published: 25 July 2024
Abstract
Confidential virtual machines (CVMs) are cloud providers’ most recent security offer, providing confidentiality
and integrity features. Although confidentiality protects the machine from the host operating system, firmware, and
cloud operators, integrity protection is evenmore useful, enabling protection for a wider range of security issues. Un-
fortunately, CVM integrity verification depends on remote attestation protocols, which are not trivial for operators
and differ largely among cloud providers. We propose an approach for abstracting CVM attestation that leverages an
open-source standard, Cloud Native Foundation’s Secure Production Identity Framework for Everyone (SPIFFE).
Our approach can integrate smoothly even when applications are unaware of CVMs or the SPIFFE standard. Nev-
ertheless, our implementation inherits SPIFFE flexibility for empowering access control when applications support
SPIFFE. In terms of performance, CVMs incur an additional 1.3 s to 21.9 s in boot times (it varies with the cloud
environment), a marginal degradation for CPU, RAM, and IO workloads (maximum degradation of 2.6%), and low
but not imperceptible degradation for database workloads (between 3.6% to 7.13%). Finally, we provide usabil-
ity mechanisms and a threat analysis to help users navigate cloud providers’ different CVM implementations and
resulting guarantees.

Keywords: Confidential virtual machines, Confidential Computing, Cloud computing, Attestation, Interoperability,
AMD SEV-SNP.

1 Introduction

Confidential computing aims to improve the security of
cloud and other shared infrastructures by removing the trust
in infrastructure providers and their human operators. It
achieves this level of trust by creating isolated environments,
known as Trusted Execution Environments (TEEs), which
rely on hardware features for confidentiality and integrity.
Agencies such as ITU, CISA, and NIST already recommend
TEEs to protect critical services in cloud environments [ITU-
T Study Group 17, 2022; Cybersecurity and Infrastructure
Security Agency, 2021].
TEEs provide confidentiality and integrity fea-

tures [Ménétrey et al., 2022]. The confidentiality feature
protects the data and applications from the host by en-
crypting the main memory with keys that never leave the
processor. Confidentiality is transparently managed by an
embedded engine that encrypts and decrypts data as they
leave and arrive in the processor. Memory is then protected
from other environments (e.g., OSs, processes, hypervisors),
trusted or not, that run on the same machine.
In contrast, the most interesting usages of integrity cannot

be completely transparent. On the basic level, the proces-
sor should manage the integrity of the memory, ensuring that
memory pages were not corrupted or replayed (i.e., replaced
by previous versions). However, leveraging TEEs to verify

that environments have been created according to the user’s
requirements and without malicious interferences from in-
frastructure providers or their human operators is much more
complex.
As discussed in the next section, TEEs may come in

two flavors: enclaves or confidential virtual machines
(CVMs) [Wang et al., 2024]. Enclaves protect a specific
service and are part of a regular operating system process.
Alternatively, CVMs protect a complete virtual machine, in-
cluding the operating system, runtime, and services. Both
have advantages and disadvantages, but in either case, ver-
ifying their integrity requires verifying all components in-
volved, from the version of the firmware in the processor
to the integrity of the binary used to create the environment.
To make matters worse, providers offer different subsets of
functionalities and different interfaces to access verification
APIs.

Although complex, verifying trust in software components
and services is in high demand. Several security standard-
ization agencies have recommended the Zero Trust Archi-
tecture (ZTA) model to compartmentalize components and
support verification [Cybersecurity and Infrastructure Secu-
rity Agency, 2023; Rose et al., 2020; Biden Jr., 2021]. ZTA
reduces the attack surface of cloud-native applications by re-
quiring fine-grained resource identification as well as authen-
tication, authorization, and encryption on all communication

https://orcid.org/0009-0007-5381-3178
mailto:davi.pontes@lsd.ufcg.br
https://orcid.org/0009-0008-2295-8830
mailto:fernando.silva@lsd.ufcg.edu.br
https://orcid.org/0009-0005-2599-3218
mailto:anderson.melo@lsd.ufcg.edu.br
https://orcid.org/0000-0003-3307-8798
mailto:eduardo@dca.ufrn.br
https://orcid.org/0000-0002-7350-8599
mailto:andrey@computacao.ufcg.edu.br

Interoperable node integrity verification for confidential machines based on AMD SEV-SNP Pontes et al. 2023

and service accesses. Therefore, identities are the paramount
pillar of ZTAs, and issuing them can become more robust
when leveraging the security of TEEs’ remote attestation.

To combine ZTAs and confidential computing, we lever-
age projects from the Cloud Native Computing Founda-
tion1 (CNCF). More specifically, we use an identity stan-
dard, SPIFFE, and its reference open-source implementa-
tion, SPIFFE Runtime Environment (SPIRE). We propose
an extension that provides an attestation mechanism based
on AMD SEV-SNP technology [AMD, 2020] for confiden-
tial virtual machines. The attestation will issue identities in
the form of regular X.509 certificates [Boeyen et al., 2008]
or JSON Web Tokens (JWTs) [Jones et al., 2008] that can
be used for authentication while abstracting all confidential
computing peculiarities of the major public cloud providers
and on-premise installations.
The outcome facilitates the proper use of CVMs, veri-

fying whether they are running in AMD SEV-SNP CVMs
and verifying the integrity of the execution platform, besides
strengthening ZTA deployments. Furthermore, as different
cloud providers’ adoption of AMDSEV-SNP restricts access
to some of the features, we discuss the different trust assump-
tions and provide usability mechanisms, such as relying on
Trusted Platform Module (TPM), to circumvent differences
without compromising usability.

In summary, our contributions are the following:

1. We are the first to propose the usage of confidential
VMs with the CNCF identity framework. This is imple-
mented as a SPIFFE-compliant extension to the SPIRE
framework that enables attestation of CVMs in public
cloud and on-premise installations;

2. We propose a new mechanism to combine properties
used by different platform attestation plugins;

3. We investigate the threat models for different cloud
providers and create mechanisms to abstract from their
differences;

4. We evaluate our solution in the major cloud providers
currently supporting AMD SEV-SNP while discussing
design decisions and implementation results with the
open-source community.

We organize the document as follows. The next sec-
tion presents some background on fundamental technologies,
such as Zero Trust, SPIFFE, SPIRE, AMD SEV-SNP, and
TPM. Section 3 defines the threat model of our work. Then,
Section 4 reviews the current support for AMD SEV-SNP for
on-premise and public cloud installations, summarizing their
limitations. Section 5 details the plugin design, implementa-
tion, and usage. After that, Section 6 explains how to verify
the integrity of CVMs. Section 7 evaluates our implemen-
tation, including a security analysis detailing the attacks we
consider and howwemitigate them. Finally, Sections 8 and 9
summarize related work and our contributions.

1The Cloud Native Computing Foundation (https://www.cncf.io/)
is a hub for open-source, vendor-neutral solutions for cloud-native comput-
ing. It hosts popular projects such as Kubernetes and Prometheus.

2 Background
Zero Trust is a crucial concept regarding the security of
cloud native apps. SPIFFE/SPIRE provides guidelines that
help implement ZTA for applications following a microser-
vices architecture. Trusted computing technologies such as
AMD SEV-SNP and TPM provide confidentiality and in-
tegrity guarantees that strengthen ZTAs. These concepts are
discussed next.

2.1 Zero Trust
The Zero Trust (ZT) model is a set of principles and guide-
lines to secure communications no matter where they occur,
granting access to resources per session and based on device,
behavioral, and environmental attributes, always providing
the least privilege possible, and assessing such access con-
tinuously [Campbell, 2020; Rose et al., 2020].
Issuing and managing identities is a fundamental pillar of

implementing all ZT principles. There is no secure and au-
thenticated communication without software identities; they
need to be constructed over strong evidence, and finally, they
should be renewed periodically following a robust issuance
process. Although there is no specific set of activities to im-
plement Zero Trust, some practical approaches, e.g., SPIFFE
and SPIRE, follow the aforementioned principles.

2.2 SPIFFE and SPIRE
With the rise in the usage of automated infrastructures and
cloud-native computing, the need for provisioning identi-
ties for software components has also increased. Software
components have dynamic life cycles orchestrated by tools
such as Kubernetes (K8S) [Kubernetes Community, 2024].
Therefore, the provisioning of these identities should also be
automated. In addition, tendencies such as ZT, discussed in
the previous section, lead to the need for unique identities for
each component or microservice.

2.2.1 The SPIFFE Standard

The Secure Production Identity Framework for Everyone
(SPIFFE) is a specification [SPIFFE Community, 2023] that
determines how to operationalize software identities in a plat-
form and technology-agnostic way. Its primary purpose is to
address the issue of having a last credential unprotected. In
other words, the credentials used to retrieve critical configu-
rations and other credentials should be seamlessly provided
to the service or node. SPIFFE solves this problem by com-
bining attestation procedures and signed identities.
In the SPIFFE vocabulary, microservices are named work-

loads. When attested, a workload receives a SPIFFE Ver-
ifiable Identity Document (SVID), a cryptographically ver-
ifiable object representing the workload’s identity. Cur-
rently, SVIDs can be X.509 certificates or JWTs. Each
SVID carries a SPIFFE ID, a string used to identify work-
loads. A SPIFFE ID is composed of a domain name, such as
spiffe://example.com/, followed by a human-friendly name
(e.g., client), an opaque one (e.g., a hash or unique id), or a
combination of both (e.g., organized in a path hierarchy).

https://www.cncf.io/

Interoperable node integrity verification for confidential machines based on AMD SEV-SNP Pontes et al. 2023

Workloads obtain their SVIDs (and corresponding private
keys, in the case of X.509 SVIDs) and trust bundles (one or
more Certificate Authority (CA) certificates to validate sig-
natures of other workloads) through the Workload API. To
avoid the need for workloads to have bootstrap credentials2,
this API does not require authentication. Instead, the API
collects information from other sources, such as the operat-
ing system, to derive relevant properties that help identify
which SVID a workload should receive. The process of de-
riving such properties is named attestation. The properties
collected to perform the attestation are named selectors.
In addition to the attestation and delivery of the associated

SVID, a SPIFFE implementation also provides the trust bun-
dles. Implementations should also rotate SVIDs according
to a provided configuration.

