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Abstract This paper introduces OneTrack, an innovative end-to-end transformer-based model for Multiple Object
Tracking (MOT), focusing on enhancing efficiency without significantly compromising accuracy. Addressing the
challenges inherent in MOT, such as occlusions, varied object sizes, and motion prediction, OneTrack leverages the
power of vision transformers and attention layers, optimizing them for real-time applications. Utilizing a unique
Object Sequence Patch Input and a Vision Transformer Encoder, the model simplifies the standard transformer
approach by employing only the encoder component, significantly reducing computational costs. This approach
is validated using the MOT17 dataset, a benchmark in the field, ensuring a comprehensive evaluation against es-
tablished metrics like MOTA, HOTA, and IDF1. The experimental results demonstrate OneTrack’s capability to
outperform other transformer-based models in inference speed, with a marginal trade-off in accuracy metrics. The
model’s inherent design limitations, such as a maximum of 100 objects per window, are adjustable to suit specific ap-
plications, offering flexibility in various scenarios. The conclusion highlights the model’s potential as a lightweight
solution for MOT tasks, suggesting future work directions that include exploring alternative data representations
and encoders, and developing a dedicated loss function to further enhance detection and tracking capabilities. One-
Track presents a promising step towards efficient and effective MOT solutions, catering to the demands of real-time
applications.
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1 Introduction
Computer vision plays a pivotal role in the broader field of
artificial intelligence. The task of enabling machines to in-
terpret visual data presents ongoing challenges. Since the
advent of deep learning, innovative approaches have enabled
significant advancements across all subfields of computer vi-
sion. In facial recognition, the initial approach framed the
problem as a classification task, as demonstrated in Schroff
et al. [2015]. This evolved into models that extract fea-
ture vectors to maximize distance measurements for out-of-
training data evaluation, as in Deng et al. [2022]. In ob-
ject detection, early models like those in Girshick et al.
[2014] required spatial cues, such as region proposals, to
identify objects within a scene. This approach was revolu-
tionized by Redmon et al. [2016], introducing a fast, end-to-
end methodology that eliminated the need for an intermedi-
ary network. In Multiple Object Tracking (MOT), the field
has experienced rapid evolution, transitioning from statisti-
cal and heuristic methods to predominantly using various
deep learning techniques, reflecting a dynamic and contin-
uously developing landscape.
Current state-of-the-art MOT solutions primarily focus

on accuracy in making correct inferences, often sacrific-
ing efficiency, crucial for real-time applications. Many
top-performing models, such as Wang et al. [2023] and
Zhang et al. [2023], rely on separate object detection mod-
els, trained independently of the tracking component, im-

pacting overall system effectiveness [Reference in Zhang
et al. [2021]]. Some models employ characteristic differ-
entiation modules, an alternative to traditional motion track-
ing modules, whose effectiveness in complex scenarios is a
subject of ongoing research [Wang et al., 2023; Du et al.,
2023]. A significant challenge arises with MOT solutions
using Transformers for temporal contextualization, like Zeng
et al. [2022]; Sun et al. [2021]; Zhang et al. [2023]. Despite
their innovative approach, these models have struggled with
efficiency. Additionally, occlusion, where objects overlap
or are temporarily obscured, presents a persistent problem,
significantly degrading tracking accuracy.
This work introduces an approach for the real-time use of

transformers in MOT systems. We employ a paradigm that
simplifies a common step in transformer-based models by
eschewing a decoder model for generating object detections
and tracks. Thus, the encoder serves as the sole backbone
for temporal interpretation of the data, significantly reduc-
ing processing time and enhancing speed compared to sim-
ilar models. While not our primary focus, we address oc-
clusion handling by enlarging the context window for each
inference. Our data pre-processing method enables a larger
window with minimal impact on inference speed. The con-
tributions of this work are as follows:

• Introduction of OneTrack: an end-to-end transformer-
based MOT model that surpasses other transformer
models in inference speed.

• Development of theObject Sequence Patch Input pre-
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processing step, making our model nearly invariant to
window size changes in inference speed.

