
Journal of Internet Services and Applications, 2024, 15:1, doi: 10.5753/jisa.2024.3907
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Deep Learning Applied to Imbalanced Malware Datasets
Classification
Marcelo Palma Salas [Universidade de Campinas (UNICAMP) |marcelopalma@ic.unicamp.br]
Paulo Lício de Geus [Universidade de Campinas (UNICAMP) | pgeus@unicamp.br]

 Institute of Computing, Universidade de Campinas (UNICAMP), Av. Albert Einstein, 1251 - Cidade Universitária,
Campinas - SP, 13083-852, Brazil.

Received: 07 December 2023 • Accepted: 29 May 2024 • Published: 16 September 2024

Abstract In the current day, the evolution and exponential proliferation of malware involve modifications and
camouflage of their structure through techniques like obfuscation, polymorphism, metamorphism, and encryption.
With the advancements in deep learning, methods such as convolutional neural networks (CNN) have emerged
as potent tools for deciphering intricate patterns within this malicious software. The present research uses the
capacity of CNN to learn the global structure of the code converted to an RGB or grayscale image and decipher the
patterns present in the malware datasets generated from these images. The study explores fine-tuning techniques,
including bicubic interpolation, ReduceLROnPlateau, and class weight estimation, in order to generalize the model
and reduce the risk of overfitting for malware that uses evasion techniques against classification. Taking advantage
of transfer learning and theMobileNet architecture, we created aMobileNet fine-tuning (FT)model. The application
of this new model in four datasets, including Microsoft Big 2015, Malimg, MaleVis, and a new Fusion dataset,
achieved 98.71%, 99.08%, 96.04%, and 98.04% accuracy, respectively, which underscores the robustness of the
proposed model. The Fusion dataset is a combination of the first three datasets, consisting of a set of 32,601 known
malware image files representing a mix of 59 different families. Despite the success, the study reveals performance
deterioration with an increase in the number of malware families, highlighting the need for further exploration into
the limits of CNNs in malware classification.

Keywords: malware, classification, CNN, MobileNet, interpolation, Big 2015, Malimg, MaleVis, Fusion, dataset

1 Introduction
In the current day, the evolution and exponential growth of
malware have posed significant challenges for cybersecurity
researchers [AV-TEST GmbH, 2023]. Attackers modify and
camouflage the structure of this malicious software through
the use of obfuscation, polymorphism, metamorphism, and
encryption techniques. Hence, conventional techniques such
as signature-based and heuristic-based analysis become less
effective, prompting a need for more sophisticated analysis
methods capable of deciphering the patterns and characteris-
tics of malware.
With the progress of deep learning, techniques such as

Convolutional Neural Networks [LeCun et al., 2015] (CNN1)
have proven to be powerful tools for deciphering complex
patterns in large image datasets. As a CNN processes an im-
age, it generates a set of feature maps that indicate where the
features searched by each filter have been detected.
In Nataraj et al. [2011], the authors introduced a method to

transform binary code from malware families into image for-
mat under an approach based on texture features of images.
Leveraging advancements in deep learning, this approach uti-
lizes Convolutional Neural Networks (CNNs) to classifymal-
ware by converting binary code into RGB or grayscale im-

1A CNN is a type of neural network characterized by its ability to per-
form convolutional operations, i.e., mathematical operations applied to im-
ages, with the main objective of learning filters that detect specific patterns
in images.

ages. This research relies on the CNNs’ ability to learn the
overall structure of the code and extract patterns from the
datasets generated from these images.
The approach to convert binary code into an image was

applied in Palma Salas et al. [2023], which achieved 98.41%
accuracy and 0.08078 log loss in identifying and categorizing
malware samples. Building upon Palma Salas et al. [2023],
the present research further explores the utilization of hyper-
parameters and other techniques to enhance the efficiency in
model training execution time and the effectiveness of mal-
ware classification performance metrics using CNNs across
three benchmarking datasets and a new dataset of malware
families.
The application of interpolation and resampling tech-

niques allowed us to standardize the size and resolution of
malware images to match the input requirements of the Mo-
bileNet architecture. Additionally, these techniques ensured
that all images in the dataset had uniform dimensions, reduc-
ing training time for the CNN and improving classification
results by ensuring that each image was represented more
consistently.
Furthermore, we implemented ReduceLROnPlateau to au-

tomatically adjust the learning rate during model training
based on validation performance. This technique enabled
more careful training and helped themodel converge towards
a global or local optimum.
Malware analysis datasets are often imbalanced, with

many more samples of one class compared to others. This

https://orcid.org/0000-0001-6821-0002
mailto:marcelopalma@ic.unicamp.br
https://orcid.org/0000-0002-6540-8686
mailto:pgeus@unicamp.br

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

research analyzed class imbalance across three well-known
datasets: the Microsoft Big 2015 datasets [Ronen et al.,
2018], the Malimg dataset [Nataraj et al., 2011], and the
MaleVis dataset [Bozkir et al., 2019]. Additionally, we in-
troduced the Fusion dataset, which combines the first three
datasets and consists of 59 malware families with 32,601
samples. The Fusion Dataset not only provides a diverse and
extensive representation of malware variants but also serves
as a benchmark for evaluating the robustness of CNN classi-
fication architectures.
One approach to handling class imbalance is the use of

the class weight technique. We employed this technique to
correct the imbalance bias in malware classification across
the four datasets.
The application of fine-tuning through techniques such as

ReduceLROnPlateau, estimating class weights, and k-fold
cross-validation on the MobileNet architecture resulted in a
model calledMobileNet Fine Tuning (MobileNet FT), which
achieved 98.71%, 99.08%, 96.04%, and 98.04% accuracy
on the Microsoft Big 2015, Malimg, MaleVis, and Fusion
datasets, respectively.
Despite the advances provided by CNNs in deciphering

patterns within the classification of malware families and the
use of fine-tuning techniques, we observed a decline in per-
formance metrics (e.g., accuracy and logloss) due to the in-
creased number of malware classes or families. This deteri-
oration can potentially be mitigated by applying fine-tuning
techniques to MobileNet or another architecture, but it does
not guarantee that themodel will effectively support a greater
number of malware families.
The remainder of the article is organized as follows: Sec-

tion 2 provides an overview of the state of the art in mal-
ware classification using convolutional neural networks; Sec-
tion 3 covers CNNs, transfer learning, MobileNet architec-
ture, fine-tuning in CNNs, and image resizing techniques.
The description of the improvements in resizing and bicu-
bic interpolation of datasets, along with the new MobileNet
model fine-tuning, is presented in Section 4. Section 5
presents the results and analysis of the experiments con-
ducted in this research. The impact of the increase in mal-
ware family classification units on the performance metrics
is discussed in Section 6. Section 7 outlines the limitations
of the present research. Finally, the conclusions of the re-
search, including its main contributions and future work, are
presented in Section 8.

2 Related work
The dynamic nature of the cybersecurity landscape requires
continuous re-evaluation of CNN-based classification mod-
els to adapt to the emergence of new and larger malware fami-
lies. According to Sun et al. [2017], the success of deep learn-
ing in vision can be attributed to: (a) models with high capac-
ity; (b) increased computational power; and (c) the availabil-
ity of large-scale labeled data. They also found that perfor-
mance on vision tasks increases logarithmically based on the
volume of training data, and one can improve performance
on many vision tasks by just training a better base model.
Additionally, the authors in Sun et al. [2017] encourage the

community to continue studying the behavior of models in
the face of large amounts of information.
The current state of the art in research related to mal-

ware classification primarily revolves around the use of
convolutional neural network (CNN) algorithms and tech-
niques. Typically, most studies in this domain utilize three
widely recognized datasets—Microsoft Big 2015, Malimg,
and MaleVis—to assess the effectiveness of their proposed.
In Hemalatha et al. [2021], the authors proposed the uti-

lization of a reweighted class-balanced loss function in the
final classification layer of their model, which is based on
DenseNet architecture. This approach aimed to achieve per-
formance improvements in classifyingmalware. Themethod
yields an accuracy of 98.46% for the Microsoft BIG 2015
dataset, 98.23% for theMalimg dataset, 98.21% for theMale-
Vis dataset, and 89.48% for the unseen Malicia dataset. Sim-
ilarly, Wang et al. [2021] employed a set of layers as the
Depthwise Efficient Attention Module (DEAM) alongside
a DenseNet architecture, utilizing grayscale images trans-
formed from malware. Their model achieved an accuracy
of 99.3% for malware detection on their dataset and 98.5%
and 97.3% on the Malimg dataset and BIG 2015 dataset, re-
spectively.
Gibert et al. [2019] propose a deep learning approach for

malware classification into families based on a set of patterns
extracted from their visualization as images using the bench-
mark Microsoft Malware Classification Challenge dataset
(BIG 2015) and the Malimg dataset. The results obtained in
both approaches, 98.28% and 97.50%, respectively, demon-
strated the effectiveness of CNNs to classified malign soft-
ware. This offers promising prospects for the improvement
of detection techniques and the classification of computer
threats.
The authors in Roseline et al. [2020] proposed a system

based on a layered ensemble approach that mimics the key
characteristics of deep learning techniques, does not require
hyperparameter tuning or backpropagation, and works with
reduced model complexity. The model obtained 98.65%,
97.2%, and 97.43% for the Malimg, BIG 2015, and MaleVis
malware datasets, respectively.
The study in Aslan and Yilmaz [2021] introduces a

novel hybrid architecture that integrates twowidely-used pre-
trained network models, namely AlexNet and ResNet-152.
The proposed method combines these renowned pre-trained
network models to form a hybrid model. Initially, features
are extracted using these pre-trained networks, followed by
the training phase of a deep neural network architecture using
a supervised learning approach. The model achieved accura-
cies of 97.78%, 94.88%, and 96.6% for the Malimg, BIG
2015, and MaleVis datasets, respectively.
In Shaik et al. [2023], the authors used three datasets clas-

sified by sample imbalance by malware families. Applying
six transfer learning architectures, they achieved 97% for the
imbalanced Malimg dataset, 95% for the intermediate imbal-
ance Blended dataset (combination of datasets Malimg and
MaleVis with 50 malware families), and 95% also for the
best balanced MaleVis dataset. From the comparative analy-
sis, the authors observed that the greater the class imbalance
in the dataset, the greater the variance in the performance of
different models and the number of epochs required for con-