2.2.2 SPIFFE’s reference implementation

The SPIFFE Runtime Environment (SPIRE) [SPIFFE Com-
munity, 2023] is the reference implementation of SPIFFE.
SPIRE has two main components: the server and the agent.
The server is responsible for attesting the agents, deliver-
ing the agents’ SVIDs, and minting the workloads’ SVIDs.
The agent’s primary role is to attest the workloads and de-
liver SVIDs that match the attested selectors. SPIRE is an
open-source project, and both components follow a plugin-
oriented architecture. The most important plugin type for
this work is the attestation plugin type, which enables the
operator to configure a source for the selectors used for the
attestation of a node. Having a plugin type that collects prop-
erties related to the integrity and confidentiality features used
by workloads greatly simplifies the usage of TEEs.
A SPIRE infrastructure is typically composed of a server

andmultiple agents. Each agent is deployed on a node, which
is a physical or virtual machine. The agent can serve various
workloads running on the same node. The agent exposes the
Workload API in a Unix Domain Socket where workloads
can trigger the process of attestation and receive their SVIDs
in return, as determined by the SPIFFE standard. Similarly,
the server offers a Node API, where agents request their
SVIDs and the SVIDs for the workloads they may eventu-
ally host. Finally, the server offers the Registration API. Ser-
vice operators use the Registration API to define a SPIFFE
ID (such as spiffe://example.com/client) and which attesta-
tion properties the workload needs to satisfy to receive an
SVID with that SPIFFE ID (such as requiring that it runs on
a specific K8s namespace or atop a specific VM image). An
illustration of this setup is presented in Figure 1.
Because the SPIFFE ID is a simple string typically em-

bedded as a non-critical extension in an X.509 certificate for
provability, SPIFFE facilitates the interoperation between
legacy and SPIFFE-aware workloads. For a legacy workload
that trusts the CA associated with the trust domain, the SVID
is simply a trusted certificate. In addition, if a workload is
aware of SPIFFE, it can look at the SPIFFE extensions dur-

2This last credential problem is also known in the SPIFFE community
as the bottom-turtle problem, referring to an anecdote in which the world
rested on the back of a turtle, which in turn rested on the back of another
turtle, and so on [Feldman et al., 2020], see also https://en.wikipedia.
org/wiki/Turtles_all_the_way_down.

Figure 1. Basic SPIRE setup [SPIFFE, 2023].

ing the authorization. In the latter case, the SPIFFE ID ab-
stracts the attestation. For example, if a workload trusts a
SPIFFE ID spiffe://example.com/client, it does not need to
understand how the attestation was implemented, and the at-
testation may have different requirements depending on the
trust level of the infrastructure (e.g., remote edge nodes may
require a stricter attestation then self-managed local ones).
As mentioned above, a server does not autonomously de-

cide which identities to issue and to which nodes or work-
loads they could be issued. This information needs to be
registered on the server via the Registration API. The infor-
mation related to an identity is called a registration entry and
can be assigned to a node or workload. A registration entry
comprises a SPIFFE ID, a set of one or more selectors, and,
in the case of a workload, the parent ID. The selectors are
the information collected during attestation and identify the
workload or node. The SPIFFE ID is the exact identity that
must be issued to theworkload or nodewhose collected selec-
tors are the same as those specified in the registration entry.
The parent ID specifies the SPIFFE ID of a node on which
the workload needs to be running to receive the SVID. The
parent ID only applies to workloads, and as several nodes
can share the same SPIFFE ID, they are eligible to host the
same workloads.
Figure 2 illustrates using the SPIRE Command Line Inter-

face (CLI) tool to create registration entries for a K8s node
and a K8s workload. For instance, the selectors used on the
node include the K8s cluster name, the K8s namespace, and
the K8s service account. For the workload, the selectors used
include the parent ID, the K8s workload’s namespace, the
K8s service account, the pod name, and the pod image.
Figure 3 describes the basic workflow for SPIRE. As

shown in the sequence diagram, upon initialization, the agent
requests its identity to the server, which initiates node attesta-
tion. Attestation involves some message exchange between
the server and the agent so that the server can get the node
selectors for selecting the appropriate SVID. This communi-
cation is mediated by a plugin on the server side and another
on the agent side. First, the server uses the selectors to issue
an SVID with a SPIFFE ID in a format defined by the plu-
gin. Then, the server checks if any node registration entry as-
sociates any received selector with some additional SPIFFE
ID; if so, the server issues a new SVID to the agent; then, it
delivers that ID along with the SVIDs for workload registra-
tion entries associated with that agent. This process involves

https://en.wikipedia.org/wiki/Turtles_all_the_way_down
https://en.wikipedia.org/wiki/Turtles_all_the_way_down

Interoperable node integrity verification for confidential machines based on AMD SEV-SNP Pontes et al. 2023

Node
sp i re - s e rve r entry create

- node
- s p i f f e I D s p i f f e :// ufcg . edu . br/k8s - agent
- s e l e c t o r k8s_sat : c l u s t e r : k8s - c l u s t e r
- s e l e c t o r k8s_sat : agent_ns : s p i r e
- s e l e c t o r k8s_sat : agent_sa : sp i re - agent

Workload
sp i re - s e rve r entry create

- parentID s p i f f e :// ufcg . edu . br/k8s - agent
- s p i f f e I D s p i f f e :// ufcg . edu . br/my- app
- s e l e c t o r k8s : ns : de f au l t
- s e l e c t o r k8s : sa : de f au l t
- s e l e c t o r k8s : pod -name :my- app
- s e l e c t o r k8s : pod - image:<container - ImgID>

Figure 2. Creation of registration entries.

Figure 3. Basic SPIRE workflow.

mutual authentication between server and agent, using the
server public certificate that the agent is pre-configured and
the brand new agent SVID. Strategies for node attestation
may employ tokens and certificates as selectors (e.g., K8s ser-
vice tokens, pre-provisioned join tokens, SSH identities, or
X.509 certificates). They may also rely on information pro-
vided by public clouds, e.g., instance identity documents in
Amazon Web Service (AWS), Azure, or Google Cloud Plat-
form (GCP), or use some trusted computing technology such
as Trusted Platform Modules [Arthur and Challener, 2015]
or AMD SEV-SNP (as first proposed in this work). Finally,
when entirely bootstrapped, the agent listens on the Work-
load API socket.
When an agent receives an SVID request from a workload

on its Workload API Unix Domain Socket, it will start the
workload attestation process. For this, it will use the oper-
ating system’s capabilities to determine exactly which pro-
cess opened that connection. After identifying the process,

the agent communicates the process ID to the configured at-
testation plugins, which will collect additional information
to build the selector list. Then, if the selectors of the work-
load match some entry, and the current agent also has the
parent ID associated with that entry, an SVID is delivered.
Examples of workload selectors are the SHA256 of the appli-
cation binary (available directly in Linux) and the container
image ID (available for bothDocker andK8s environments)3.
When adopting the confidential computing threat model, ei-
ther the operating system cannot be trusted, and other mech-
anisms must be used for attestation (as with the plugin for In-
tel SGX [Falcão et al., 2022]), or the operating system must
have been attested (as we do with the proposed plugin).

2.3 AMD SEV-SNP
AMD introduced Secure Encrypted Virtualization (SEV) in
2016. It is enabled by using the Virtual Machine Control
Block (VMCB) to specify which memory pages should be
encrypted [AMD, 2020]. Such technology is important when
we consider a more strict threat model where we want to pro-
tect VMs from the cloud admin or bugs from the hypervisor.
Confidentiality of workloads running in such CVMs is im-
proved because the memory of VMs is protected using AES
cryptography and keys provided, at the hardware level, only
to the VMs. This is controlled with an encrypted bit (C-bit)
in the CVM page table – 0 is used for unencrypted memory
pages and 1 for encrypted pages. Therefore, when the hy-
pervisor attempts to read the memory of a CVM, it retrieves
only encrypted data.
In 2017, the AMD extended SEVwith the Encrypted State,

leading to the AMD SEV-ES [AMD, 2020]. When a SEV
VM stops running, either through interruption or some other
event, the raw contents of their registers are saved unen-
crypted in the hypervisor memory. A malicious or compro-
mised hypervisor could read this information or even change
it to perform a replay attack. The SEV-ES mitigates such at-
tacks by encrypting the data of registers when a CVM stops,
thus diminishing the attack surface.
In 2020, the SEV-ESwas extended with the Secure Nested

Paging (SNP) feature to provide memory integrity [AMD,
2020]. In SEV-ES, although a memory region is encrypted,
the hypervisor could execute integrity attacks by chang-
ing memory values to perform data replay or memory re-
mapping, possibly leading to data leakage. Since the soft-
ware could not assess the memory integrity, it could not
avoid these attacks. The SEV-SNP ensures memory integrity
by employing a structure called Reverse Map Table to track
the owner (Hypervisor or VM) of each memory page and
precluding these values from being directly manipulated by
software [AMD, 2020].
In addition tomemory encryption and integrity control, the

AMD Secure Processor (AMD-SP) measures all the mem-
ory pages injected during the creation of the CVMs. This
measurement enables the production of attestation reports,
which include a hash of the VM construction process and a
set of relevant configurations of the physical processor (e.g.,

3A full list of node and workload attestation plugins is available at
https://github.com/spiffe/spire/tree/main/doc.

https://github.com/spiffe/spire/tree/main/doc

Interoperable node integrity verification for confidential machines based on AMD SEV-SNP Pontes et al. 2023

firmware version, hyperthreading, debug mode). Later, pro-
cesses inside the CVMs can request attestation reports to the
AMD-SP. Third parties can then use this report to remotely
attest that a VM is running in AMD SEV-SNP confidential
mode because the reports are signed by a key internal to the
AMD-SP and not accessible by software, allowing the third
party to be sure a legitimate AMD-SP generated the report.
Reports can be obtained directly from the SNP device ex-

posed to the guest or through a vTPM. Cloud providers adopt
one of these strategies at their will. To assure the vTPM
integrity, some providers leverage the AMD SEV-SNP Vir-
tual Machine Privilege Levels (VMPLs) feature. VMPLs
are used to restrict access to memory pages depending on
the level a process is running. In this context, VMPLs are
typically used to execute a Linux Secure VM Service Mod-
ule (SVSM) with a vTPM in the most privileged level, the
VMPL0, inaccessible from the host, but also from the guest,
which executes at VMPL1. The SVSM-vTPM is measured
during boot and reflected on the SNP launch measurement.
Therefore, SEV-SNP with SVSM-vTPM deployments can
leverage the security features of vTPMs to enhance CVMs’
integrity verification, including the measurement of the OS
kernel and, when applicable, initrd.