The necessity for research on reducing inference times in
MOT systems is underscored by applications that depend on
real-time processing. One such application is autonomous
vehicles, which rely on rapid responses to avoid obstacles
and prevent collisions. Similarly, surveillance systems re-
quire quick processing to detect anomalies, and suspicious
behavior, and to track individuals effectively, necessitating
low inference time costs. In robotics and other fields that
demand real-time interpretation of the environment in which
the intelligent agent operates, it is crucial for the model to
provide swift responses.
The article is structured as follows: Section 2 presents a

deep and critical analysis of the field, including both trans-
former and non-transformer methods and forms the basis for
some decisions. Section 3 describes all methods and models
developed for this project. Section 4 details experiments and
results, comparing them with other MOT models. Finally,
Section 5 concludes the discussion and suggests directions
for future work.

2 Related Works
Multiple Object Tracking is a crucial area in computer vision,
with applications ranging from surveillance to autonomous
driving. This section focuses on the application of vision
transformers in MOT, particularly in the context of the pro-
posed OneTrack model. The goal is to understand how re-
cent advances in vision transformers and data modeling tech-
niques contribute to the efficiency and accuracy of MOT sys-
tems.
MOT faces challenges such as occlusions, variations in ob-

ject size, and motion prediction, making it a complex prob-
lem for computer vision. The advent of Machine Learning,
and especially Deep Learning, revolutionized the field, mov-
ing away from earlier statistical methods and heuristics.
Although there are works that focus on methods to solve

offline situations, such as what’s presented in Pitie et al.
[2005], we choose to not focus on such approaches, as they
do not require fast inference. As the name suggests, these
models also use information from future frames to predict
current frame information, meaning it’s impossible to run in
real time. For such scenarios, online methods are employed,
and inference time are important to avoid losing frames due
to long processing times. Taking these aspects into account,
this work will focus on evaluating the state of current online
methods only.

2.1 End-to-End model VS Composite Models
This design decision defines how the model’s architecture
will process data. In Composite models, tasks are clearly de-
fined, with separate models for detecting objects in a frame
and amodel responsible for tracking. It alsomost of the times
need post-processing to associate objects to tracklets. Ex-
amples include [Bewley et al., 2016], [Aharon et al., 2022],
[Zhang et al., 2021], [Du et al., 2023], [Zhang et al., 2022].

These models, which learn each process step in isolation, are
currently the state of the art.
End-to-end models, in contrast, do not have this task sepa-

ration and typically incorporate a tool for analyzing temporal
and spatial frame information. Notable examples are [Zhou
et al., 2020], [Zeng et al., 2022], [Meinhardt et al., 2022],
[Sun et al., 2021]. These models, however, face challenges
in both efficiency and efficacy, as they struggle to simultane-
ously perform both tasks.

2.2 Tracking Method
The tracking method, determined after earlier decisions,
defines how the data will be modeled. Models vary in
their approach, from calculating object centroid displace-
ment [Mostafa et al., 2022] to comparing objects over time
[Aharon et al., 2022] and predicting future positions [Bewley
et al., 2016].

2.3 Machine Learning and Deep Learning in
MOT

The emergence and diffusion of Deep Learning techniques
have broken barriers in MOT, especially in challenging sce-
narios. Techniques like Convolutional Neural Networks
(CNN) are commonly used for extracting local image infor-
mation, as seen in models like [Du et al., 2023], [Zhang
et al., 2022], [Meinhardt et al., 2022]. Additionally, Re-
cursive Neural Networks (RNN) are employed for maintain-
ing relevant temporal information, while transformers, par-
ticularly attention layers, have become prominent for track-
ing in video sequences ([Zeng et al., 2022], [Meinhardt
et al., 2022]). Re-identification modules, used in models like
[Aharon et al., 2022], [Mostafa et al., 2022], focus on object
appearance to measure similarity and associate objects.

2.4 Transformers in Computer Vision
Transformers have introduced an innovative approach to
computer vision, particularly in MOT. They treat images as
sequences of patches, capturing global dependencies effec-
tively. This is exemplified by the Vision Transformer (ViT)
[Dosovitskiy et al., 2021]. In MOT, transformers integrate
spatial and temporal information, aiding in object reidenti-
fication and making MOT systems more robust. However,
their computational cost and the challenge of data model-
ing for MOT are significant limitations ([Zeng et al., 2022],
[Zhou et al., 2020]).