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

Figure 1. An example of convolutional neural network using MobileNet layers.

vergence.
In Kalash et al. [2018], the authors propose a deep learning

framework for malware classification through a CNN-based
architecture to classify malware samples. They converted
malware binaries to grayscale images. Experiments on two
challenging malware classification datasets, Malimg and Mi-
crosoft (Big 2015) malware, achieve 98.52% and 99.97% ac-
curacy on the Malimg and Microsoft datasets, respectively.

3 Background

3.1 Convolutional Neural Networks

Convolutional Neural Networks [LeCun et al., 1998] (CNN)
are a type of deep learning architecture originally designed to
process and analyze image/video data. This architecture has
proven to be very effective in object recognition, feature de-
tection, segmentation, and image classification tasks, among
others. The key innovation of CNNs lies in their ability to
automatically learn hierarchical representations of features
from raw pixel values, enabling them to capture spatial hier-
archies and patterns in visual data. The CNN consist of many
layers, as shown in Fig. 1. Each serving a specific purpose.
Here are the main types of layers in a typical CNN [LeCun
et al., 2015]:

• Activation (ReLU) Layer. The activation layer in-
troduces non-linearity using the Rectified Linear Unit
(ReLU) function, replacing negative values with zero
(f(x) = max(0, x)) to help the model learn complex
relationships in the data.

• Pooling (Subsampling) Layer. This layer reduces the
spatial dimensions of feature maps, decreasing param-
eters and computational load. Common techniques in-
clude max pooling and average pooling.

• Fully Connected (Dense) Layer. This layer connects ev-
ery neuron in one layer to every neuron in the next layer,
enabling the network to learn global patterns and make
predictions.

• Flatten Layer. This layer reshapes the output from the
preceding layer into a one-dimensional vector, prepar-
ing it for input to the fully connected layers.

• Normalization Layers. This layer, like Batch Normal-
ization, enhance training stability and speed by normal-
izing layer inputs. Batch Normalization reduces inter-
nal covariate shift by applying the transformation yi =

xi−µ√
σ2+ϵ

· γ + β, where µ and σ2 are the mean and vari-
ance, ϵ is a small constant, and γ and β are learnable
parameters.

• Dropout Layer. This layer is a regularization technique
that randomly sets a fraction of neurons to zero during
training (x is input, p is dropout probability). Remain-
ing values are scaled by 1/(1 − p) to maintain the ex-
pected value, preventing overfitting.

• Softmax Layer. This layer, used in the output layer
for multi-class classification, converts raw scores (z =
[z1, z2, ..., zk]) into probabilities (pi = ezi∑k

j=1
ezj

). The

class with the highest probability is predicted as the fi-
nal output.

3.2 Transfer Learning
This technique [LeCun et al., 2015] consists of using the
knowledge acquired in one task to improve performance in
another related task. In the context of CNN, transfer learn-
ing involves taking a network pretrained on a large dataset
and applying it to a different task using previously learned
weights and features.
Pre-trained CNNs, such as VGG, ResNet, Inception, and

MobileNet, among others, have been trained on massive
datasets, such as ImageNet [Russakovsky et al., 2015],
which contains millions of images of different classes. These
networks have learned to extract relevant visual features
from images, allowing them to capture complex and subtle
patterns.

Figure 2. The use of transfer learning with CNN for malware classification

Using transfer learning with CNN for malware classifica-
tion, as illustrated in Fig.2, proves advantageous due to the

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

insufficient data available in certain datasets. For example,
in theMicrosoft Big 2015 dataset, the Simda family accounts
for only 0.4% (42 malware samples), while the Kelihos_ver3
family represents 27.1% (2942 samples of the total). The im-
balance issue of the Big 2015 Dataset is evident in Fig.3.
Other benefits of using transfer learning include the ability

to generalize features, which allows the model to recognize
patterns across different datasets and tasks more effectively.
Additionally, transfer learning can significantly reduce train-
ing time by leveraging pre-trained models and learned fea-
tures, saving computational resources. Moreover, it helps
prevent overfitting by transferring knowledge from a larger
dataset to a smaller one, thus improving the model’s general-
ization capabilities.

Figure 3. Microsoft Big 2015 Dataset with sample imbalance in nine mal-
ware families.

3.3 MobileNet Architecture
Introduced by Howard et al. [2017], this architecture was ori-
ented to address the need for efficient deep learning models
that could run on devices with limited computational power,
such as mobile phones or embedded systems. This architec-
ture is characterized by its use of depthwise separable convo-
lutions, which significantly reduces the number of parame-
ters and computations compared to traditional convolutional
layers.
This architecture is based on factorizing traditional convo-

lutions into two types of layers: a first depthwise convolu-
tional layer and a 1x1 pointwise convolutional layer. This
division allows us to reduce the computational cost and the
size of the model between eight and nine times greater than
the computational cost of both depthwise and poinwise lay-
ers [Srudeep, 2020].
The depth-wise separable convolution is composed of two

layers: the depth-wise convolution and the point-wise con-
volution. Basically, the first layer is used to filter the input
channels, and the second layer is used to combine them to
create a new feature.
In simpler terms, depth-wise convolution helpsMobileNet

efficiently capture features within each color channel (RGB)
separately, helping to detect specific characteristics on each
channel, and point-wise convolution helps combine these fea-
tures in a computationally efficient way. This design, as seen

in Table 1, allows MobileNet to achieve a good trade-off be-
tween model size, computational efficiency, and accuracy,
making it well-suited for real-time applications on resource-
constrained devices, such as mobile phones and IoT devices.

Table 1. MobileNet body architecture [Howard et al., 2017].

3.4 Fine-Tuning in CNN
Fine-tuning [Patterson and Gibson, 2017] is a commonly
used technique in convolutional neural networks (CNNs) to
adapt a pretrained model to a new dataset or specific task.
Here are some techniques that can be employed during the
fine-tuning process in CNNs:

1. Unfreezing Specific Layers: When applying fine-
tuning, some layers of the pretrained network are typ-
ically unfrozen, especially layers closer to the output,
while deeper layers that capture more general features
are kept frozen. This allows the unfrozen layers to ad-
just to the specific features of the new dataset, while the
frozen layers retain the general features learned during
pretraining.

2. Adjusting Learning Rate: During fine-tuning, it’s com-
mon to adjust the learning rate for the unfrozen layers.
A lower learning rate is typically used for the pretrained
layers and a higher learning rate for the new layers be-
ing trained. This helps prevent drastic changes in the
weights of the pretrained layers and allows the new lay-
ers to adapt more quickly to the new dataset.

3. Data Augmentation: Data augmentation can be applied
during fine-tuning to generate additional variations in
the training data and prevent overfitting. This can in-
clude techniques such as rotation, horizontal flipping,
random cropping, and brightness adjustment. Data aug-
mentation helps increase the diversity of the training
data and improves the model’s ability to generalize to
new images.

4. Regularization: Regularization is used to prevent over-
fitting during fine-tuning. This can include techniques

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

such as dropout (randomly dropping neurons during
training), L1 or L2 regularization (penalizing large
weights), and batch normalization (normalizing activa-
tion values for each layer). Regularization helps im-
prove the model’s generalization and reduces the risk
of overfitting.

5. Staged Training: In some cases, it may be useful to train
the model in stages during fine-tuning. For example,
initially only a few new layers may be unfrozen and
trained, then more layers added as training progresses.
This can help prevent abrupt changes in the weights of
the pretrained layers and facilitate model convergence.

Fine-tuning in CNNs involves adapting a pretrainedmodel
to a new dataset or specific task by selectively modifying
the model’s layers, adjusting the learning rate, applying reg-
ularization techniques, and using data augmentation, among
other techniques. These strategies help improve the model’s
performance on the new task without losing the knowledge
learned during pretraining.