2.4 Trusted Platform Module
The Trusted Platform Module (TPM) [Arthur and Challener,
2015] is a low-cost chip physically attached to the mother-
board of computers. It serves as a root of trust for a platform
and is commonly used to store secrets, verify platform in-
tegrity, and identify platforms. In this sense, it is possible
to use TPMs via SPIRE to facilitate the implementation of
ZTAs that use TPMs as a source of identification and also
to increase the level of security for platform integrity verifi-
cation, especially for AMD SEV-SNP nodes, by measuring
software loaded after the virtual machine has been created.
During its production, each TPM receives an Endorsement

Key (EK), which is a signed asymmetric key provided by
a Certification Authority (CA). The private part of the EK
never leaves the TPM but can be used to identify a TPM and,
consequently, the machine. This can be done because the
public part of the key can be provided to a third party, which
could verify its integrity and authenticity using the CA. Af-
ter certifying that the public key corresponds to a private key
within a TPM, inaccessible to any software component or
user, the third party could propose a challenge that involves
encrypting a secret unknown to the TPM. If the TPM suc-
cessfully solves the challenge and presents the secret in plain
text, then the challenger is convinced of the authenticity of
the TPM and can use the public part of the EK to identify it.
A TPM has 24 registers called Platform Configuration

Registers (PCRs). The PCRs can store hashes of measure-
ments of vital components for the machine’s execution since
its boot, i.e., firmware, software, and configuration files.
However, each measurement is not directly assigned to a
PCR. To include a measurement, the TPM performs an ex-
tended hash operation on the last value of the PCR. Therefore,
due to the high difficulty of tampering with a hardware-based
TPM, it can be used as a root of trust to verify the environ-
ment’s integrity. For this purpose, after the machine boots,

the TPM can generate reports with the PCR values, signing
them with its private key so that a remote third party can ver-
ify the report’s integrity.
In the boot process, the firmware and all configurations

used in the boot are extended into PCRs 0-7. In addition,
PCR 9 plays a vital role in this work because it stores the
measurement of the initrd, which is an initial root filesystem
bound to the kernel, mounted prior as part of the two-stage
boot process. It allows to customize the boot process easily,
and set up the boot, permitting, for example, the filesystem’s
integrity verification, disk encryption, or network configura-
tion. We use the initrd to perform remote attestation with the
aid of SPIRE and the AMD SEV-SNP node attestor. Accord-
ing to the result of this attestation, the machine will receive
the disk decryption keys to proceed with the boot. There-
fore, using the TPM to measure initrd ensures the keys are
not leaked. The details of verifying the integrity of CVMs
are presented in Section 6.

3 Threat Model
The first premise of the threat model for a SPIRE infrastruc-
ture is that the SPIRE server operator is trustworthy. This
trust in the server is essential because a malicious server
could use its CA certificate and keys to sign arbitrary SVIDs.
For the same reason, we assume that the server component
is free of bugs and runs on a trusted machine. This machine
could be a physical machine under the organization’s admin-
istration but could also run in a TEE in some public cloud.
On the other hand, the agent is not trustworthy a priori but

may become trusted after the node attestation. Depending
on the node attestation protocol applied, a malicious operator
could take control of the agent and try different approaches to
obtain SVIDs of workloads running in other nodes. Such an
operator could adapt the agent’s code, the code of node and
workload attestors, and change agents’ settings on the con-
figuration file. Unlike the server, which is isolated and hard-
ened, the nodes with agents run user-provided workloads,
and these can attack the local agents.
As with AMDSEV-SNP’s threat model, we assume a pow-

erful attacker with privileges to access and manipulate all
software layers of the infrastructure, including the operat-
ing systems, hypervisors, and cloud platforms where work-
loads are running. The AMD SEV-SNP threat model also
does not consider rollback attacks on storage, side-channel
attacks, or denial of service (DoS) attacks. Rollback attacks
on storage do not affect our plugin. Nevertheless, they may
affect applications running in the VMs, and they should be
mitigated as in regular workloads (e.g., using internal or ex-
ternal monotonic counters). Mitigating side-channel attacks
is orthogonal to our approach and should be done through
patches in the operating system or firmware [Li et al., 2022].
However, our approach does support conditioning SPIFFE
IDs to specific firmware versions. Therefore, we assume that
our user, the owner of the application, can determine what is
an untainted operating environment (e.g., operating system,
firmware, and hardware Trusted Computing Base (TCB)) by
using reference measurements that have been validated by
a security expert or organization. Thus, our goal is to en-

Interoperable node integrity verification for confidential machines based on AMD SEV-SNP Pontes et al. 2023

able the application owner to be protected by changes that
the cloud provider or its operators can apply. Ensuring that
end-users of applications understand the guarantees provided
by CVMs is out of the scope of this work.
DoS attacks can happen, for example, if a malicious hy-

pervisor refuses to run the guest. Consequently, this kind of
attack is easily detectable and out of the scope of our work.
Under SEV-SNP, the AMD System-On-Chip hardware,

the AMD-SP, and the VM itself are treated as fully trusted,
while all other CPU software components, PCI devices, and
operators are treated as untrusted. This includes the BIOS
on the host system, the hypervisor, device drivers, and other
VMs. For instance, we consider a model where the hypervi-
sor is benign but may be vulnerable. It may not be actively
trying to compromise CVMs, but it may be exploited to do
so, likewise other untrusted components.
Physical TPMs’ threat model is similar to the SEV-SNP.

Both are trusted computing technologies and can be remotely
attested to verify the state of untrusted components. Never-
theless, TPMs run virtually (vTPMs) in cloud providers, and
could be tampered with. The strategy to detect such integrity
violations is by anchoring it to the SEV-SNP root of trust.
Hence, its threat model will be equivalent to the SEV-SNP
if the vTPM is measured by the AMD-SP – which varies in
different environments and cloud providers.

4 AMD SEV-SNP & Cloud Providers
The SEV-SNP features are supplied in different forms for on-
premise and the major public cloud providers. When attest-
ing SEV-SNP CVMs, essential security properties must be
verified. Next, we present these properties, detail why they
are relevant, and then summarize the current support in cloud
providers.

4.1 Security Properties and Mechanisms
For the AMD SEV-SNP attestation, we consider six rele-
vant security properties/mechanisms: (i) the components in-
cluded in the launch measurement reported by the AMD-SP;
(ii) the reproducibility of such a launch measurement, which
may hide code for which the user has no access; (iii) the
availability and customization of vTPMs for CVMs, which
can be used for additional measurement; (iv) the inclusion of
the vTPM in the launch measurement; (v) the mechanism to
supply SEV-SNP attestation reports; and (vi) the mechanism
to provide disk decryption keys.
It is important to know the components measured into the

launch measurement because they compose the TCB. Under-
standing the TCB is vital because it is possible to rely on
some of these trusted components to perform extra security
and validation steps. For instance, CVMS must operate over
encrypted disks, which naturally need to be decrypted during
initialization. Thus, the decryption key must be handed in by
a third-party verifier only after approval of the launch mea-
surement. On the CVM side, wemust place a hook to request
the decryption key, which will cause the verifier to initiate
the remote attestation procedure. Notice that to accomplish
this task securely, this hook must be placed in a component

within the TCB; otherwise, it would not be possible to check
if the requester is a CVM and if it has the expected trusted
TCB.

Reproducing such a measurement is essential to securely
close the remote attestation loop. While the steps to repro-
duce the measurement are clear, some environments do not
provide the source code for some components, precluding
the offline computation of the launch measurement, i.e., dis-
covering the measurement before launching a CVM.
An important security feature for CVMs is the availability

of vTPMs. The launch measurement included in the SEV-
SNP attestation report is only computed once during CVM
initialization. Therefore, it does not track the execution plat-
form state after boot, including executing processes in the
OS. Thus, if some attacker somehow obtains access to the
CVM after initialization, it is impossible to detect by lever-
aging the standard SEV-SNP remote attestation. vTPMs can
measure a binary used to start a process in the OS and rel-
evant configuration files. Then, while SEV-SNP provides a
means to verify the TCB state with reports generated at boot
time, vTPMs can complement it with dynamic runtime re-
ports. The issue here is establishing trust in a vTPM, given
that it runs as software and thus could also be adulterated.
For this reason, we also investigated which environments the
vTPM is measured and could be securely verified.

The SEV-SNP attestation report may be obtained from
a SEV-SNP guest device, exposed in the CVM, or from a
vTPM if the SVSM is enabled on the host. From the SPIRE
Node Attestor implementation perspective, it can obtain the
SEV-SNP report either from the SEV-SNP device or the
vTPM. Similarly, it verifies its integrity and chain of trust in
both approaches. We must recall that reports obtained from
the SEV-SNP device are freshly generated each time they
are requested. However, for the SVSM-vTPM approach, the
report is generated during boot and inserted in the vTPM’s
memory. Thus, in this approach, whenever a CVM requests
the SEV-SNP report from the vTPM, it will always obtain
the same report. Although the launch measurement remains
the same in both approaches, some other values could change
and are not reflected in reports obtained from SVSM-vTPM.