2.5 Transformers in MOT
Following the works in correlated fields, transformers were
employed in various research to give temporal information
and attention to MOT models. Coincidentally, most of these
models can operate in end-to-end architectures, meaning a
single model is responsible for the entire inference. In [Zeng
et al., 2022], the model utilizes an encoder-decoder schema
to detect and associate IDs to objects at once. Similarly,
[Meinhardt et al., 2022] also uses this architecture format
to do the tracking. While [Zhang et al., 2023], noticing the
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Table 1. Summary of Related Works in MOT

Works Methods Architecture Attention Limitations
DeepSORT
[Wojke et al.,
2017]

Appearance associa-
tion, Kalman filter

Detection + Asso-
ciation

No Limited in complex sce-
narios

StrongSORT
[Du et al.,
2023]

Enhanced Deep-
SORT with improved
models

Detection + Em-
bedding + Associ-
ation

No Limited in complex sce-
narios

BotSORT
[Aharon et al.,
2022]

Tracking-by-
detection, IoU-ReID
fusion

Detector + Asso-
ciator

No Camera motion issues in
dense scenes

FairMOT
[Zhang et al.,
2021]

Object detection, re-
ID features

End-to-end train-
ing, requires post-
processing

No Struggles with occlusion
and scale variations

ByteTrack
[Zhang et al.,
2022]

Data Association via
BYTE, YOLOX

Detector, Associ-
ator and ReID

No Issues with camera mo-
tion, occlusion, motion
blur

CenterTrack
[Zhou et al.,
2020]

Objects as points,
two frames and
heatmap

End-to-End No Efficiency and efficacy
issues

MOTR [Zeng
et al., 2022]

Set prediction prob-
lem, track and detect
queries

End-to-End Yes High computational cost

MOTRv2
[Zhang et al.,
2023]

Similar to MOTR,
separate YOLOX
detector

Separate detec-
tion, end-to-end
tracking

Yes High computational cost

TrackFormer
[Meinhardt
et al., 2022]

Object and Tracking
Queries

End-to-End Yes Needs large datasets,
high memory and com-
putational costs

Transtrack
[Sun et al.,
2021]

CNN feature extrac-
tion, dual decoders

End-to-End Yes Robustness issues with
object queries, no long-
term info

LMOT
[Mostafa
et al., 2022]

DLA-34 Encoder,
linear transformer

Separate training
for tracker and de-
tector

Yes Struggles with varying
environment conditions

OneTrack
[Mostafa
et al., 2022]

Vision Transformer
Encoder, Object
Average Vector, Yolo
feature extraction

End-to-End
model

Yes Fixed limited amount
of entities per window,
lower accuracy metrics
compared to slower
models, duplicated IDs.

difficulty in performing the object detection by the trans-
former model itself, decides to use another separate model
(YOLOX [Ge et al., 2021]) for this task. Another common
factor among thesemodels is using both encoder and decoder.
Also, the models share a flaw in their inference times, which
can be related to this fact.

2.6 Summary of Related Works
In Table 1, we summarize the findings, including a brief de-
scription of themethod, architecture, whether themodel used
attention and their respective limitations. We expect this to
help have a broader understanding of the current state of On-
lineMOT, also allowing a clear description of the differences
between past works and the proposed model.
Notice that our model, OneTrack, has a similar config-

uration to some of the works brought here. The novelty

presented here is how we used the transformer in the archi-
tecture, focusing on maintaining practical inference speed,
rather than keeping the focus on accuracy-related metrics.
We discuss these changes, and how they affect both aspects
of the model in further sections of this work, but highlight
here the technical differences between current literature and
this work.

3 OneTrack - Leveraging Tracking
Tokens and Box Encodings for
MOT

The proposed method in this work primarily aims to enable
the use of transformer models and attention layers in systems
addressing Multiple Object Tracking (MOT). Based on this
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Figure 1. General Architecture of the OneTrack model.

and the points discussed in section 2, this article focuses on
an end-to-end model for online operation using transformers
for MOT. Efficiency was a key consideration throughout the
development process.