3.5 Image Resizing

Image resizing is a fundamental operation in image process-
ing and computer vision, playing a crucial role in many ap-
plications such as deep learning [Talebi and Milanfar, 2021].
The process involves altering the dimensions of an image, ei-
ther to fit a specific display size, reduce computational com-
plexity, or preprocess data for machine learning models [Fad-
navis, 2014]. Two key concepts central to image resizing are
interpolation and resampling.

3.5.1 Interpolation

This method [Fadnavis, 2014] is used to estimate pixel val-
ues at non-integer coordinates when resizing an image. It
involves determining the color or intensity of a pixel by con-
sidering its neighboring pixels.
In Python, the Pillow library (PIL fork) is widely used

for image processing tasks, including resizing. The resize()
function in Pillow supports various resampling filter algo-
rithms, such as nearest, bilinear, bicubic, lanczos, and box.
The choice of resampling method can significantly impact
the quality of the resized image, as seen in Fig. 4.

Figure 4. The resampling method can significantly impact the quality of
the resized image [HobbyMaker, 2023]

.

Below, we examine some characteristics of resize fil-
ters [Fadnavis, 2014]:

• Nearest-Neighbor Interpolation. The simplest method
is to assign the value of the nearest pixel to the target
location. In the Pillow Library, we can use the Resam-
pling.NEAREST function.

• Bilinear Interpolation. It considers the weighted aver-
age of the four nearest pixels. This method produces
smoother results compared to nearest-neighbor interpo-
lation. In the Pillow Library, we can use the Resam-
pling.BILINEAR function2.

• Bicubic Interpolation. A more sophisticated method
that considers a 4x4 neighborhood and uses a cubic poly-
nomial to interpolate pixel values. Bicubic interpolation
is known for producing high-quality results but requires
more computation. In the Pillow Library, we can use the
Resampling.BICUBIC function.

• Lanczos Interpolation. Based on the sync function,
this resize filter provides a high-quality interpolation
method that mitigates the blurring effect seen in other
methods. It is particularly useful for preserving fine de-
tails during resizing. In the Pillow Library, we can use
the Resampling.LANCZOS, and this filter can only be
used with the resize() and thumbnail() methods.

3.5.2 Resampling

As defined by Fadnavis [2014], is the process of adjusting the
sampling rate of an image, which entails changing the num-
ber of pixels along its dimensions. This procedure is essen-
tial in image resizing, as it directly influences the spatial res-
olution and overall size of the image. Resampling becomes
necessary when aligning the image with a specific display
size or when preparing data for CNN models with fixed in-
put dimensions, such as the MobileNet architecture, which
requires a 224x224 pixel image.
In this research, we use downsampling methods that in-

volve reducing the number of pixels in the image. Common
downsampling techniques include averaging or selecting spe-
cific pixels from the original image. Other commonly used
methods are upsampling and anti-aliasing.

3.5.3 RGB and Grayscale Images

The choice of interpolation and resampling method can de-
pend on the type of image being resized. For RGB (color) im-
ages, maintaining color fidelity and avoiding color artifacts
are essential. Bilinear and bicubic interpolation methods are
commonly used. Lanczos interpolation can be particularly
beneficial when preserving fine color details is crucial, but it
has a higher computational cost.
For grayscale images, the considerations may differ

slightly. Bilinear interpolation is a reasonable choice for gen-
eral resizing tasks. However, if preserving subtle intensity
variations is important, bicubic or Lanczos interpolation may
be preferred.

2TensorFlow uses the default bilinear interpolation method in the
tf.image.resize function to resize images before being used for training CNN
models.

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

In the context of malware classification using a convo-
lutional neural network, resizing allows the adaptation of
image-based deep learning techniques to effectively capture
features from binary to image representations of malware
samples. It facilitates the development of models that can
automatically learn and differentiate between many malware
families, contributing to the detection of cyber threats.

4 The Proposed Method
This section describes the methods and techniques used to
improve the MobileNet model in order to reduce its execu-
tion time and improve its quality metrics in the classification
of malware families.

4.1 Experiment settings

The runtime environment was a ASUS nv580vd with an In-
tel® Core™ i7 7700HQ 2,8GHz processor, 16 GB SDRAM,
NVIDIAGeForceGTX1050, 4GBGDDR5VRAM,Ubuntu
20.04 LTS (64bit). The PIL 9.4.0 librarywas used for the con-
version of binary files to the PNG format using resampling
filter algorithms like bicubic interpolation. The libraries to
implementation the convolutional network models were Ten-
sorFlow, Keras 2.12.0 over Python 3.8.10, Pandas 1.5.3, and
Numpy 1.23.5.

4.2 Dataset Description

In recent years, the field of malware classification has wit-
nessed significant advancements driven by the integration of
deep learning techniques. However, one persistent challenge
in this domain is the availability of large-scale malware fam-
ilies dataset.
To evaluate our improved MobileNet model, we utilized

four well-known datasets: theMicrosoft Malware Classifica-
tion Challenge dataset, also known as Big 2015 [Ronen et al.,
2018], the Malimg (MalIMG) dataset [Nataraj et al., 2011],
and the MaleVis dataset [Bozkir et al., 2019]. Additionally,
we introduced a new dataset named Fusion, which combines
the first three datasets. The Fusion dataset comprises sam-
ples from 59 malware families, and we applied resampling
with Bicubic interpolation to each image to create more gen-
eralized models. Below, we provide detailed characteristics
of each dataset.

4.2.1 The Microsoft Big 2015 Dataset

The well-known Microsoft Malware Classification Chal-
lenge dataset [Ronen et al., 2018], or Big 2015, is an imbal-
anced dataset, as shown in Fig.3, consisting of almost 200GB.
It comprises a set of 10,868 known malware byte files repre-
senting a mix of 9 different families, as depicted in Table2.
Each malicious file has a 20-character hash value for unique
identification and a class label (1 to 9) representing the fam-
ily names.
The malicious fileset is made up of raw data with a hex-

adecimal representation of the file’s binary content, without

Table 2. Type and number of malware samples in theMicrosoft Big
2015 dataset.

Family Name # Train Samp. Type
Ramnit 1541 Worm
Lollipop 2478 Adware
Kelihos_ver3 2942 Backdoor
Vundo 475 Trojan
Simda 42 Backdoor
Tracur 751 TrojanDownl.
Kelihos_ver1 398 Backdoor
Obfuscator.ACY 1228 Obfuscated mal.
Gatak 1013 Backdoor

the header, i.e., to ensure sterility. The dataset can be down-
loaded from the competition website3.

4.2.2 The Malimg Dataset

Also known as MalIMG [Nataraj et al., 2011], it com-
prises a set of 9,339 known malware image files repre-
senting a mix of 25 different families, as illustrated in
Fig. 5. The dataset is almost 1.11 GB in size. After down-
loading the malimg_dataset.zip file, you will find the mal-
img_paper_dataset_imgs directory, which consists of 25 sub
directories representing malware families converted into im-
ages in PNG format. Each malicious image file has a 32-
character hash value for unique identification. The images
range from 64 to 1024 pixels wide and 208 to 5334 pixels
high, with an average size of 0.12 MB per PNG file. The
dataset can be downloaded from the Google Drive website4.

Figure 5. The Malimg dataset has 25 malware families in descending order
by number of samples per family.

The malware classes include Allaple.L (worm), Al-
laple.A (worm), Yuner.A (worm), Lolyda.AA 1 (PWS),
Lolyda.AA 2 (PWS), Lolyda.AA 3 (PWS), C2Lop.P (tro-
jan), C2Lop.gen!g (trojan), Instantaccess (dialer), Swiz-
zot.gen!I (TDownloader), Swizzor.gen!E (TDownloader),

3https://www.kaggle.com/competitions/malware-classification/
4https://drive.google.com/file/d/1M83VzyIQj_kuE9XzhClGK5TZWh1T_pr-

/view

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

VB.AT (worm), Fakerean (rogue), Alueron.gen!J (trojan),
Malex.gen!J (trojan), Lolyda.AT (PWS), Adialer.C (Di-
aler), Wintrim.BX (TDownloader), Dialplatform.B (Dialer),
Dontovo.A (TDownloader), Obfuscator.AD (TDownloader),
Agent.FYI (backdoor), Autorun.K (worm:autoIT), Rbot!gen
(backdoor), Skintrim.N (trojan).

4.2.3 The MaleVis Dataset

The MaleVis dataset [Bozkir et al., 2019] consist of a set
of 12,394 known malware images files representing a mix of
25 different families, as shown in Fig. 6. Once the Male-
Vis_train_val_224x224.zip file has been downloaded, we
will find the train and val directories, each consisting of
25 sub directories plus one additional directory. Here, one
class [Bozkir et al., 2019] represents the legitimate samples,
while the remaining 25 classes correspond to different mal-
ware families. Each malicious image file has a 40-character
hash value that is unique for identification purposes. The im-
ages have an average size of 0.12 MB per PNG file. The
dataset can be downloaded from the project website5.

Figure 6. TheMaleVis dataset has 25 malware families in descending order
by number of samples per family.