4.2 Current Support
These relevant aspects are summarized in Table 1 for the
different AMD SEV-SNP environments considered. For the
measurement, we focus only on the guest context, which in-
cludes all memory pages loaded in the CVM. For instance,
the possible components are VM firmware (VMF), initrd,
kernel, and SVSM. Then, we detail the reproducibility of
this measurement, which implies giving the user access to
the VMF and SVSM source code. For the vTPM, we specify
which implementation is used and if it is enabled by SVSM
and, consequently, measured into the launch measurement.
Finally, we provide information about how the SEV-SNP re-
port is provided and how disk encryption can be enforced.
From Table 1, we can observe that the AWS and GCP de-

ployments are similar regarding the SEV-SNP measurement.
Although in both providers the SEV-SNP TCB includes the
firmware, currently, we can only reproduce the launch mea-
surement for AWSCVMs since the code of the VM firmware

Interoperable node integrity verification for confidential machines based on AMD SEV-SNP Pontes et al. 2023

environment measurement vTPM report disk encryption controlcomponents reprod. impl. measured

AWS VMF ✓ Nitro 7 SNP device custom initrd, vTPM
Azure VMF, SVSM 7 SVSM-vTPM ✓ vTPM vTPM
GCP VMF 7 IBM SWTPM fork 7 SNP device custom initrd, vTPM

on-premise VMF, initrd, kernel ✓ custom 7 SNP device custom initrd, vTPM
VMF, SVSM ✓ SVSM-vTPM ✓ vTPM custom initrd, vTPM

Table 1. AMD SEV-SNP support in different deployments.

is open and available at AWS github [Amazon Web Ser-
vices, 2024b]. One drawback common to AWS and GCP
is that there is no instruction on verifying the integrity of
the vTPM. There is no information about whether the vTPM
is measured, where this measurement reflects, and the exact
source code used for the vTPM. Thus, although it is possible
to obtain vTPM attestation reports, it is impossible to attest
the vTPM integrity.
On the other hand, the Azure and on-premise deployments

employ SVSM-enabled vTPMs. In this strategy, the vTPM
is included in the SVSM binary, and the SVSM is measured
into the CVM launch measurement. Thus, anyone possess-
ing the SVSM source code can compute the expected launch
measurement of the CVM beforehand. However, to this date,
the Azure SVSM used to instantiate CVMs is not publicly
available. Therefore, the launch measurement for the SVSM
approach is only completely verifiable for on-premise instal-
lations, allowing the proper usage of runtime vTPM reports
in addition to the SEV-SNPs’ reports. In this work, for the
SVSM-enabled on-premise CVMs, we use the open-source
SVSM-vTPM implementation [Narayanan et al., 2023] avail-
able on github [Carvalho et al., 2024].
CVMs with disk encryption must obtain the decryption

keys before operating. This key could be stored in a secure
Key Management Service (KMS), in the SPIRE Server it-
self, or be sealed to the vTPM [Narayanan et al., 2023]. As
mentioned above, one challenge in performing this task with
vTPMs is that no public cloud provides a means to verify the
integrity of the vTPM. Azure is the one that gets closer by us-
ing SVSM-vTPMs, which could be verifiable if the SVSM-
vTPM source code was available. In contrast, tools such as
SPIRE can be used to perform remote attestation and issue
SVIDs that can be used to retrieve the disk key from a KMS.
This can be done by customizing the initrd to include the
SPIRE agent. However, no public cloud provider includes
the measurement of the initrd into the SEV-SNP report. The
initrd can be measured into vTPM’s PCR 9, but again, we
fall back to the same problem of being unable to verify the
vTPM integrity.

In summary, the current status is that (i) it is possible to se-
curely use AWS CVMs if user-controlled disk encryption is
not mandatory4, and (ii) on-premise installations can be fully
verified by remote parties – the SVSM approach should be
employed when vTPMs are needed. The current main draw-
backs of each cloud provider can be summarized as follows:

• AWS: the NitroTPM source code and SVSM-enabled

4Note that all cloud providers offer basic disk encryption. In this case,
the data is not unencrypted in the physical disks, but the decryption keys are
managed by the cloud provider.

deployment are not available;
• Azure: the CVM firmware (including the SVSM)
source code is not available;

• GCP: the CVM firmware, SVSM-enabled deployment
and vTPM source codes are unavailable.

5 Plugin design and implementation
To allow the implementation of different attestation strate-
gies, SPIRE operates on the concept of employing plugins to
extend its capabilities. If a new attestation form is desired,
a new plugin can be implemented to leverage some root of
trust to attest the node. When attested, the plugin will gen-
erate selectors to identify the node, and this information is
used to issue specific SVIDs. In this section, we will discuss
our implementation of the AMD SEV-SNP node attestor and
a hybrid attestation plugin that allows the combination of dif-
ferent attestation plugins into one.

5.1 AMD SEV-SNP Node Attestor
To build a Chain of Trust (CoT) between the AMD-SP and
the CVM that remote parties can validate, the AMD-SP pro-
vides a protected path through which the CVM can request
attestation reports on their behalf. The attestation report aims
at allowing the CVM to prove to third parties that it runs con-
fidentially on an AMD server with SEV-SNP enabled and
has the expected configurations.
The attestation report is signed by the private part of an en-

dorsement key (EK) located inside the AMD-SP and is not
accessible by software. This EK can be a Versioned Chip
Endorsement Key (VCEK) or a Versioned Loaded Endorse-
ment Key (VLEK). The VCEK is a signing key derived from
chip-unique secrets and a TCB version. While the VLEK is
derived from a seed maintained by the AMDKey Derivation
Service (KDS) and can be loaded into the processor. Both
can be used to sign the attestation reports and guarantee the
authenticity of it. The public part of the EK can be used
to verify the signature, and its authenticity can be verified
against the AMD certificate chain. Therefore, it is possible
to guarantee that the report was generated inside an AMD-SP,
as it is the only entity with access to the EK private key. In
addition, the requester can include 512 bits of arbitrary data
as a nonce5 in the attestation report. With the verification of
signatures and nonce, a remote party can be sure the report
is fresh and authentic, generated by a genuine AMD-SP.

5The nonce is some information (e.g., a random number) provided by
the attestation challenger to guarantee the freshness of the report.

Interoperable node integrity verification for confidential machines based on AMD SEV-SNP Pontes et al. 2023

Figure 4. Attestation of Non-SVSM CVMs with SPIRE.

We implemented a node attestation plugin that executes
the process of verifying the confidentiality of a VM in the
context of SPIRE. There are two strategies to perform the
remote attestation depending on the environment: (i) non-
SVSM CVMs and (ii) SVSM CVMs. Figure 4 presents the
node attestation workflow for non-SVSM CVMs, while Fig-
ure 5 describes the workflow for SVSM CVMs.
In the first strategy, which does not use vTPM, the agent

uses the AMD-SP to generate an attestation report with a
nonce provided by the server, and the server verifies the EK
certificate chain, if the EK is included on the Certificate Re-
vocation List (CRL) provided by AMD, the nonce, and the
signature, as described in Figure 4.
Figure 5 highlights the attestation workflow for an SVSM

CVM. For this workflow, the agent uses the vTPM to retrieve
the SNP attestation report, which is saved on the vTPM’s
memory. To ensure that the report is fresh, we used the
vTPM quote with the nonce provided by the server. The
server verifies the authenticity of the quote by using the hash
of the vTPM’s public key, which is included in the 512 bits of
arbitrary data in the SNP report. The agent sends the AMD
EK, the attestation report, the vTPM quote, and the vTPM’s
public key to the server. The server then verifies the AMD
EK against the AMD certificate chain and CRL, the SNP re-
port signature, the hash of the vTPM’s public key, the vTPM
quote signature, and the nonce.
Table 2 presents the main selectors of our plugin6. The

chip ID is a value associated with the AMD-SP and thus
never changes. The EK can identify a cloud provider (in the
case of VLEK, as the same VLEK can be loaded on multi-
ple chips) or identify a specific chip (in the case of VCEK).
The launch measurement is computed over the initial mem-
ory content of the CVM. Finally, the policy is defined by the
CVM owner to impose restrictions on the host executing the
CVM.
The SPIFFE ID produced by the SEV-SNP at-

testor, i.e., the SPIFFE ID appearing in the first
SVID issued by the server, has the following format:
spiffe://<trust-domain>/spire/agent/amd_
sev_snp/chip_id/<chip_id>/measurement/

6To see all the selectors, check https://github.com/ufcg-lsd/
spire-amd-sev-snp-node-attestor

Figure 5. Attestation of SVSM-enabled CVMs with SPIRE.

Selector Description
amd_sev_snp:chip_id SHA512 of the host chip ID
amd_sev_snp:signing_key_hash SHA512 of the public EK

amd_sev_snp:measurement CVM’s launch measurement
generated by the AMD-SP

amd_sev_snp:policy:single_socket CVM can be activated on
one or multiple sockets

amd_sev_snp:policy:debug Allow or disallow debugging

amd_sev_snp:policy:migrate_ma
Allow or disallow the
association with a
migration agent

amd_sev_snp:policy:smt Allow or disallow
simultaneous multi-threading

amd_sev_snp:policy:abi_major Minimum ABI major version
required for the CVM to run

amd_sev_snp:policy:abi_minor Minimum ABI minor version
required for the CVM to run

Table 2. SEV-SNP node attestor selectors.

<measurement>/report_id/<report_id>.

5.2 Hybrid Node Attestor
Because of the heterogeneous nature of modern infrastruc-
tures, we may want to use different characteristics and capa-
bilities to identify a node. However, SPIRE does not allow
combining different node attestors to identify a unique node.
For instance, to combine different public cloud attestors with
AMD SEV-SNP, we should implement new plugins that use
both attestation strategies for both cloud providers. This
gives rise to the need to implement an exponential number
of plugins to combine different attestation capabilities, lead-
ing to code duplication.
To solve this problem, we designed a plugin that reuses

the node attestation process of other SPIRE plugins and in-
herits the selectors generated by them with the prefix hybrid.
This enables the combination of different attestation strate-

spiffe://<trust-domain>/spire/agent/amd_sev_snp/chip_id/<chip_id>/measurement/<measurement>/report_id/<report_id>
spiffe://<trust-domain>/spire/agent/amd_sev_snp/chip_id/<chip_id>/measurement/<measurement>/report_id/<report_id>
spiffe://<trust-domain>/spire/agent/amd_sev_snp/chip_id/<chip_id>/measurement/<measurement>/report_id/<report_id>
spiffe://<trust-domain>/spire/agent/amd_sev_snp/chip_id/<chip_id>/measurement/<measurement>/report_id/<report_id>

Interoperable node integrity verification for confidential machines based on AMD SEV-SNP Pontes et al. 2023

gies to form the identity of a unique agent without needing
to rewrite any attestation procedure. The hybrid plugin con-
figuration is straightforward because it inherits the settings
of the components plugins.
Table 3 presents an example of selectors when combining

AMD SEV-SNP and AWS IID (Instance Identity Document)
node attestors through the hybrid plugin.

Selector
hybrid:amd_sev_snp:chip_id
hybrid:amd_sev_snp:signing_key_hash
hybrid:amd_sev_snp:measurement
hybrid:aws_iid:image:id
hybrid:aws_iid:az
Table 3. hybrid node attestor selectors.

The SPIFFE ID produced by the hy-
brid attestor has the following format:
spiffe://<trust-domain>/spire/agent/hybrid/<uuid>.

In the following section, we describe how the hybrid plu-
gin can be used to enhance the trust in CVMs.