3.1 Architecture
The model operates on the hypothesis that by processing a
sequence of object cutouts, with an encoding representing
their positions over time, it will learn to deduce their current
frame position to the sequence. This approach aligns with the
concept of set prediction, as proposed by DETR and MOTR
in Carion et al. [2020] and Zeng et al. [2022], respectively.
In the architecture diagram, shown in Figure 1, it’s possi-

ble to see each component which composes the full model
pipeline. There are two types of inputs: a historical input
set and a current instant set. The first two, being the frame
images themselves, as well as the called Bounding Box Vec-
tors, correspond to the historical data. These are processed
and used as context for the model. Then there is just the
frame in instant N, which is used to answer what is the cur-
rent position of each object, as well as relates them to their
past IDs.
Each input has its own preprocessing step, as well as a pro-

jection step, which turns the inputs into a one-dimensional
array representation for each token that will compose the se-
quence.
Then to process the information built into the input se-

quence, and correlate both positions and IDs over time, the vi-
sion transformer pre-trained encoder is used. Each projected
attention map will be then processed through a set of Fully
Connected layers to produce the prediction for each detected
object, which means their ID and their bounding box coordi-
nates.
Each one of these elements is detailed further in this work.

3.2 Object Sequence Patch Input and Linear
Projection

A critical aspect of MOT is data handling. This model aims
to simultaneously define bounding boxes and IDs for each
valid object in a frame. Unlike object detection and classifi-
cation, a MOT model lacks a deterministic and well-defined
reference for classifying each object.
To maintain data abstraction, we structured the data so

that each object within a time window is mapped to an ID
ranging from zero to the maximum sequence length minus
one. Post-processing involves unmapping these IDs for con-
sistency and assigning new IDs for new objects. For instance,
Figure 2 shows that two objects were identified first with id
values of 13 and 27, respectively. Then the mapping process
assigns new values for each object but keeps a reference of
this change, which is used after the tracking step, in an un-
mapping process, giving each object its original, global, ID.

Figure 2. ID re assignation process. To allow the model to consider each
object an individual class in its context window.

The architecture hypothesis necessitates a specific data in-
put method. Let K be a value corresponding to the context
window size. This means previous frames will be in the
range of 0 ≤ i ≤ K − 2. Each frame will have a subset of
tracked objects. Each subset O will have a different amount
of objects. But in total, there will be M individual objects,
which have to be constrained to N , meaning M ≤ N . By
cropping each object from each frame based on their bound-
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Figure 3. Object Average Vector generation process.

ing box, we can have an array that would look like the fol-
lowing: 

f00 f01 . . . f0o

f10 f21 . . . f1p

. . . . . . . . . . . .
f(K−2)0 f(K−2)1 . . . f(K−2)q


where [o, p, . . . , q] are the number of objects for each frame
i. Some elements in this matrix might be empty, meaning
the object wasn’t found in the corresponding frame. Each
column of the matrix has every occurrence of each object
along the time window. A resulting matrix would look like
this: 

fm1
fm2
. . .

fm(K−2)


Each element fmi is created through the following pro-

cess:

1. Cut out all detections of the object with ID i within the
current time window.

2. Resize them to a fixed size of 64x64x3.
3. Calculate a simple pixel-by-pixel average for all images

in this set.
4. Apply a dense layer for linear projection of each flat-

tened image average.
5. Fill this stack of linear projections with zero-valued vec-

tors up to N .

This process yields a N 968-position vector corresponding
to each object. Steps 1 through 3 can be visualized in Figure
3 yielding Object Averaged Vectors (OAVs), while steps 4

and 5 are illustrated in Figure 4. It is also based on the works
of ViT, which, by default, has this shape as the dimension of
the each token in the input sequence. We call each position
of the final vector a Tracking Token.
To give the model an understanding of each object’s move-

ment, we encode the coordinates of each object in past
frames, forming a vector of size (F − 1) ∗ 4, where F is
the window size and the dimension’s size 4 is related to the
coordinates of a bounding box: x center, y center, width, and
height. Similarly to OAVs, this can be represented by the fol-
lowing matrix:

b00 b01 . . . b0o

b10 b21 . . . b1p

. . . . . . . . . . . .
b(K−2)0 b(K−2)1 . . . b(K−2)q


where [o, p, . . . , q] are still the number of objects for each
frame i, but each element bio, is actually another tuple con-
taining the 4 previously mentioned coordinates.
This vector is placed in a map of learnable embeddings,

providing local context to the transformer model. These em-
beddings, as well as the linear projections of each cutout, are
768-position vectors, the same input shape as ViT’s encoder
transformer.
In the Object Sequence Patch Input module, all data fed

contains past information about the previous frames, detec-
tions and tracklets. So to add the information from the cur-
rent frame, we use a convolutional neural network as a fea-
ture extractor for this image. This means the image, resized
to [3, 640, 640], will be passed through the convolutional lay-
ers, and in the end a feature map will be generated.
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Figure 4. Tracking Tokens generation process.