Malware classes contain Adposhel (Adware), Agent-fyi
(Trojan), Allaple.A (worm), Amonetize (adware), Androm
(backdoor), AutoRun-PU (worm),BrowseFox (adware), Din-
wod!rfn (trojan), Elex (trojan), Expiro-H (virus), Fasong
(worm), HackKMS.A (trojan), Hlux!IK (worm), Injector
(trojan), InstallCore.C (adware), MultiPlug (adware), Neo-
reklami (adware), Neshta (virus), Regrun.A (trojan), Sal-
ity (virus), Snarasite.D!tr (trojan), Stantinko (backdoor),
Hilium.A (virus) VBKrypt (trojan), Vilsel (trojan).

4.2.4 The Fusion Dataset

This dataset combines the three datasets (Microsoft Big 2015,
Malimg, and MaleVis), resulting in a new Fusion dataset

5https://web.cs.hacettepe.edu.tr/ selman/MaleVis/

comprising a set of 32,601 known malware image files repre-
senting amix of 59 different families, as illustrated in Table 3.
The three datasets were subjected to a procedure involving
the resizing and interpolation of each image to a standard
size of 224x224 pixels in PNG format, utilizing bicubic in-
terpolation through the PIL library. This process is detailed
in Section 4.4.
Table 3. Type and number of malware samples in the Fusion
dataset.
Nro Family Name # Samples Type
1 Adialer.C 122 Dialer
2 Adposhel 494 Adware
3 Agent-fyi 470 Trojan
4 Agent.FYI 116 Backdoor
5 Allaple 478 Worm
6 Allaple.A 2949 Worm
7 Allaple.L 1591 Worm
8 Alueron.gen!J 198 Trojan
9 Amonetize 497 Adware
10 Androm 500 Backdoor
11 AutoRun-PU 496 Worm
12 AutoIT Auto.K 106 Worm
13 BrowseFox 493 Adware
14 C2Lop.gen!g 200 Trojan
15 C2Lop.P 146 Trojan
16 Dialplatform.B 177 Trojan
17 Dinwod!rfn 499 Trojan
18 Dontovo.A 162 TDownloader
19 Elex 500 Trojan
20 Expiro-H 501 Virus
21 Fakerean 381 Rogue
22 Fasong 500 Worm
23 Gatak 1013 Backdoor
24 HackKMS.A 499 Trojan
25 Hlux!IK 500 Worm
26 Injector 495 Trojan
27 InstallCore 500 Virus
28 Instantaccess 431 Dialer
29 Kelihos_ver1 398 Backdoor
30 Kelihos_ver3 2942 Backdoor
31 Lollipop 2478 Adware
32 Lolyda.AA 1 213 PWS
33 Lolyda.AA 2 184 PWS
34 Lolyda.AA 3 123 PWS
35 Lolyda.AT 159 PWS
36 Malex.gen!J 136 Trojan
37 MultiPlug 499 Adware
38 Neoreklami 500 Adware
39 Neshta 497 Virus
40 Obfuscator.ACY 1228 Obfuscated mal
41 Obfuscator.AD 142 TDownloader
42 Ramnit 1541 Worm
43 Rbot!gen 158 Backdoor
44 Regrun.A 485 Trojan
45 Sality 499 Virus
46 Simda 42 Backdoor
47 Skintrim.N 80 Trojan

Continued in the next column

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

Nro Family Name # Samples Type
48 Snarasite.D!tr 500 Trojan
49 Stantinko 500 Backdoor
50 Swizzor.gen!E 128 TDownloader
51 Swizzot.gen!I 132 TDownloader
52 Tracur 751 TrojanDownl
54 Worm VBA 500 Worm
53 VB.AT 408 Worm
55 VBKrypt 496 Trojan
56 Vilsel 496 Trojan
57 Vundo 475 Trojan
58 Wintrim.BX 97 TrojanDownl
59 Worm Yuner.A 800 Worm

Figure 7. The Fusion dataset consisting of 59 malware families with unbal-
anced samples in descending order by number of samples per family.

Once the all_families directory has been created, we will
find 59 sub directories or malware families that contain im-
age files in PNG format. Each malicious image file has the
same name as the original datasets. All images have 224x224
pixels and an average size of 0.09MB per PNG file, reducing
the malware image datasets in comparison with the original
datasets. The dataset can be downloaded from the Kaggle
datasets website6.
As we can see in Fig. 7, there is an imbalance of samples

in the 59 malware families, where the Allaple.A family has
2,949 samples (9.05%), while Simda has only 42 samples

6https://www.kaggle.com/datasets/marcesalas/fusion-dataset-59-
malware-families-in-png-format

(0.13%).

4.3 Evaluation Metrics
The evaluation or performance metrics used in CNN mal-
ware classification allow us to provide a quantitativemeasure
of the performance and quality of the models developed in
this task. Below, we describe the metrics used in the present
research.

4.3.1 Accuracy

This basic metric measures the proportion of malware classi-
fied correctly by the model out of the total number of exam-
ples. It is calculated using the following equation:

Accuracy = TP + TN

TP + TN + FP + FN
(1)

Where TP is the number of malware samples correctly
classified into their respective families, TN is the number
of non-malware samples correctly classified as non-malware,
FP is the number of non-malware samples incorrectly classi-
fied as malware, and FN is the number of malware samples
incorrectly classified as non-malware.

4.3.2 Logloss

Also called log loss, is a metric that measures the quality of
the classification probabilities generated by a model. It is
calculated using the following equation:

Logloss = − 1
N

N∑
i=1

(yi log(pi) + (1− yi) log(1− pi))

(2)
Where N is the total number of examples, (yi) is the ac-

tual label of example (i) (0 or 1), and (pi) is the predicted
probability of example (i) belonging to the positive class.

4.3.3 Precision

The precision is calculated as the proportion of samples cor-
rectly classified in a given family with respect to the total
number of samples classified in that family. In the context
of malware classification, it is calculated as follows in equa-
tion (3):

Precision = TP

TP + FP
(3)

Where TP represents the number of samples correctly
classified in their respective families and FP represents the
number of samples that were incorrectly classified.

4.3.4 Recall

Also known as sensitivity, is calculated as the proportion of
correctly classified samples in a certain family with respect
to the total number of real samples in that family. In this
context, it is calculated as follows in equation (4):

Recall = TP

TP + FN
(4)

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

Where TP represents the number of samples correctly
classified in its respective family and FN represents the
number of samples that were incorrectly classified as belong-
ing to other families.

4.3.5 F1-score

It provides a balanced measure of model performance by tak-
ing both precision and recall into account. Its formula is as
follows in equation (5).

F1 = 2× Precision×Recall

Precision + Recall
(5)

4.4 Visualizing Malware as an Image
This area was introduced by Nataraj et al. [2011] who per-
formed the conversion from a byte file to an image, interpret-
ing each byte as a pixel. In this research, the PIL7 (Python
Imaging Library) repository was used to convert byte files
into an image in PNG format, as shown in Fig. 8, which
scales the values of an image to a matrix from 0 to 255, con-
verting to the ’uint8’ type. This conversion allows creating
images in four formats: grayscale, grayscale resize 224x224
with bicubic interpolation, RGB, and RGB resize 224x224
with bicubic interpolation.

Figure 8. Conversion of malware files to images without filters (left) and
with resize and bicubic interpolation (right) in PNG format.

Initially, the bytes files are processed, verifying that the
files end in ’.bytes’ to start processing. Converts hexadec-
imal data to integers, then the saveimg function to perform
additional processing and save resulting images. The pseudo-
code is shown in Algorithm 1.
Next, the saveimg function takes an array and a name as

input. Then performs a series of operations to resize the ar-
ray and create an image using the Image library. The result-
ing image can be subjected to interpolation e.g. bicubic, and
resized to 224x224 pixels (same image format used in Mo-
bileNet architecture). Finally, the image is saved in PNG for-
mat with a name based on the input name, removing the last 6
characters and adding the ’.png’ extension. The pseudo-code
of saveimg function is shown in Algorithm 2.
The process of resizing and interpolating images to a

standard size of 224x224 pixels before incorporating them

7https://pillow.readthedocs.io/en/stable/

Algorithm 1Main Loop
1: bytes_files←′ /byteF iles/′

2: for x in os.listdir(bytes_files) do
3: if str.endswith(x, ’.bytes’) then
4: with open(os.path.join(bytes_files, x), ’r’) as f :
5: array← []
6: for line in f do
7: xx← line.split()
8: if len(xx) ! = 17 then
9: continue
10: end if
11: array.append([int(i, 16) if i ̸=′

??′ else 0 for i in xx[1 :]])
12: end for
13: saveimg(np.array(array), x)
14: del array
15: end if
16: end for

Algorithm 2 Pseudo-code for the saveimg function
1: function saveimg(array, name)
2: if array.shape[1] ̸= 16 then
3: assert(False)
4: end if
5: b← int((array.shape[0]× 16)0.5)
6: b← 2(int(log(b)/ log(2))+1)

7: a← int(array.shape[0]× 16/b)
8: array← array[: a× b//16, :]
9: array← np.reshape(array, (a, b))
10: im← Image.fromarray(np.uint8(array),mode=’L’)
11: ▷ Apply bicubic interpolation and resize to (224,

224)
12: im← im.resize((224, 224), Image.BICUBIC)
13: im.save(′/image/′ + name[: −6] +′ .png′, ”PNG”)
14: end function

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

into the training of convolutional networks, such as Tensor-
Flow [Keras, 2023], is highlighted in Fig. 8. This technique
enhances:

• Software efficiency. Avoid using the default (near-
est) filter of ImageDataGenerator [Keras, 2023] from
the TensorFlow Keras library, improving runtime effi-
ciency and efficacy by avoiding using a poor filter to
resize malware images.