6 Node Integrity Verification
The key field in the SNP attestation report is the launch
measurement. The launch measurement is the result of
an HMAC over (but not restricted to) the following val-
ues: AMD-SP firmware version, CVM’s policy, and CVM’s
launch digest (for other values, see AMD [2022]). The
launch digest is a hash generated by the AMD-SP, including
all plaintext data imported by the hypervisor into the CVM’s
memory at launch. This launch digest is important to mea-
sure critical components such as the CVM’s firmware, ker-
nel, initrd, and SVSM-vTPM binary. For SVSM-CVMs, the
kernel and initrd are not measured in the launch measure-
ment, but they are measured by the vTPM. However, since
the SVSM-vTPM is measured into the launch measurement,
consequently the kernel and initrd can be securely verified
through vTPM PCRs.
A standard CVM does not guarantee the protection of data

at rest and the integrity of the runtime environment, which
includes tools used to execute the workloads, such as the
SPIRE agent, the container runtime, and the orchestrator
(K8s). One alternative to both issues is encrypting sensitive
data and tools and only decrypting themwithin the CVM and
verifying the integrity of the CVM’s filesystem using the ker-
nel capabilities, given that the kernel can be measured.
The initrd can be instrumented to perform remote attesta-

tion with the aid of a SPIRE agent and our proposed plugin.
Upon successful attestation, a simple workload named “fetch
key” (FetchKey WL) can use its freshly obtained SVID to
retrieve the decryption key from a Key Management Ser-
vice (KMS). For simplicity, within the context of this work,
we have implemented a basic KMS. However, an alterna-
tive solution such as Hashicorp Vault [HashiCorp, 2024] or
VMware SecretsManager [VMware Tanzu, 2024] could also
be used to handle the decryption keys. The KMS contains

the decryption keys, so it must run on a trusted environment
(internal or external to the cloud provider).

We used the Linux Unified Key Setup (LUKS) to encrypt
and decrypt partitions. To assure the filesystem’s integrity,
we used dm-verity, a Linux kernel module that provides trans-
parent integrity checking using a hash digest of the device
blocks. Figure 6 presents a sequence diagram detailing the
steps to boot a CVM with disk encryption and filesystem in-
tegrity checking.

Figure 6. Boot of a CVM with an encrypted disk.

Before describing the workflow to boot a CVM, it is im-
portant to explain the KMS functioning. In the KMS, every
SPIFFE ID is associated with a decryption key that it is au-
thorized to retrieve. However, defining the SPIFFE ID of the
workload (FetchKey WL) used to obtain the decryption key
requires executing some tasks and comprehending the con-
cept and operation of SPIRE registration entries. First, the
initrd should be repackaged to include the SPIRE agent and
the FetchKey WL. Notice that this impacts the measurement
of the initrd that can be used to provide the SPIFFE ID to the
agent. Also, the FetchKey WL will only receive the specific
SVID if it runs in a CVM that is in a trusted state (with the ex-
pected kernel, initrd and firmware). This is done by leverag-
ing the parent node ID feature of SPIRE. Any change to crit-
ical components, such as the firmware, the kernel, the initrd
itself, and the agent (which is in the initrd), would reflect in
the agent’s SPIFFE ID. This would preclude the FetchKey
WL from receiving the expected SVID since there would
be no node registration entry with a SPIFFE ID correspond-
ing to the adulterated environment. Since the FetchKey WL
registration entry depends on the agent SPIFFE ID, this task
can only be performed after the CVM owner customizes the
initrd. After creating the registration entries for the node and
workload, the CVM owner can register in the KMS the disk
decryption key associated with the workload SPIFFE ID.
The boot CVM workflow starts with the initrd initializing

the agent. The agent attests to the SPIRE server as described

spiffe://<trust-domain>/spire/agent/hybrid/<uuid>

Interoperable node integrity verification for confidential machines based on AMD SEV-SNP Pontes et al. 2023

in Figures 4 and 5. Recall that on-premise SVSM-enabled
CVMs’ launch measurement is not affected by the initrd. Be-
cause it is essential to measure the initrd, on-premise SVSM-
enabled CVMs should use the hybrid plugin to combine the
AMD SEV-SNP and TPM node attestors so that the latter
can verify the initrd integrity through TPM PCRs7. Then,
the initrd initializes the FetchKey WL, which attests to the
agent and receives its SVID. Considering the critical com-
ponents are genuine, and the FetchKey WL obtained the ex-
pected SVID, the FetchKey WL will request the decryption
key to the KMS. The KMS checks the SVID against the
trusted CA and relies on the SPIFFE ID to decide whether
that CVM/workload can receive some decryption key. Fi-
nally, the initrd uses this key to load the encrypted partition
containing the root file system. After this, the initrd calls
dm-verity module to assure disk integrity. Any attempt to
change the encrypted disk would corrupt it and preclude the
CVM from initializing.
Initrd customization is crucial to assure node integrity and

complete confidentiality. For typical SPIRE deployments,
where an organization has a single SPIRE server, this task
must be performed a single time. It is possible to deploy
multiple CVMs with the same initrd and customize the root
file system with the necessary modules. For each root file
system, the admin only needs to associate the SPIFFE ID of
the FetchKey WL with a new decryption key and with the
root file system metadata at the KMS.

7 Evaluation
There are security and performance perspectives to be eval-
uated about the proposed plugin. Regarding security, we de-
tail some attacks on the integrity of the CVM to obtain its
data or to retrieve SVIDs of confidential workloads. Also,
we detail the aspects of our work on different environments
such as AWS, GCP, Azure, and on-premise. In terms of per-
formance, we compare our confidential node attestor plugin
with a standard non-confidential plugin to attest K8s nodes.
In addition, we also compare the attestation time of our plu-
gin in different environments on public and private clouds
(on-premise).

7.1 Analysis of the security aspects
Vulnerabilities in specific QEMU and OVMF versions

Some versions of QEMU and Open Virtual Machine
Firmware (OVMF) do not measure critical components of
the CVM such as initrd, kernel, and cmdline. This creates
vulnerabilities as the launch measurement on the attestation
report would not reflect critical changes to the machine soft-
ware stack. To address this, we used two different strate-
gies for on-premise: a patch applied to QEMU [Murik, Dov,
2023b] and OVMF [Murik, Dov, 2023a], ensuring the mea-
surement of these components in the launch measurement,
and a strategy also utilizing patches on QEMU [AMDESE,
2024c], OVMF [AMDESE, 2024b], and SVSM [AMDESE,
2024a] to measure the vTPM and utilize it to measure the

7Azure SVSM-enabled CVMs are paravirtualized; thus, the initrd is not
executed and can not be measured by vTPM.

boot components on its PCRs. As in this second strategy the
vTPMbinary is measured in the launchmeasurement, we can
rely on the measurements that the vTPM takes from the boot
components.

In the context of public cloud providers, we cannot ap-
ply the patches to launch the CVM, although, on Azure,
the CVMs are launched following the idea of using SVSM-
vTPM and measuring it using the launch measurement. De-
spite Azure having SVSM-vTPM, initrd and kernel are not
measured by the vTPM because the CVM is paravirtualized.
As discussed in Section 4, most public cloud providers do
not measure the key components of the boot, so to enhance
security in these scenarios, we can use the hybrid plugin to
combine different strategies to identify a node.

IO bounce buffer vulnerability

Another issue is bringing data from the disk to the DRAM
of the CVM [Li et al., 2019]. When a CVM tries to read
data from the disk, the host (QEMU) reads this data and
writes it in an unprotected region of the DRAM belonging
to the CVM. It needs to be unprotected to perform I/O op-
erations, and it is called a software I/O translation buffer
(SWIOTLB) or simply a bounce buffer. The CVM would
then copy (memcpy) this data to its private memory, which
is encrypted. However, every raw data in the buffer could
be read or adulterated during this process. Therefore, using
encrypted volumes or disk encryption approaches where the
server operator manages keys would leave data unprotected.
We avoid this attack by encrypting the disk with keys pro-
vided externally (from the FetchKey WL) and conditioning
access to the decryption key on the integrity of the CVM
(through the attestation during the execution of initrd).

Impersonation attack

In this attack, a non-confidential VM could pretend to
be a CVM to obtain the SVIDs for confidential workloads.
These SVIDs could be used to access unauthorized resources,
e.g., the decryption keys of the root file system. This could
be achieved by creating a non-confidential VM between the
genuine SPIRE server and the CVM. This VM could have
an adulterated agent requesting an SVID for a CVM (even
though it is not a CVM) and an adulterated server that poses
as the original server to a genuine CVM. Thus, this interme-
diary VM would perform a man-in-the-middle (MiTM) at-
tack, and all requests from the genuine server would be for-
warded to the CVM. Figure 7 illustrates this attack. This
attack requires corrupting the agent and server, which could
be achieved with a few simple modifications in the SEV-SNP
node attestor. This attack is mitigated by including the con-
figuration of the agent of the CVM in the initrd. This change
forces the CVM only to trust a SPIRE server with the cor-
rect TLS certificates. After that, placing an intermediary VM
would require a change in the agent configuration, changing
the server address and the associated certificate (the trust bun-
dle). Since these changes impact the launch measurement in
the attestation report, a correct server will not provide the
SVID for the corrupted agent.

Interoperable node integrity verification for confidential machines based on AMD SEV-SNP Pontes et al. 2023

Figure 7. Impersonation attack.