3.3 Current Frame Feature Extraction and
Learnable Embeddings

In the Object Sequence Patch Input module, all data fed con-
tains past information about the previous frames, detections
and tracklets. So to add the information from the current
frame, we use a convolutional neural network as a feature
extractor for this image. This means the image, resized to
[3, 640, 640], will be passed through the convolutional lay-
ers, and in the end a feature map will be generated. Since
a big challenge for these end-to-end models is the object de-
tection aspect, we decided that a good candidate for a feature
extraction model would be the backbone of an object detec-
tion model. In this case, we used the backbone of YOLOv7
[Wang et al., 2022]. In the end of this process, the feature
map extracted has shape [10, 10, 768], which is reshaped into
[100, 768], becoming a sequence of 100 vectors with 768 po-
sitions each, compatible with the Tracking Tokens extracted.
On the contrary of some approaches like in Transtrack [Sun
et al., 2021], which does not use any type of positional encod-
ing for the feature map, we found that this approach wasn’t
effective in allowing our particular model to learn, but us-
ing a set of learnable and randomly initialized embeddings
yielded better results than not using them.

3.4 Vision Transformer Encoder
A literature review of MOT models using transformers re-
veals a classical use of both encoder and decoder. While this
is logical, it often results in higher computational costs.
To mitigate this, we employed only the encoder. The

Vision Transformer (ViT) model [Dosovitskiy et al., 2021]
uses this paradigm effectively for image classification tasks.
Despite MOT being more complex, ViT’s success indicates
its potential applicability in MOT. Another model that used
this approach and reported state-of-the-art results is in video-
swin-transformer, [Liu et al., 2021].
Thus, we utilized only the Encoder part of ViT, pre-trained

on the ImageNet [Deng et al., 2009] dataset. The weights
were not frozen due to the different nature of the task and the
availability of sufficient data for the model to learn MOT-

specific concepts. A more detailed description on the data
used for these tests can be found in Section 4.1.
The input and output size of this part of the model was

fixed. This was necessary because of the way we track IDs in
a scene. Being analogous to classification, it can only contain
a pre-determined amount of options. The value was chosen
based on tests regarding our target data. If used with another
specific domain in mind, this value could be a hyperparame-
ter to be tuned. We illustrate this part of the architecture in
Figure 5.
The output of this part of the model represents N + 100

attention maps, with the first N relating previous (or empty)
objects to potential counterparts in the current frame, either
as continuations of their trajectories or as new entries, while
the last hundred are not used. This is similar to how ViT uses
the encoder by having a classification token. In our case, we
have defined 100 tracking tokens to be a sizeable amount
(this value was defined by the results obtained in Section
4.2.1), either initialized with values for each tracked object
in the frame window, or with empty values, representing po-
sitions that could be occupied by new entries.

3.5 Tracking and Detection Heads
These two branches of the network comprise sequences of 3
fully connected layers, with sizes [768, 768, Output]. The
networks can be seen in detail in Figure 6. Both receive
the same input vector, but one head is tasked with detecting
bounding boxes via 4-way regression, while the other assigns
an ID to each object, fromwhich we can infer based on previ-
ous frames information whether the object is new or matched
to an existing one.
The output layer size varies for each head. For detection,

Output = 4, denoting the bounding box coordinates. For
tracking,Output = N , the limit of objects per window, anal-
ogous to classification, but aimed at assigning each ”class” to
a similar or new object from the input. This process is done
in parallel. Note that, the only post-processing step needed
is doing the process of unmapping defined in Figure 2 and
assigning new IDs to unmatched elements.
This approach follow previous works that, when doing
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Figure 5. Vision Transformer Encoder schematics.