• Hardware efficiency. By using a standard image input
size, specialized hardware such as a GPU can be op-
timized to work with large volumes of data that have
equal dimensions, resulting in more efficient process-
ing and improved performance.

• Memory saving. By having all images the same size,
you can load them in batches more efficiently since you
don’t need to reserve memory for different image sizes.

• Single interpolation. By performing interpolation and
resizing beforehand, you reduce the computational load
on each iteration rather than repeatedly during training.

• Improves generalization. It facilitates the training and
comparison of patterns learned from features that are
consistently presented across images.

• Constant input size. Many CNN architectures are de-
signed to accept fixed-size images as input. For exam-
ple, MobileNet uses 224x224 pixels.

5 Experimental Result and Analysis
This section describes the procedure used to enhance the Mo-
bileNet model from the article by Palma Salas et al. [2023]
for malware classification, applied to four datasets described
in Subsection 4.2.

5.1 Conversion of Malicious Binary Files to
PNG Images

Based on the procedure outlined in Subsection 4.4, four
styles of PNG images8 were generated to obtain evaluation
metrics and assess the performance of MobileNet on each
style of PNG image. The following describes each of the
styles:

1. Grayscale. Converting byte files into grayscale PNG
format. This style generates images without using a
standard size.

2. Grayscale W/ bicubic. Conversion of byte files into
grayscale PNG format by applying 224x224 pixel resiz-
ing with bicubic interpolation.

3. RGB. Conversion of byte files into RGB PNG format.
This style generates images without using a standard
size.

4. RGB W/ bicubic. Conversion of byte files into RGB
PNG format by applying 224x224 pixel resizing with
bicubic interpolation.

8PNG was chosen because it is a graphic format based on a lossless
compression algorithm for bitmaps that is not subject to patents.

Each style returns a dataset composed of 10,868 PNG
images, making a total of 43,472 images stored in four di-
rectories. Following the MobileNet model implementation
in Palma Salas et al. [2023], the datasets were divided into
70% for training, 15% for validation, and 15% for test-
ing. The results presented in Table 4 demonstrate that using
grayscale images in PNG format, resized to 224x224 pix-
els using bicubic interpolation, enhances performance met-
rics: precision improves to 98.7116%, log loss decreases to
0.0614, and F1-Score increases to 97%, improving the re-
sults obtained in Palma Salas et al. [2023].

Table 4. Results of the procedure to convert binary files to images.

MobileNet FT Accuracy Logl. F1-Score

MobileNet 98.41% 0.081 96%
[Palma Salas et al., 2023]
Grayscale 98.2822% 0.066 95.07%
Grayscale W/ Bicubic 98.7116% 0.061 97%
RGB 97.4233% 0.122 93%
RGB W/ bicubic 97.7914% 0.076 94%

5.2 Fine-tuning MobileNet Model
We use the base MobileNet model implemented
in Palma Salas et al. [2023], with the training parameters de-
scribed in Table 5. Also, the code can be accessed at https:
//github.com/ecram/malware_classification_cnn.

Table 5. Training parameters for Malware Classifications models
implemented in Palma Salas et al. [2023].

Parameter Value

Learning Rate 0.0001
Epochs 50
Optimizer Adam
Loss Function Sparse categorical cross entropy
Fold Cross-Validation nsplits = 5
ReduceLROnPlateau factor=0.1, patience=3
computeclassweight classweight =′ balanced′

The implementation of fine-tuning techniques described in
Section 3.4 allows us to improve the performance metrics of
the MobileNet model developed in Palma Salas et al. [2023]
under the following premises:

• ReduceLROnPlateau9 (callback function) was used to
dynamically adjust the learning rate during training of
the MobileNet model. A factor of 0.1 was used; it is
reduced to one tenth of its current value. Patience is
equal to 3, which implies that three epochs must pass
without improvement to reduce the learning rate.

• Class weight estimation was used to address the issue of
malware family imbalance. The weight for each class
is computed by dividing the total number of samples by
the product of the number of classes and the number
of samples in each class. This technique assigns higher

9ReduceLROnPlateau improves training stability and adjusts model
convergence, reducing training oscillations.

https://github.com/ecram/malware_classification_cnn
https://github.com/ecram/malware_classification_cnn

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

Figure 9. Implementation of transfer learning models for malware classification.

weights to less represented classes, enabling the classi-
fier to pay more attention to them and thus enhance the
overall performance of the classifier and fine-tune per-
formance metrics.

The customized MobileNet Fine-Tuning (MobileNet FT)
model is described below, as shown in Fig. 9:

• Initially, the pre-trainedMobileNet models were loaded
with the ImageNet model weights, excluding the top
classification layer to add a new classification layer spe-
cific for each malware dataset.

• The convolutional layers of the pretrained model were
frozen.

• The output of the pretrained model is taken, and a series
of custom layers are applied to it to perform the specific
malware dataset. The layers used include:

– Flatten
– Dense(512, ReLU activation)
– BatchNormalization
– Dropout
– Dense(# of malware families, softmax) 10

• For the compilation, we use the Adam optimizer with a
low learning rate (0.0001) and a loss function in ”cate-
gorical_crossentropy”, as a shown in Table 5.

• For the training of the model, 50 epochs were sufficient
per stage of training and validation because in most
cases, the model stabilized at around 20 epochs and re-
quired 30 epochs to further improve its results.

• Finally, the model was evaluated using the test dataset
through the performance metrics described in the sub-
section 4.3.

We also implemented a 5-fold cross-validation technique
to evaluate both the variability of the data and the reliability
of the MobileNet architecture, ensuring the robustness and
generalization capability of the machine learning model.

10the output layer consists of a Dense layer with a number of units equal
to the number of malware families in the dataset, with a softmax activation
function applied to produce probability scores for each class.

Below, we present the results obtained through 5-fold
cross-validation, which provide an average of the values for
each malware dataset achieved by applying the MobileNet
FT model.

5.3 MobileNet fine-tuning model Applied to
Big 2015 Dataset

The model introduced in Section 4 surpasses other models
outlined in Palma Salas et al. [2023], as illustrated in Ta-
ble 6, achieving higher accuracy (98.86%), lower logloss
(0.05966), and an improved F1-Score (98.86%). These re-
sults enhance the effectiveness of the fine-tuning method and
the implemented adjustments.
The execution time (runtime) of approximately 2 hours

and 56 minutes is also remarkably efficient compared to
some other models that require more training time, such as
Xception, which requires 9 hours and 42 minutes to reach
98.22% accuracy, or VGG19, which requires 38 hours and
10 minutes to get 98.10% accuracy. This is a consequence
of the resizing and bicubic interpolation in the dataset before
entering training.
This model has a high computational performance, which

proves that it is not necessary to use complex architectures
with many and full connect layers, such as VGG-16 and
VGG-19, to obtain results close to 99%, with a shorter and
more efficient execution time.
The comparison with the eight known CNN architectures

used in Palma Salas et al. [2023] suggests that ourMobileNet
fine-tuning model is a lightweight architecture for environ-
ments with limited computational resources and shorter train-
ing time (Wall Time11 training model) compared to the rest
of the models used, as can be seen in Table 6.
As can be seen in Fig. 10, the model classifies almost per-

fectly. 5 of the 9 malware families were classified correctly
(approximately 100%). It can be observed thatMobileNet FT
fails to classify the Simda Backdoor family correctly (71%)

11Wall Time is the total time taken to execute the entire model to 50
epochs, including the model training process and aspects of execution, such
as data loading, model training, and evaluation time.

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

Table 6. Comparison of results of our proposal with research
in Palma Salas et al. [2023] for malware families classification.

Models Accur. Logl. F1-Sco. Wall Time

MobN FT 98.86% 0.060 98.86% 2h 56m
MobileNet 98.41% 0.081 96% 3h 19m
Xception 98.22% 0.081 97% 9h 42m
MobNV2 98.22% 0.093 94% 3h 6m
VGG19 98.10% 0.078 95% 38h10m
DenseN169 97.98% 0.092 96% 9h 46m
VGG16 97.79% 0.086 95% 32h13m
InceptionV3 97.11% 0.153 94% 4h 15m
ResNet50 96.01% 0.153 94% 9h 17m

due to a lack of samples. This family presents an imbalance
with only 42 samples.

Figure 10. The confusion matrix for the Microsoft Big 2015 dataset ob-
tained by the MobileNet FT model.

The results described in Table 7 show that the Mo-
bileNet FT model proposal has satisfactory results regard-
ing accuracy (98.86%), precision (98.87%) and F1-Score
(98.86%), as depicted in Fig. 11, showing perfect predic-
tions of the image’s family. Compared to the model de-
veloped in Palma Salas et al. [2023], this model shows im-
provement, being lighter and more effective in performance
metrics when applied to an imbalanced dataset. By limit-
ing the training to 50 epochs, we mitigate the risk of overfit-
ting, as observed in other studies Rezende et al. [2017] (2000
epochs), Rezende et al. [2018] (100 epochs), which achieved
excellent results but tended to overfit with prolonged training
epochs.