7.2 Performance analysis

The performance of the AMD SEV-SNP node attestor plu-
gin was evaluated by comparing it with the K8s Service Ac-
count Token (K8S-SAT) node attestor. We deployed a K8S
cluster in two AMD VMs, each with 32 GB of RAM and
8 cores. The K8s cluster can execute confidentially by sim-
ply enabling the SEV-SNP feature during the initialization
of VMs. We configured the SPIRE server always to execute
isolated at the master node, and the agent was set up to be
deployed always at the worker node. When running in the
confidential cluster, the agent is set up with the SEV-SNP
node attestor, and for the non-confidential cluster, it is set up
with the K8S-SAT. Each attestation strategy was executed 30
times. To measure the duration of the attestation, we recom-
piled the SPIRE agent by placing one timestamp before the
node attestation procedure and another timestamp after its
conclusion.
The node attestation in the non-confidential cluster with

the K8S-SAT plugin took, on average, 72.9 ms, with a stan-
dard deviation of 2.7 ms. The confidential cluster with the
SEV-SNP plugin took an average of 33.5 ms, with a standard
deviation of 3.9 ms when the AMD EK is configured in the
file system, or an average of 2 s, with a standard deviation
of 1.2 ms when retrieving the EK from the AMD-SP. With
these values, when we configure the EK on the file system,
we notice that the attestation time for AMD SEV-SNP does
not significantly differ from other node attestation plugins.
For this reason, the following experiments are executed with
the EK being retrieved from the file system.
We also experimented with the plugin in different en-

vironments to compare their performance. For this, we
launched CVMs with SEV-SNP on AWS, Azure, GCP, and
on-premise with and without SVSM. For almost all the cases,
we launched a CVM with 2 VCPUs and 8 GB of RAM,
except for on-premise SVSM CVM. Because of limitations
on the vTPM implementation, the On-Premise SVSM CVM
was launched with 1 VCPU and 8GB of RAM. Despite the
difference of 1 VCPU, it must not represent a significant per-
formance difference since the report retrieval procedure is
not CPU-bound. Table 4 shows the mean attestation times
for each environment and their standard deviations.

Environment Mean Time (s) std dev (s)
AWS 0.0735 0.0446
GCP 0.0721 0.0315

on-premise (non-SVSM) 0.1533 0.0015
Azure (SVSM) 0.9859 0.2746

on-premise (SVSM) 0.3056 0.1299
Table 4. SEV-SNP node attestation times.

The main finding of this experiment is that the attestation
time is marginal for the different environments; for public
clouds non-SVSM environments (AWS and GCP), we have
very similar attestation times (around 0.07s). For on-premise
(non-SVSM), we can see a slight difference due to the la-
tency of obtaining the CRL from AMD’s web server. For
on-premise (SVSM), the time increase in comparison to non-
SVSM environments happens mainly because of the TPM’s
Attestation Identity Key (AIK) generation, which takes a
mean time of 0.13s and represents 42.83% of the attestation
time. For Azure, despite the fact we do not need to gener-
ate the AIK because it is stored on vTPM’s memory, we see
a more significant difference in the attestation time due to a
longer time to obtain the SNP report from vTPM (mean of
0.89s). This is related to Azure’s vTPM implementation.
We can also compare how long it takes for a VM, CVM,

and SVSM-enabled CVM to boot and become ready to
serve workloads. We want to understand the costs of es-
sential procedures other than attesting the node, such as run-
ning the OVMF (to understand the overhead of the SVSM-
vTPM), obtaining the disk decryption key (executed by the
FetchKeyWL), and opening the encrypted file system and
verifying disk integrity. The non-confidential VM was con-
figured with the X.509 node attestation, and the CVMs were
configured with the implemented AMD SEV-SNP node at-
testor. VM and CVMs (with initrd customization) were
launched 30 times. Figure 8 depicts the OVMF, kernel initial-
ization, FetchKeyWL, and LUKS and dm-verity times. Con-
fidence intervals have a confidence level of 95%.

Figure 8. Boot and attestation times for the native and confidential VMs.

The results presented in Figure 8 lead us to the following
major findings:

• enabling SEV-SNP adds a marginal mean cost of 1.32 s
for the CVM to become ready to serve workloads, an
overhead introduced by AMD-SP operations, such as
measuring the contents loaded during boot;

• enabling vTPM through SVSM causes a considerable
impact on the time an SVSM-CVM takes to become
ready to serve workloads, an average of 20.54 s in com-
parison with CVMs, an overhead added by the vTPM
the measurement operations it performs over firmware

Interoperable node integrity verification for confidential machines based on AMD SEV-SNP Pontes et al. 2023

and software during boot.

An extra latency of 5.96 s added on all the boot times, is
the time the FetchKeyWL takes to retrieve its SVID, execute,
and fetch the decryption key. Finally, it takes a mean time
of 2.03 s to open the LUKS partition and verify its integrity
on VM and CVM; for SVSM-CVM, this time is increased
to 3.63 s because it has only 1 vCPU due to limitations on
SVSM-vTPM implementation. Also, notice that the root file
system size does not impact on the time to open the LUKS
partition. We measured the time to open LUKS partitions
with 10 MB, 1 GB, and 10 GB, and all took the same aver-
age time. This happens because the decryption of the data it-
self is performed during I/O operations on disk blocks. Open-
ing the LUKS partition only creates the virtual block device
that points to the encrypted physical block device. All the en-
cryption and decryption are made by dm-crypt, a transparent
block device encryption subsystem in the Linux kernel.
Finally, we assess the impacts of enabling VM confiden-

tiality with AMD SEV-SNP.We used the sysbench unix mod-
ule to measure the performance of CPU, memory, file I/O,
and database I/O, in a VM, CVM, and CVM with LUKS en-
crypted partition, with 32 GB of RAM and 8 cores on an
EPYC 7343 server with 128 GB of RAM and 32 cores. For
every resource benchmarking, sysbench was configured to
execute with 16 threads. The file I/O measurement used the
combined random read/write, and the database IO also uses
a read/write online transactional processing over 16 tables,
each with a size of 10000. We ran the sysbench for each
resource 30 times. The performance comparison between
each resource/VM type is presented with confidence inter-
vals over the 30 executions, with a confidence level of 95%.
Figures 9, 10, and 11, present the results for CPU and mem-
ory, file I/O, and database I/O benchmarks.

Figure 9. Performance of CPU and RAM over VM, CVM, and CVM with
disk encryption.

Figure 10. Performance of file I/O over VM, CVM, and CVM with disk
encryption.

By observing the CPU results, we notice that the perfor-
mance of CVM and CVM-LUKS are slightly degraded com-
pared to non-confidential VMs. The VMs processed an aver-
age of 35517 events per second, while the CVMs and CVMs-
LUKS processed an average of 35458 and 35453 events per

Figure 11. Performance of database I/O over VM, CVM, and CVM with
disk encryption.

second, respectively. Although the confidence intervals do
not overlap, these values represent only a marginal CPU
degradation, lower than 1% for both comparisons. It de-
graded 0.2% between VMs and CVMs (with and without
LUKS).
For the memory benchmark, we observed a mean degra-

dation of 1.3% from VMs to CVMs and 2.6% from VMs to
CVMs-LUKS. This degradation occurs because of the mem-
ory encryption and integrity guarantee of SEV-SNP, which
does not significantly impact performance because it is im-
plemented at the hardware level.
The file I/O experiments show amean degradation of 0.4%

between VMs and CVMs for both read and write opera-
tions, which does not exhibit a significant difference. How-
ever, this small loss between VMs and CVMs may be ex-
plained by the path the data traverses from the CVM mem-
ory to the disk and vice-versa. Data needs to be copied
from the disk to an unencrypted shared memory, then copied
to the private encrypted memory, and the reverse path fol-
lows the same concept. This overhead imposed on I/O op-
erations can be alleviated with the new SEV technology re-
cently published (March 2023) by AMD, called SEV Trusted
IO (SEV-TIO) AMD [2023]. SEV-TIO enables trust in de-
vices, thereby eliminating the need to write the data to the
bounce buffer before writing to private memory or disk. A
mean degradation of 1.4% occurs between VMs and CVMs-
LUKS for both read and write operations. Although the per-
formance between VMs and CMVs-LUKS suffers a slightly
larger degradation due to disk data encryption and integrity
guarantees, it also does not exhibit a significant performance
penalty.
Database I/O operations present a low but not impercep-

tible degradation. For database operations, we observed a
mean degradation of 3.6% between VMs and CVMs, and a
mean degradation of 7.13% between VMs and CVMs-LUKS
for both read and write operations.

8 Related work
This section lists some popular alternatives for generating
identities in cloud environments. Next, we discuss some
work that also aims to protect the integrity of VMs.

8.1 Identity provisioning
As discussed in Section 2, cloud-native computing requires
dynamic provisioning of identities specific to each service or
software component. In addition to SPIFFE/SPIRE, there are
alternative approaches to this task. In Kubernetes, services
can use the Certificate API to generate certificates, Service

Interoperable node integrity verification for confidential machines based on AMD SEV-SNP Pontes et al. 2023

Account Tokens, or a controller such as Cert-Manager [Cert-
Manager Community, 2024]. This would enable the creation
of certificates or JWTs recognizable by Kubernetes or even
globally (e.g., using Cert-Manager to issue Let’s Encrypt cer-
tificates). Nevertheless, such identities are assigned based
on the manifest describing the service and can be stolen or
changed by the cluster operator, which is incompatible with
our threat model.
A more sophisticated approach is Google BeyondProd, an

extension of the BeyondCorp model [Ward and Beyer, 2014].
BeyondProd enables richer forms of attestation, such as com-
bining location and the provenance of the container images.
As with SPIFFE/SPIRE, its usage is often associated with
mutual authentication in TLS connections. Other products
that aim to help the deployment of zero-trust architectures
will offer similar solutions to issuing identities and control-
ling access.

8.2 Protecting the integrity of VMs
Several practical approaches to machine integrity rely on
TPMs. Nevertheless, sharing the TPM chip among several
machines is not feasible, so virtual TPMsmust be used. How-
ever, virtual TPMs are susceptible to several attacks [Lauer
et al., 2019; Cucurull and Guasch, 2014; Parno, 2008]. Run-
ning virtual TPMs in TEEs is a possibility. TRIGLAV, dis-
cussed below, Azure Confidential VMs [Azure, 2024], and
AWS EC2 instances with NitroTPM [AmazonWeb Services,
2024a] implement this approach. However, TRIGLAV re-
quires Intel SGX, which is unavailable on AMD machines.
TRIGLAV [Ozga et al., 2021] also aims to protect the in-

tegrity of VMs against internal attacks. In TRIGLAV, the au-
thors propose a mechanism that uses TPMs to measure the in-
tegrity of a host and then uses Intel SGX to host multiple vir-
tual TPMs. The authors then present a mechanism to create a
stronger relationship between the VMs and the virtual TPM
inside the SGX enclave. Our work contrasts by leveraging
AMD SEV-SNP, full disk encryption, and integrity checking
to protect the integrity of the VMs at boot. As an advantage,
our approach does not depend on a modified kernel. A pe-
culiarity of our approach is that vTPMs are not available in
all environments, and when provided, the vTPMs of just a
few of these environments can have their integrity securely
verified.