Figure 6. Detection and Tracking Heads. Each receives a N-sized batch of
attention maps.

both detection and tracking simultaneously, would actually
split this task into two different heads. While some decide
against using the same input on both, as in Sun et al. [2021],
we opted to use the same attention maps extracted from the
encoder. As mentioned previously, the positions correspond-
ing to our Tracking Tokens output positions are the ones to
learn which bounding box coordinates correlates to which
object in current frame, used as the last 100 positions of the
input sequence.

3.6 Limitations by Design
This approach aims to portray the MOT problem as a set pre-
diction task, just like DETR [Carion et al., 2020] did for ob-

ject detection and Zeng et al. [2022] followed it for MOT.
The idea is that instead of the output becoming a sequence
where their relative position matter, the network’s output rep-
resents the situation as a whole. But to use it this way, there
needs to be a limit of tracked objects in a given context win-
dow. This means two things: firstly some of the outputs
might just be throwaway predictions. Secondly we might
lose some of the predicted objects if there just happens to be
over the object limit. Which is why this value has to be tuned
to specific use cases. In more dense scenarios, the model will
fail a lot more if the amount of Tracking Tokens is reduced,
while in more sparse scenes, we might end up having unnec-
essary overhead.

4 Experiments
The experiments were conducted to validate the practical ca-
pabilities of the solution, bringing common evaluation met-
rics for the problem and also emphasizing the importance of
inference time per image.

4.1 Data Used
For the tests described below, theMOT17 dataset fromMilan
et al. [2016] was used. This dataset is a common benchmark
for MOT, making it a good candidate for producing compar-
isons and evaluating the overall performance of the model.
This dataset has a predefined training and testing sub-

set, where the training data consists of 21 annotated video
sequences of people walking in various scenarios, varying
cameras, viewing angles, static or mobile recording, number
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of people, recording distance, indoor and outdoor environ-
ments, and lighting conditions. In total, there are 15948 im-
ages, containing 336891 bounding box annotations. For the
test set, there are 17757 images with 564228 annotations.
Here we validate the definition of the maximum limits of

individual objects in a time window. Below is a visualization
of the distribution of objects across frames. This implies that
for this specific test case, 100 objects are sufficient to cover
almost all objects.
In Figure 7, we can see the boxplot of the distribution of

unique IDs in every set of one consecutive frame, meaning
K = 1. In the plot, we notice how most of the time, there
aren’t more than 60 objects, and themaximum value is barely
over 100.

Figure 7. Objects per Window, with K=1 (single frame)

Now in Figure 8, with K=5 (meaning a window 5
times larger than the previous analysis), this boxplot barely
changes. So any window size from 1 through 5 can use
100 max elements without losing many detections by de-
fault. This analysis meant that this limitation does not neces-
sarily cause lower accuracy metrics for the model with 100
sequence size configuration. Although for other use cases,
it could be interesting to make this limit higher, we show
how it affects the inference time performance of the model
in the next section, also how lowering this value, for more
constricted scenarios, could enhance this same metric.

4.2 Model Training Configuration
Following common guidelines in related works Zeng
et al. [2022]; Zhang et al. [2023], the AdamW optimizer
[Loshchilov and Hutter, 2019] was employed. The results of
the final model configuration, which will be used for compar-
ison with other works, were trained for 150 epochs. Due to
memory limitations, the batch size was kept at 16 sequences
per sample.
The loss functions directly follow how the data is handled

throughout the model. Being a model with tasks that are in-
compatible in terms of format (one produces a value corre-
sponding to positions in the image, while the other tries to
understand the different individual objects), it makes sense
that the loss function is composite.

Figure 8. Objects per Window, with K=5

Thus, to adjust the weights based on the ability to find
objects in the videos, GIoU was used, first conceptualized
in Rezatofighi et al. [2019]. This loss function takes into
consideration interesting details of bounding boxes. For the
tracking head, the Categorical Cross Entropy function was
used. It works because by reducing the scope to a time win-
dow, it becomes possible to perform a classification task to
track objects.

4.2.1 Different Model Hyperparameter Configurations

From the conceptualization of the model in Section 3, there
are two values that must be defined previous to the training
of the network. In this section, we try to analyze what impact
each change can have on the final computational cost of the
model. The first one corresponds to the size limit of the ob-
jects found in a context window. An optimal value has been
defined by a dataset-specific analysis, but in Table 3 we mea-
sured how the inference time changes based on this value N .
By only varying this value and keeping total frames fixed
at 3 and cutout size to 64, we can see that lowering the se-
quence size from 100 to 50 barely yields an increase in FPS,
but increasing this value to 200 shows a big slowdown.