As we can see in Table 7, the MobileNet FT model ob-
tains the second highest accuracy (98.86%), surpassing al-
most all the other models listed in the table. Regarding the
F1-Score, the model has reached 98.86%, obtaining a bal-
ance between precision and recall. The choice of the 5-fold
cross-validation scheme contributes to the robustness of the
results and the generalization of the model, performing a
careful evaluation of the performance metrics. The compar-
ison cannot be performed in runtime with other models be-
cause this information is not available in the cited papers.

Figure 11. Malware image classification with MobileNet FT.

5.4 MobileNet fine-tuning model Applied to
Malimg Dataset

The renowned Malimg benchmark dataset was used [Nataraj
et al., 2011] applying the MobileNet FT model, achieving
an accuracy of 99.07% in the test set, which indicates that
the model classifies the 25 malware families and generalizes
quite well the dataset. The log loss is 0.041 on the test set,
demonstrating high confidence in its predictions.
The precision (99.06%), recall (99.07%), and F1-Score

(99.06%) metrics are all greater than 99%, indicating good
performance in terms of the model’s ability to classify both
positive and negative classes.
The confusion matrix, as shown in Fig. 12, describes that

the model has perfect performance in some classes and very
high overall. 21 of the 25 malware families were classified
correctly (approximately 100%). MobileNet FT made errors
in the classification of the Swizzor.gen!E (21%) and Swiz-
zot.gen!I (30%) malware classes, as both are TDownloaders
and some samples of Swizzor.gen!E were incorrectly labeled
as Swizzot.gen!I and vice versa.
In comparison with other research described in Table 8 we

highlight the accuracy (99.07%), surpassing all other models,
highlighting its ability to handle the imbalance in the dataset
and achieve high classification accuracy under an architec-
ture that uses transfer learning with fine tuning and is effi-
cient in training time with just 50 epochs.

5.5 MobileNet fine-tuning model Applied to
MaleVis Dataset

The model demonstrates high accuracy and overall perfor-
mance in classifying the 25 malware families in the MaleVis
dataset [Bozkir et al., 2019]. Optimization included limiting
it to 50 epochs to reduce overfitting and using techniques
such as bicubic interpolation to improve model generaliza-
tion and training speed. Through techniques such as fine-
tuning and class weight estimation, the model has managed
to handle the imbalance inherent in the dataset.
As can be seen in Fig. 13, the confusion matrix shown the

performance of the model for each class in the test set. In the
case of the Malevis dataset (balanced), only 11 of the 25 fam-
ilies were perfectly classified (approximately 100%). The

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

Table 7. Comparison of the proposed model in the literature using the Microsoft BIG 2015 dataset.

Authors Models Image For. Validation Acc Pr Rec F1-Sc

[Kalash et al., 2018] CNN (25 ep.) Bytes(Gray) 90%-10% 98.99% - - -
Proposed model MobileNet FT Bytes (Gray) 5-fold CV 98.86% 98.87% 98.86% 98.86%
[Hemalatha et al., 2021] Dense (100 ep.) Bytes (Gray) 70%-30% 98.46% 98.58% 97.84% 98.21%
[Palma Salas et al., 2023] MobileNet Bytes (RGB) 70%-15%-15% 98.41% 94.44% 98.25% 95.96%
[Gibert et al., 2019] CNN Bytes 5-fold CV 98.28% - - 96.36%
[Le et al., 2018] CNN (100 ep.) Bytes 5-fold CV 98.20% - - 96.05
[Gibert et al., 2019] CNN Bytes (Gray) 10-fold CV 97.50% - - 94.00%
[Wang et al., 2021] DN+DEAM Bytes (Gray) 60%-20%-20% 97.3% 95.3% 95.4% 95.4%

Table 8. Comparison of the proposed model in the literature using the Malimg dataset.

Authors Models Image For. Validation Acc Pr Rec F1-Sc

Proposed model MobileNet FT Bytes (Gray) 5-fold CV 99.07% 99.06% 99.07% 99.06%
[Singh et al., 2019] ResNet-50 Bytes (Gray) - 98.98% 96% 96% 96%
[Roseline et al., 2020] Layered Ens. Bytes (Gray) 5-fold CV 98.65% 98.86% 98.63% 98.74%
[Verma et al., 2020] 1st&2do ord tex Bytes (Gray) 10-fold CV 98.58% 98.04% 98.06% 98.05%
[Hemalatha et al., 2021] DN (100 ep.) Bytes (Gray) 70%-30% 98.5% 96.9% 96.9% 96.7%
[Gibert et al., 2019] CNN Bytes 5-fold CV 98.5% 95.8 96.6 95.8%
[Aslan and Yilmaz, 2021] hybrid model Bytes (Gray) 70%-10%-20% 97.78% 98.75% 97.02% 95.84%
[Shaik et al., 2023] EfficientNetB0 Bytes (Gray) - - 97% 96% 96%

Sality (virus), Neshta (virus), and Expiro-H (virus) classes
had the worst classification accuracy at 83%, 84%, and 87%,
respectively. Although these values are not low, six malware
families obtained values close to 90%, which reduced the
model’s accuracy to 96.02%.
TheMobileNet fine-tuning-basedmodel proves to be com-

petitive in terms of accuracy (96.02%), precision (96.09%),
recall (96.02%), and F1-score (96.04%). Although themodel
does not obtain the best expected results, having seen prob-
lems with three malware families, as shown in Fig. 13, the
system manages to obtain good results using 5-fold cross-
validation with a split of 70% for training, 15% for valida-
tion, and 15% for testing, avoiding presenting validation as
test data, which is a very common error in these investiga-
tions that can be seen in Table 9.
The comparison with previous studies in Table 9 high-

lights the competitiveness of the MobileNet FT model in
terms of accuracy and overall performance. These results
support the effectiveness of the proposed approach in ad-
dressing the malware classification problem in the context
of images.

5.6 MobileNet fine-tuning model Applied to
Fusion Dataset

The creation of the Fusion dataset, which combines three
benchmarking datasets (Microsoft Big 2015, Malimg, and
MaleVis), contributes to research into the classification of
malware families, achieving the following:

• Greater Diversity: Combining multiple datasets pro-
vides a broader diversity of malware samples. This is
essential to improving the model’s ability to generalize
and recognize common patterns across a wide variety
of threats.

• Increased Family Variety: By including 59 malware
families, the Fusion dataset provides a more challeng-
ing and realistic dataset. This is crucial to evaluating
the model’s ability to handle a wide range of threats in
real-world environments.

• Challenge of Class Imbalance: The variation in the
number of samples per family introduces an additional
challenge in terms of class imbalance. This scenario
more accurately reflects malware distribution in reality
and prepares the model for challenging situations.

• Reducing Dataset Bias: By combining datasets, the bias
that could arise from using too few classes of malware is
mitigated. This increases the robustness and confidence
of the results obtained.

Results on the Fusion Dataset with MobileNet fine-tuning
are described in Fig. 14. Our proposal achieved 98.04% ac-
curacy with a logloss of 0.09280, reflecting that the system
manages to identify the majority of malware families cor-
rectly, even with 59 classes.
The confusion matrix, as shown in Fig. 15, indicates that

the model performs well in some classes and has a very high
overall accuracy. 36 malware families achieved a 100% rat-
ing. For instance, the Simda family was correctly classified
at 100% accuracy, which is an improvement compared to the
71% accuracy it obtained in the Big 2015 dataset. However,
some families with erroneous classifications remained mis-
classified in the Fusion dataset, e.g., Expiro-H (Malevis) and
Swizzor.gen!E (Malimg) had accuracies of 81% and 85% re-
spectively. Additionally, Kelihos_ver1 (Big 2015) and Don-
tovo.A (Malimg) also faced classification issues with accu-
racies of 84% and 83% respectively.
The creation of the Fusion dataset, combining multiple

datasets, has proven valuable in improving the ability of mal-
ware family classification models. This larger and more di-
verse set provides a more realistic and challenging setting to

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

Figure 12. The confusion matrix for the Malimg dataset obtained by the MobileNet FT model.

Table 9. Comparison of the proposed model in the literature using the MaleVis dataset.

Authors Models Image For. t Validation Acc Pr Rec F1-Sc

Proposed model MobN FT Bytes (Gray) 5-fold CV 96.02% 96.09% 96.02% 96.04%
[Bozkir et al., 2019] DenseNet Bytes (Gray) tr:70%-tst:30% 97.48% - - -
[Hemalatha et al., 2021] DN (100 ep.) Bytes (Gray) tr:70%-tst:30% 98.21% 98.56% 97.74% 98.15%
[Roseline et al., 2020] Layered Ens. Bytes (Gray) 5-fold CV 97.43% 97.53% 97.32% 97.42%
[Aslan and Yilmaz, 2021] hybrid model Bytes (Gray) 70%-10%-20% 96.6% 97.1% 94.9% 94.5%
[Shaik et al., 2023] Xception Bytes (Gray) - - 95% 95% 95%

evaluate the effectiveness of the models.
The results describe in Table 10 are promising, with high

levels of accuracy. The model’s ability to handle a diverse
and unbalanced set of malware families highlights the effec-
tiveness of the Fusion dataset strategy and the fine-tuning
technique employed.
The research presents significant advances in malware

classification by addressing the issue of class imbalance and
using a merged dataset that more realistically represents the
real-world threat landscape.