In a previous work Pontes et al. [2023], we discuss the
usage of SPIRE for attesting on-premise CVMs using the
patched version of QEMU and OVMF. After that, Galanou
et al. [2023] proposed Revelio, a framework to generate cer-
tificates for web-facing applications hosted on AMD SEV-
SNP VMs. As with our previous work, Revelio uses the
patched QEMU and OVMF to measure initrd, and then uses
initrd to verify the filesystem integrity. In contrast to our ap-
proach, Revelio introduces the usage of Let’s Encrypt to sign
certificates (instead of SPIRE). In this work, we extended our
previous plugin to handle public cloud providers and their
different approaches to support AMD SEV-SNP. In addition,
we also provide a hybrid plugin that enables several node at-
testors to be combined, which mitigates the limited measure-
ment capability of some cloud providers (e.g., which could
not distinguish between two disk images in the same VM

flavor) and enables more control for the operator (e.g., en-
abling additional selectors for conditioning SPIFFE IDs also
to properties of the cloud provider, such as the hosting ten-
ants).
Attestation of AMDSEV-SNP in public cloud providers is

closer to the approach proposed by Narayanan et al. [2023]
for on-premise installations. In this case, the AMD report
measures only the CVM firmware, but this firmware includes
a vTPM that will be used to measure the rest of the boot pro-
cess. This approach is based on the Linux Secure VM Ser-
vice Module, which implements a guest communication in-
terface that can implement services for the guests and, at the
same time, be isolated from the guest VM using AMD SEV-
SNP Virtual Machine Privilege Levels. We leverage this ap-
proach to extend our previous plugin to support SVSM-based
vTPMs as an alternative to extendedQEMUandOVMFmea-
surement.
While this work provides a node attestation plugin, Falcão

et al. [2022] presents a plugin for attesting workloads that run
atop Intel SGX. While attesting workloads running in a TEE
brings benefits with its reduced trusted computing base, port-
ing existing services to Intel SGX may require some effort
and is likely to reduce performance.

9 Conclusion
This paper presents an interoperable approach to attest AMD
SEV-SNP confidential virtual machines in public and private
cloud environments. The work was implemented on top of
the Cloud-Native Computing Foundation’s project for iden-
tity provisioning, SPIRE, and, consequently, inherits inter-
operation capabilities that enable it to introduce confiden-
tial computing in modern microservice-based environments
seamlessly.
To support the different approaches cloud providers adopt

to AMD SEV-SNP machines, we proposed a hybrid plugin
that combines the properties of multiple node attestation plu-
gins. For example, suppose a cloud provider does not enable
the attestation report to measure the integrity of the guest
VM’s operating system. In that case, the application owner
can now use the hybrid plugin to specify an additional se-
lector that requires a vTPM to measure the guest’s operating
system.
Finally, our approach has negligible effects on the initial

attestation of VMs and can be extended easily to other cloud
providers since (i) we consider both approaches used by aca-
demics and the major cloud providers (namely, the SVSM-
vTPM and the extended OS measurement by the hypervi-
sor and firmware); (ii) we detail how the different models
and provider approaches impact on the threat model; (iii)
we share our code with the SPIRE community.

The following steps of this research include supporting ad-
ditional confidential computing technologies, such as Intel
TDX, and refining selectors to expose slightly different threat
models, facilitating the plugin configuration regardless of the
platform it is operating on. The long-term goal is to create a
generic framework that abstracts the application of confiden-
tial computing technologies so that it becomes known and
easy to use as other security concepts and technologies.

Interoperable node integrity verification for confidential machines based on AMD SEV-SNP Pontes et al. 2023

Declarations

Acknowledgements
This manuscript represents an extended version of our previously
published paper, ’Attesting AMD SEV-SNP Virtual Machines
with SPIRE,’ which appeared in the Proceedings of the 12th
Latin-American Symposium on Dependable and Secure Comput-
ing (LADC ’23). In this extended work, we detail the current status
of AMD SEV-SNP support across major public cloud providers and
elucidate the associated security guarantees. Additionally, we intro-
duce a novel mechanism designed to leverage the capabilities of var-
ious platform technologies synergistically, thereby enhancing the
security guarantees of AMD SEV-SNP attestation processes within
cloud environments.

We thank the members of the Secure and Scalable Identity Pro-
visioning (SSIP) project who participated in discussions that led
to this work: Adriane Cardoso and Gustavo Brand from Hewlett
Packard Enterprise, and Carlos Filho, Esther Brasileiro, Raniel
Dourado, Sabrina Silva, and Vinicius Muniz from the Laboratório
de Sistemas Distribuídos (UFCG/LSD). We also thank members of
the SPIFFE community for their feedback on the plugin, especially
Evan Gilman.

Funding
This research was funded by a collaboration between Hewlett
Packard Enterprise Brazil and the EMBRAPII unit UFCG-CEEI
(Universidade Federal de Campina Grande) with the incentive of
the Informatics Law (Law 8.248 from October 23rd, 1991).

Authors’ Contributions
AB and EF are the main contributors to the conception of this work.
DP, FS and AM implemented the plugin and performed the exper-
iments. AB and EF are the main writers of this manuscript. All
authors read and approved the final manuscript.

Competing interests
The authors declare they have no competing interests.

Availability of data and materials
The current version of the plugin is available at https://github.
com/ufcg-lsd/spire-amd-sev-snp-node-attestor.

References
Amazon Web Services (2024a). AWS Nitro System. Avail-
able at: https://github.com/aws/uefi Accessed: 2024-
03-06.

Amazon Web Services (2024b). AWS UEFI source code for
AMD SEV-SNP Confidential VMs. Available at: https:
//github.com/aws/uefi Accessed: 2024-03-06.

AMD (2020). AMD SEV-SNP: Strengthen-
ing VM Isolation with Integrity Protection
and More. Technical report. Available at:
https://www.amd.com/content/dam/amd/en/
documents/epyc-business-docs/solution-briefs/

amd-secure-encrypted-virtualization-solution-brief.
pdf.

AMD (2022). SEV Secure Nested Paging Firmware ABI
Specification. Technical report. Available at: https:
//www.amd.com/content/dam/amd/en/documents/
epyc-technical-docs/specifications/56860.pdf.

AMD (2023). AMD SEV-TIO: Trusted I/O for Secure
Encrypted Virtualization. Technical report. Available
at: https://www.amd.com/system/files/documents/
sev-tio-whitepaper.pdf.

AMDESE (2024a). Linux SVSM forked repository to
support vTPM. Available at: https://github.com/
svsm-vtpm/linux-svsm Accessed: 2024-03-06.

AMDESE (2024b). OVMF forked repository to sup-
port SVSM-vTPM. Available at: https://github.com/
svsm-vtpm/ovmf.git Accessed: 2024-03-06.

AMDESE (2024c). QEMU forked repository to sup-
port SVSM-vTPM. Available at: https://github.com/
svsm-vtpm/qemu.git Accessed: 2024-03-06.

Arthur, W. and Challener, D. (2015). A Practi-
cal Guide to TPM 2.0: Using the Trusted Platform
Module in the New Age of Security. A practical
guide to TPM 2.0 / Arthur, Will. Apress. Avail-
able at: https://library.oapen.org/bitstream/handle/
20.500.12657/28157/1/1001837.pdf.

Azure (2024). Azure confidential VMs. Available
at: https://learn.microsoft.com/en-us/azure/
confidential-computing/confidential-vm-overview
Accessed: 2024-03-06.

Biden Jr., J. R. (2021). Improving the nation’s cyber-
security. National Archives and Records Adminis-
tration, College Park, MD, USA, Executive order
14028. Available at: https://www.whitehouse.
gov/briefing-room/presidential-actions/2021/05/12/
executive-order-on-improving-the-nations-cybersecurity/.
Accessed: 2023-05-13.

Boeyen, S., Santesson, S., Polk, T., Housley, R., Farrell,
S., and Cooper, D. (2008). Internet X.509 public
key infrastructure certificate and certificate revoca-
tion list (CRL) profile. IETF RFC 5280. Available
at: https://datatracker.ietf.org/doc/html/rfc5280.
Accessed: 2023-11-26.

Campbell, M. (2020). Beyond zero trust: Trust is
a vulnerability. Computer, 53(10):110–113. DOI:
10.1109/MC.2020.3011081.

Carvalho, C., Almasi, G., Berrangé, D., Narayanan, V., and
Buono, D. (2024). Linux SVSM-Based vTPM implemen-
tation Proof-of-Concept. Available at: https://github.
com/svsm-vtpm/linux-svsm Accessed: 2024-03-06.

Cert-Manager Community (2024). Cert-Manager: Cloud
native certificate management. Available at: https://
cert-manager.io/ Accessed: 2024-03-06.

Cucurull, J. and Guasch, S. (2014). Virtual TPM for a se-
cure cloud: fallacy or reality? Available at: http://hdl.
handle.net/10045/40428.

Cybersecurity and Infrastructure Security Agency (2021).
Security guidance for 5G cloud infrastructures -
part II: Securely isolate network resources. Avail-
able at: https://www.cisa.gov/sites/default/files/

https://github.com/ufcg-lsd/spire-amd-sev-snp-node-attestor
https://github.com/ufcg-lsd/spire-amd-sev-snp-node-attestor
https://github.com/aws/uefi
https://github.com/aws/uefi
https://github.com/aws/uefi
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/system/files/documents/sev-tio-whitepaper.pdf
https://www.amd.com/system/files/documents/sev-tio-whitepaper.pdf
https://github.com/svsm-vtpm/linux-svsm
https://github.com/svsm-vtpm/linux-svsm
https://github.com/svsm-vtpm/ovmf.git
https://github.com/svsm-vtpm/ovmf.git
https://github.com/svsm-vtpm/qemu.git
https://github.com/svsm-vtpm/qemu.git
https://library.oapen.org/bitstream/handle/20.500.12657/28157/1/1001837.pdf
https://library.oapen.org/bitstream/handle/20.500.12657/28157/1/1001837.pdf
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://datatracker.ietf.org/doc/html/rfc5280
https://doi.org/10.1109/MC.2020.3011081
https://github.com/svsm-vtpm/linux-svsm
https://github.com/svsm-vtpm/linux-svsm
https://cert-manager.io/
https://cert-manager.io/
http://hdl.handle.net/10045/40428
http://hdl.handle.net/10045/40428
https://www.cisa.gov/sites/default/files/publications/Security_Guidance_For_5G_Cloud_Infrastructures_Part_II_Updated_508_Compliant.pdf

Interoperable node integrity verification for confidential machines based on AMD SEV-SNP Pontes et al. 2023

publications/Security_Guidance_For_5G_Cloud_
Infrastructures_Part_II_Updated_508_Compliant.
pdf. Accessed: 2023-05-13.