6 Effect on CNNs due to the Increase
in Malware Families

In this section, we introduce the analysis of the decay in per-
formance metrics due to the increase in malware families or
classes. For this purpose, the Fusion dataset 4.2.4, composed

Table 10. Results of the application of the MobileNet FT model to
the Fusion dataset.

Metric Value

Train Accuracy 99.978%
Train Log Loss 0.00158
Validation Accuracy 98.180%
Validation Log Loss 0.08960
Test Accuracy 98.037%
Test Log Loss 0.09280
precision 980807%
recall 980368%
f1-score 980390%

of 59 malware families, was used as a basis, with a strategy
of randomly adding malware families using the MobileNet
FT architecture 5.2.

A new model was trained from scratch for each set of
malware families (from 2 to 59) to identify the decay in

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

Figure 13. The confusion matrix for the Malevis dataset obtained by the MobileNet FT model.

Figure 14. Performance Metrics obtained from Applied MobileNet FT to
Fusion Dataset in test set.

performance metrics. This approach ensures that all mal-
ware classes are treated in a balanced manner from the begin-
ning of training, avoiding biases towards previously trained
classes.
The main premises of this procedure are described below:

• The MobileNet architecture serves as the foundation
of the model used, with the last classification layer re-
moved and the weights of the remaining layers frozen
during training.

• The list of newly added layers is described in Sec-
tion 5.2, with the modification that the number of
classes in the final Dense layer was adjusted based on
the number of malware families to be identified, using

the softmax activation function.
• We chose to maintain 50 training epochs because the
model generally stabilized around 20 epochs, and an
additional 30 epochs were added to further refine the
results.

• During training, the accuracy and log loss metrics were
monitored in the training (70%) and validation (15%)
sets.

• Finally, the trained model was evaluated using the test
dataset (15%) to measure its performance.

This procedure was repeated incrementally from 2 to 59
malware families, allowing us to evaluate how the model
adapted and maintained its performance as new classes were
added.
Training from scratch enabled us to analyze the behavior

of the MobileNet FT model from a known initial state and
understand how it adapts to the increasing number of classes,
providing a uniform basis for comparing performance.

6.1 Results of Performance Metrics
In this subsection, we delve into the performance metrics to
understand howMobileNet responds to the incremental addi-
tion of malware families. We observed a gradual but contin-
uous decline in accuracy and an opposite trend in log loss, in-
dicating that as the number of classes increases, the model’s
performance deteriorates.
The behavior of accuracy and logarithmic loss is observed

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

Figure 15. The confusion matrix for the Fusion dataset by the MobileNet FT model.

in Fig. 16 as a function of the increase in the number of fam-
ilies in the dataset in Fusion Dataset and the random entry
of malware families. With the increase in malware families,
it is noticeable that the Swizzor.gen!I (47), Swizzor.gen!E
(48), and Lolyda.AA3 (49) families significantly increase the
logloss. The greatest increase occurs when the number of
samples begins to decrease between families with more than
500 samples (1–19) and families with fewer samples (20–
59).

In general, performance metrics (accuracy and log loss)
tend to fluctuate, as expected, remaining at high levels. How-
ever, we can observe that they have a tendency to reduce the
performance of the metrics depending on the number of mal-
ware families to be classified.

This research allows us to identify that there is a decline
in the performance metrics due to the increase in the num-
ber of malware families in the classification using the Mo-
bileNet FT model. Initially, these models manage to classify
two classes perfectly, but as the number of families increases,
they tend to lower levels, showing a downward trend in their
performance.

This type of research can be carried out through the use
of a dataset with a greater number of families, such as Fu-
sion. Although this dataset is unbalanced, it attempts to re-
flect the difficulty of classifying malware in the real world.
The code used in this section can be accessed at https:
//github.com/ecram/malware_classification_cnn.

7 Limitations
Although the results obtained in Tables 7, 8, and 9 demon-
strate the ability of the MobileNet FT model to classify mal-
ware families, the present model may have limitations due
to the complexity and diversity of the set of malware classes.
This can be observed in the confusion matrices in Figures 10,
12, 13, where some specific characteristics of the malware
families may not be well represented in the pretrained layers
generating the decay of the performancemetrics, as observed
in Section 6 by the increase of malware families.
Although MobileNet FT may be effective in classifying

the 59 known threats present in the Fusion dataset, it may
not be as robust for new or unknown threats. If the model
has not been trained with enough samples of new threats, its
ability to recognize them may be limited.
MobileNet and other neural network-based models can be

sensitive to variations in the input data, such as changes in
image brightness, scale, or orientation. This can affect the
model’s ability to generalize to new samples that differ sig-
nificantly from those in the training set. Thus, when using
our proposal, it is recommended to apply resizing and bicu-
bic interpolation to the size of 224x224 pixels to improve the
results.
Regarding class imbalance, although a new dataset called

Fusion was built, there may still be challenges related to the
number of samples per class, i.e., classes with a large number
of samples may not be adequately represented, which affects
the model’s ability to learn patterns specific to those classes.
On the other hand, the present research can benefit from

the inclusion of additional experiments and validation on ex-
ternal datasets to evaluate the reproducibility and generaliz-

https://github.com/ecram/malware_classification_cnn
https://github.com/ecram/malware_classification_cnn

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

Figure 16. The behavior of accuracy and log loss is affected by the increase in malware families.

ability of the model to different real-world contexts and sce-
narios.
In turn, the model’s ability to adapt and effectively clas-

sify future threats not observed in the current dataset may be
a limitation. Research could explore strategies to improve
model resilience to emerging threats.

8 Conclusions and Future Work
TheMobileNet fine-tuning model has proven to be highly ef-
fective in classifying malware families on the Microsoft Big
2015 and Malimg datasets. The results show very good pre-
cision for the four datasets, low logarithmic loss, and evalu-
ation metrics (precision, recall, F1-Score) greater than 99%
in the case of the Malimg dataset. When comparing these re-
sults with other models in the literature, the proposal stands
out in terms of performance. This success can be attributed to
the optimization strategies, fine-tuning techniques, and data
management considerations that have been implemented in
the present research.
In summary, we have optimized theMobileNet fine-tuning

model (MobileNet FT) model in the following aspects:

1. It has been limited to 50 epochs to reduce overfitting.
2. Resize 224x224 pixels and bicubic interpolation have

been used to improve the generalization of the model
and its training speed.

3. Fine-tuning techniques such as ReduceLROnPlateau
(callback function) and Estimate class weights have
been used to refine the results, avoiding local minimum.

4. The dataset has been divided through the scheme (70%-
15%-15%) with 5-fold cross-validation for the valida-
tion of results.

5. We have analyzed the behavior of the model in the face
of the increase in malware families, demonstrating the
decline in performance metrics.

6. A new dataset called Fusion has been created by
combining three known datasets (the Microsoft Big
2015, the Malimg, and the MaleVis), improving the
generalization of our model against malware threats.
It can be download at https://www.kaggle.com/
datasets/marcesalas/fusion-dataset-59-
malware-families-in-png-\format.

Based on these conclusions, we can propose the follow-
ing future work with the objective of analyzing the perfor-

mance of convolutional neural networks in the classification
of malware in the wild through generalization and avoiding
overfitting:

• Implement new models based on other architectures to
obtain better results.

• Contribute to the analysis of information extraction
from the process of converting bytes into images using
other filters in order to improve performance metrics in
malware detection and classification.

• Delve into the problem of the decay of performancemet-
rics due to the increase in malware classes or families in
order to determine the possible limits of this technique
(CNN) in malware classification.

Acknowledgements
This article is an extension of the article Palma Salas et al. [2023]
called Enhancing Malware Family Classification in the Microsoft
Challenge Dataset via Transfer Learning selected among the best
articles of the LADC 2023 main track.

References
Aslan, Ö. and Yilmaz, A. A. (2021). A new malware
classification framework based on deep learning algo-
rithms. Ieee Access, 9:87936–87951. DOI: 10.1109/AC-
CESS.2021.3089586.

AV-TEST GmbH (2023). AV-TEST Malware Statis-
tics. Available at: https://www.av-test.org/en/
statistics/malware/ Accessed: May 20, 2023.

Bozkir, A. S., Cankaya, A. O., and Aydos, M. (2019). Utiliza-
tion and comparision of convolutional neural networks in
malware recognition. In 2019 27th Signal Processing and
Communications Applications Conference (SIU), pages 1–
4. IEEE. DOI: 10.1109/SIU.2019.8806511.

Fadnavis, S. (2014). Image interpolation techniques in dig-
ital image processing: an overview. International Jour-
nal of Engineering Research and Applications, 4(10):70–
73. Available at: https://ijera.com/papers/Vol4_
issue10/Part%20-%201/K41007073.pdf.