Cybersecurity and Infrastructure Security Agency (2023).
Zero trust maturity model. Available at: https://www.
cisa.gov/zero-trust-maturity-model. Accessed: 2023-
05-13.

Falcão, E., Silva, M., Luz, A., and Brito, A. (2022).
Supporting confidential workloads in SPIRE. In 2022
IEEE International Conference on Cloud Computing Tech-
nology and Science (CloudCom), pages 186–193. DOI:
10.1109/CloudCom55334.2022.00035.

Feldman, D., Fox, E., Gilman, E., Haken, I., Kautz,
F., Khan, U., Lambrecht, M., Lum, B., Fayó,
A. M., Nesterov, E., Vega, A., and Wardrop, M.
(2020). Solving the Bottom Turtle: a SPIFFE way
to establish trust in your infrastructure via univer-
sal identity. Available at: https://spiffe.io/pdf/
Solving-the-bottom-turtle-SPIFFE-SPIRE-Book.
pdf.

Galanou, A., Bindlish, K., Preibsch, L., Pignolet, Y.-A., Fet-
zer, C., and Kapitza, R. (2023). Trustworthy confidential
virtual machines for the masses. In Proceedings of the
24th International Middleware Conference, Middleware
’23, page 316–328, New York, NY, USA. Association for
Computing Machinery. DOI: 10.1145/3590140.3629124.

HashiCorp (2024). HashiCorp Vault. Available at: https:
//www.vaultproject.io/ Accessed: 2024-03-06.

ITU-T Study Group 17 (2022). Determined new recommen-
dation ITU-T X.1644 (X.SGDC): Security guidelines for
distributed cloud. Available at: https://www.itu.int/
md/T22-SG17-R-0021/en. Accessed: 2023-09-06.

Jones, M. B., Bradley, J., and Sakimura, N. (2008).
JSON Web Token (JWT). IETF RFC 7519. Available
at: https://datatracker.ietf.org/doc/html/rfc7519.
Accessed: 2023-11-26.

Kubernetes Community (2024). Kubernetes. Available at:
https://kubernetes.io/ Accessed: 2024-03-06.

Lauer, H., Sakzad, A., Rudolph, C., and Nepal, S. (2019).
Bootstrapping trust in a “trusted” virtualized platform. In
Proceedings of the 1st ACM Workshop on Workshop on
Cyber-Security Arms Race, CYSARM’19, page 11–22,
New York, NY, USA. Association for Computing Machin-
ery. DOI: 10.1145/3338511.3357347.

Li, M., Wilke, L., Wichelmann, J., Eisenbarth, T., Teodor-
escu, R., and Zhang, Y. (2022). A systematic look at ci-
phertext side channels on AMD SEV-SNP. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 337–351.
DOI: 10.1109/SP46214.2022.9833768.

Li, M., Zhang, Y., Lin, Z., and Solihin, Y. (2019).
Exploiting unprotected I/O operations in AMD’s
secure encrypted virtualization. In 28th USENIX
Security Symposium (USENIX Security 19), pages
1257–1272, Santa Clara, CA. USENIX Association.
Available at: https://www.usenix.org/conference/
usenixsecurity19/presentation/li-mengyuan.

Murik, Dov (2023a). OVMFPatch for AMDSEV-SNPVMs.
Available at: https://listman.redhat.com/archives/
edk2-devel-archive/2023-March/059923.html Ac-

cessed: 2024-03-06.
Murik, Dov (2023b). QEMU Patches for AMD SEV-
SNP VMs. Available at: https://lore.kernel.org/
qemu-devel/20230302092347.1988853-1-dovmurik@
linux.ibm.com/ Accessed: 2024-03-06.

Ménétrey, J., Göttel, C., Pasin, M., Felber, P., and Schi-
avoni, V. (2022). An exploratory study of attestation
mechanisms for trusted execution environments. DOI:
10.48550/arXiv.2204.06790.

Narayanan, V., Carvalho, C., Ruocco, A., Almasi, G., Bot-
tomley, J., Ye, M., Feldman-Fitzthum, T., Buono, D.,
Franke, H., and Burtsev, A. (2023). Remote attestation
of confidential VMs using ephemeral VTPMs. In Pro-
ceedings of the 39th Annual Computer Security Applica-
tions Conference, ACSAC ’23, page 732–743, New York,
NY, USA. Association for Computing Machinery. DOI:
10.1145/3627106.3627112.

Ozga, W., Le Quoc, D., and Fetzer, C. (2021). TRIGLAV:
Remote attestation of the virtual machine’s runtime in-
tegrity in public clouds. In 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD), pages 1–12.
DOI: 10.1109/CLOUD53861.2021.00013.

Parno, B. (2008). Bootstrapping trust in a “trusted” plat-
form. In Proceedings of the 3rd Conference on Hot
Topics in Security, HOTSEC’08, USA. USENIX Associ-
ation. Available at: https://www.usenix.org/legacy/
event/hotsec08/tech/full_papers/parno/parno.pdf.

Pontes, D., Silva, F., Falcão, E., and Brito, A. (2023). Attest-
ing AMD SEV-SNP virtual machines with SPIRE. In Pro-
ceedings of the 12th Latin-American Symposium on De-
pendable and Secure Computing, LADC ’23, page 1–10,
New York, NY, USA. Association for Computing Machin-
ery. DOI: 10.1145/3615366.3615419.

Rose, S., Borchert, O., Mitchell, S., and Connelly, S. (2020).
Zero trust architecture. (NIST Special Publication). DOI:
10.6028/NIST.SP.800-207.

SPIFFE (2023). SPIRE concepts. Available at: https://
spiffe.io/docs/latest/spire-about/spire-concepts/.

SPIFFE Community (2023). SPIFFE standards. SPIFFE
GitHub. Available at: https://github.com/spiffe/spiffe.
Accessed: 2023-11-26.

VMware Tanzu (2024). VMware Secrets Manager for
Cloud-Native Apps. Available at: https://github.
com/vmware-tanzu/secrets-manager Accessed: 2024-
03-06.

Wang, W., Song, L., Mei, B., Liu, S., Zhao, S., Yan, S.,
Wang, X., Meng, D., and Hou, R. (2024). NestedSGX:
Bootstrapping trust to enclaves within confidential VMs.
Available at: https://arxiv.org/pdf/2402.11438.

Ward, R. and Beyer, B. (2014). BeyondCorp:
A new approach to enterprise security. Avail-
able at: https://storage.googleapis.com/
pub-tools-public-publication-data/pdf/43231.pdf.

https://www.cisa.gov/sites/default/files/publications/Security_Guidance_For_5G_Cloud_Infrastructures_Part_II_Updated_508_Compliant.pdf
https://www.cisa.gov/sites/default/files/publications/Security_Guidance_For_5G_Cloud_Infrastructures_Part_II_Updated_508_Compliant.pdf
https://www.cisa.gov/sites/default/files/publications/Security_Guidance_For_5G_Cloud_Infrastructures_Part_II_Updated_508_Compliant.pdf
https://www.cisa.gov/sites/default/files/publications/Security_Guidance_For_5G_Cloud_Infrastructures_Part_II_Updated_508_Compliant.pdf
https://www.cisa.gov/zero-trust-maturity-model
https://www.cisa.gov/zero-trust-maturity-model
https://doi.org/10.1109/CloudCom55334.2022.00035
https://spiffe.io/pdf/Solving-the-bottom-turtle-SPIFFE-SPIRE-Book.pdf
https://spiffe.io/pdf/Solving-the-bottom-turtle-SPIFFE-SPIRE-Book.pdf
https://spiffe.io/pdf/Solving-the-bottom-turtle-SPIFFE-SPIRE-Book.pdf
https://doi.org/10.1145/3590140.3629124
https://www.vaultproject.io/
https://www.vaultproject.io/
https://www.itu.int/md/T22-SG17-R-0021/en
https://www.itu.int/md/T22-SG17-R-0021/en
https://datatracker.ietf.org/doc/html/rfc7519
https://kubernetes.io/
https://doi.org/10.1145/3338511.3357347
https://doi.org/10.1109/SP46214.2022.9833768
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://listman.redhat.com/archives/edk2-devel-archive/2023-March/059923.html
https://listman.redhat.com/archives/edk2-devel-archive/2023-March/059923.html
https://lore.kernel.org/qemu-devel/20230302092347.1988853-1-dovmurik@linux.ibm.com/
https://lore.kernel.org/qemu-devel/20230302092347.1988853-1-dovmurik@linux.ibm.com/
https://lore.kernel.org/qemu-devel/20230302092347.1988853-1-dovmurik@linux.ibm.com/
https://doi.org/10.48550/arXiv.2204.06790
https://doi.org/10.1145/3627106.3627112
https://doi.org/10.1109/CLOUD53861.2021.00013
https://www.usenix.org/legacy/event/hotsec08/tech/full_papers/parno/parno.pdf
https://www.usenix.org/legacy/event/hotsec08/tech/full_papers/parno/parno.pdf
https://doi.org/10.1145/3615366.3615419
https://doi.org/10.6028/NIST.SP.800-207
https://spiffe.io/docs/latest/spire-about/spire-concepts/
https://spiffe.io/docs/latest/spire-about/spire-concepts/
https://github.com/spiffe/spiffe
https://github.com/vmware-tanzu/secrets-manager
https://github.com/vmware-tanzu/secrets-manager
https://arxiv.org/pdf/2402.11438
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43231.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43231.pdf

	Introduction
	Background
	Zero Trust
	SPIFFE and SPIRE
	The SPIFFE Standard
	SPIFFE's reference implementation

	AMD SEV-SNP
	Trusted Platform Module

	Threat Model
	AMD SEV-SNP & Cloud Providers
	Security Properties and Mechanisms
	Current Support

	Plugin design and implementation
	AMD SEV-SNP Node Attestor
	Hybrid Node Attestor

	Node Integrity Verification
	Evaluation
	Analysis of the security aspects
	Performance analysis

	Related work
	Identity provisioning
	Protecting the integrity of VMs

	Conclusion