Gibert, D., Mateu, C., Planes, J., and Vicens, R. (2019).
Using convolutional neural networks for classification
of malware represented as images. Journal of Com-
puter Virology and Hacking Techniques, 15:15–28. DOI:
10.1007/s11416-018-0323-0.

https://www.kaggle.com/datasets/marcesalas/fusion-dataset-59-malware-families-in-png-\format
https://www.kaggle.com/datasets/marcesalas/fusion-dataset-59-malware-families-in-png-\format
https://www.kaggle.com/datasets/marcesalas/fusion-dataset-59-malware-families-in-png-\format
https://doi.org/10.1109/ACCESS.2021.3089586
https://doi.org/10.1109/ACCESS.2021.3089586
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://doi.org/10.1109/SIU.2019.8806511
https://ijera.com/papers/Vol4_issue10/Part%20-%201/K41007073.pdf
https://ijera.com/papers/Vol4_issue10/Part%20-%201/K41007073.pdf
https://doi.org/10.1007/s11416-018-0323-0

Deep Learning Applied to Imbalanced Malware Datasets Classification Salas et al. 2024

Hemalatha, J., Roseline, S. A., Geetha, S., Kadry, S., and
Damaševičius, R. (2021). An efficient Densenet-based
deep learning model for malware detection. Entropy,
23(3):344. DOI: 10.3390/e23030344.

HobbyMaker (2023). Adding new pixels to a picture, an
inexact comparison of several approaches to resampling.
Available at: http://www.hobbymaker.narod.ru/
English/Articles/resampling_eng.htm Accessed
on 2023.11.15.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam,
H. (2017). MobileNets: Efficient convolutional
neural networks for mobile vision applications. DOI:
10.48550/arXiv.1704.04861.

Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D.,
Wang, Y., and Iqbal, F. (2018). Malware classifica-
tion with deep convolutional neural networks. In 2018
9th IFIP international conference on new technologies,
mobility and security (NTMS), pages 1–5. IEEE. DOI:
10.1109/NTMS.2018.8328749.

Keras (2023). keras._legacy preprocessing im-
age imagedatagenerator. Available at: https:
//github.com/keras-team/keras/blob/master/
keras/legacy/preprocessing/image.py Accessed
on 2023.11.15.

Le, Q., Boydell, O., Mac Namee, B., and Scanlon, M. (2018).
Deep learning at the shallow end: Malware classification
for non-domain experts. Digital Investigation, 26:S118–
S126. DOI: 10.1016/j.diin.2018.04.024.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.
nature, 521(7553):436–444. DOI: 10.1038/nature14539.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324. DOI:
10.1109/5.726791.

Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath, B. S.
(2011). Malware images: visualization and automatic clas-
sification. In Proceedings of the 8th international sympo-
sium on visualization for cyber security, pages 1–7. DOI:
10.1145/2016904.2016908.

Palma Salas, M. I., De Geus, P., and Botacin, M. (2023).
Enhancing malware family classification in the Microsoft
challenge dataset via transfer learning. In Proceedings of
the 12th Latin-American Symposium on Dependable and
Secure Computing, LADC ’23, page 156–163, New York,
NY, USA. Association for Computing Machinery. DOI:
10.1145/3615366.3615374.

Patterson, J. and Gibson, A. (2017). Deep learning: A prac-
titioner’s approach. ” O’Reilly Media, Inc.”. Book.

Rezende, E., Ruppert, G., Carvalho, T., Ramos, F., and
De Geus, P. (2017). Malicious software classification us-
ing transfer learning of Resnet-50 deep neural network.
In 2017 16th IEEE International Conference on Machine
Learning and Applications (ICMLA), pages 1011–1014.
IEEE. DOI: 10.1109/ICMLA.2017.00-19.

Rezende, E., Ruppert, G., Carvalho, T., Theophilo, A.,
Ramos, F., and Geus, P. d. (2018). Malicious software
classification using VGG16 deep neural network’s bottle-
neck features. In Information Technology-New Genera-

tions: 15th International Conference on Information Tech-
nology, pages 51–59. Springer. DOI: 10.1007/978-3-319-
77028-49.

Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., and
Ahmadi, M. (2018). Microsoft malware classifica-
tion challenge. arXiv preprint arXiv:1802.10135. DOI:
10.48550/arXiv.1802.10135.

Roseline, S. A., Geetha, S., Kadry, S., and Nam, Y.
(2020). Intelligent vision-based malware detection
and classification using deep random forest paradigm.
IEEE Access, 8:206303–206324. DOI: 10.1109/AC-
CESS.2020.3036491.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. (2015). Imagenet large scale visual recogni-
tion challenge. International journal of computer vision,
115:211–252. DOI: 10.1007/s11263-015-0816-y.

Shaik, A., Pendharkar, G., Kumar, S., Balaji, S., et al. (2023).
Comparative analysis of imbalanced malware byteplot im-
age classification using transfer learning. arXiv preprint
arXiv:2310.02742. DOI: 10.48550/arXiv.2310.02742.

Singh, A., Handa, A., Kumar, N., and Shukla, S. K. (2019).
Malware classification using image representation. In Cy-
ber Security Cryptography and Machine Learning: Third
International Symposium, CSCML 2019, Beer-Sheva, Is-
rael, June 27–28, 2019, Proceedings 3, pages 75–92.
Springer. DOI: 10.1007/978-3-030-20951-36.

Srudeep, P. (2020). An overview on MobileNet:
An efficient mobile vision CNN. Available at:
https://medium.com/@godeep48/an-overview-
on-mobilenet-an-efficient-mobile-vision-
cnn-f301141db94d Accessed on 2023.11.15.

Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017).
Revisiting unreasonable effectiveness of data in deep
learning era. In Proceedings of the IEEE international
conference on computer vision, pages 843–852. DOI:
10.1109/ICCV.2017.97.

Talebi, H. and Milanfar, P. (2021). Learning to re-
size images for computer vision tasks. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 497–506. DOI:
10.1109/ICCV48922.2021.00055.

Verma, V., Muttoo, S. K., and Singh, V. (2020). Multi-
class malware classification via first-and second-order tex-
ture statistics. Computers & Security, 97:101895. DOI:
10.1016/j.cose.2020.101895.

Wang, C., Zhao, Z., Wang, F., and Li, Q. (2021). A novel mal-
ware detection and family classification scheme for IoT
based on DEAM andDenseNet. Security and Communica-
tion Networks, 2021:1–16. DOI: 10.1155/2021/6658842.

https://doi.org/10.3390/e23030344
http://www.hobbymaker.narod.ru/English/Articles/resampling_eng.htm
http://www.hobbymaker.narod.ru/English/Articles/resampling_eng.htm
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1109/NTMS.2018.8328749
https://github.com/keras-team/keras/blob/master/keras/legacy/preprocessing/image.py
https://github.com/keras-team/keras/blob/master/keras/legacy/preprocessing/image.py
https://github.com/keras-team/keras/blob/master/keras/legacy/preprocessing/image.py
https://doi.org/10.1016/j.diin.2018.04.024
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1145/3615366.3615374
https://doi.org/10.1109/ICMLA.2017.00-19
https://doi.org/10.1007/978-3-319-77028-4_9
https://doi.org/10.1007/978-3-319-77028-4_9
https://doi.org/10.48550/arXiv.1802.10135
https://doi.org/10.1109/ACCESS.2020.3036491
https://doi.org/10.1109/ACCESS.2020.3036491
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.48550/arXiv.2310.02742
https://doi.org/10.1007/978-3-030-20951-3_6
https://medium.com/@godeep48/an-overview-on-mobilenet-an-efficient-mobile-vision-cnn-f301141db94d
https://medium.com/@godeep48/an-overview-on-mobilenet-an-efficient-mobile-vision-cnn-f301141db94d
https://medium.com/@godeep48/an-overview-on-mobilenet-an-efficient-mobile-vision-cnn-f301141db94d
https://doi.org/10.1109/ICCV.2017.97
https://doi.org/10.1109/ICCV48922.2021.00055
https://doi.org/10.1016/j.cose.2020.101895
https://doi.org/10.1155/2021/6658842

	Introduction
	Related work
	Background
	Convolutional Neural Networks
	Transfer Learning
	MobileNet Architecture
	Fine-Tuning in CNN
	Image Resizing
	Interpolation
	Resampling
	RGB and Grayscale Images

	The Proposed Method
	Experiment settings
	Dataset Description
	The Microsoft Big 2015 Dataset
	The Malimg Dataset
	The MaleVis Dataset
	The Fusion Dataset

	Evaluation Metrics
	Accuracy
	Logloss
	Precision
	Recall
	F1-score

	Visualizing Malware as an Image

	Experimental Result and Analysis
	Conversion of Malicious Binary Files to PNG Images
	Fine-tuning MobileNet Model
	MobileNet fine-tuning model Applied to Big 2015 Dataset
	MobileNet fine-tuning model Applied to Malimg Dataset
	MobileNet fine-tuning model Applied to MaleVis Dataset
	MobileNet fine-tuning model Applied to Fusion Dataset

	Effect on CNNs due to the Increase in Malware Families
	Results of Performance Metrics

	Limitations
	Conclusions and Future Work