Table 2. Impact of Total Frames on FPS

Total Frames FPS Delta (%)
1 62.5 -
2 58.83 -5.87
3 43.5 -30.4
4 33 -47.2

Based on our tests presented in Tables 2, 3 and 4, what af-
fects the FPS the most is the context window used for each
inference, which is logical, as it makes so the model has to go
through more images and objects before the inference. How-
ever, keeping too low of a context window can affect the
model’s results. The values of this test are contained in Ta-
ble 2.
Finally, altering the size of the objects before they are av-

eraged behaves similarly to the change in sequence size. In
Table 4, the difference between 32 and 64-sized objects is
very small, but between 64 and 128, we can see an 18.6%
decrease in FPS. This means we can get a small speed-up
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Table 3. Impact of Sequence Size on FPS

Sequence Size FPS Delta (%)
100 43.5 -
50 45.16 3.81
200 33.8 -22.3

by resizing to a lower resolution. However, doing so could
cause a bigger loss in the ID assigning step, as specific fea-
tures would be harder to learn.

Table 4. Impact of Cutout Size on FPS

Cutout Size FPS Delta (%)
64 43.5 -
32 45.45 4.48
128 35.41 -18.6

4.3 Comparative Results
In Table 5, results are presented for 4 main MOT metrics:
MOTA (Multiple Object Tracking Accuracy), HOTA (High
Order Tracking Accuracy), IDF1 (Identification F1-Score).
All definitions of the previous three were implemented based
on Luiten et al. [2020], and inference time in Frames per Sec-
ond (FPS). In this case, all models were tested on a machine
with the following configuration: Ryzen 5 3600 processor,
32GB of RAM, and a Nvidia RTX 3060.
Due to the time complexity cost of training such mod-

els, it becomes hard to evaluate these configurations exhaus-
tively. The main objective of the research was to allow
proper usage of an efficient transformer-based end-to-end
MOT model, we decided to use the previous FPS results to
select the final configuration, which was trained and evalu-
ated. These results are displayed in Table 5. These results
show how this approach was effective at being an efficient
model, surpassing all other models, while having a loss of
around 10% versus other models in accuracy metrics. Specif-
ically, the models that are based on transformers, likeMOTR,
MOTRv2, TransTrack, and Trackformer, were surpassed by
a big margin in terms of inference speed, by losing at most
14% in MOTA vs MOTRv2. This shows that this approach
is valid to solve MOT efficiently, but still can see improve-
ments more focused on extracting better information from
the whole pipeline.
Considering these results, we can notice that the metric

deficit between the best model in the MOTA and IDF1 accu-
racy is very similar. Since IDF1 indicates the performance
on the specific task of data association, this shows that the
biggest issue in the current model lies in its ability to re-
identify the objects over time. In the next section, we explore
in more detail some of these results.

4.4 Visualization
Here we show some examples of model predictions to dis-
cuss the results and what was traded off for the inference
speed. In Figure 9, there are three frames, (a), (b) and (c). All
of these are example images taken from MOT17. In frame
(a) we can see the model detected two people. One has ID=1

Figure 9. Some frames with predictions from the model.

and the other has ID=23. Some frames later, another person
enters the scene. We can see this in frames (b) and (c). It is
tagged as ID=23 in frame (b). We can also see that the model
kept the tag of object 1, even through an almost complete oc-
clusion. But in frame (c), we can see that it switched this ID
for the ID of the new person, who was close to him.
This is a recurringmistake the model tends to make, which

justifies most of the lower metrics it achieves, compared to
similar models. This can be associated with the method used
to assign IDs to each object, which is described in Section 3.5.
Since the tracking head treats the result as a classification
problem, and each object will go through this head, it’s not
impossible to guarantee that the model will not predict the
same object ID twice in the same frame, which should be
impossible.

5 Conclusion and Future Work
The results show that the introduced model offers an inno-
vative approach, achieving efficient task performance with
low inference time. However, improvements are needed in
its metrics to compete with established state-of-the-art mod-
els. Given its lightweight nature, it emerges as a strong can-
didate for solutions requiring efficiency. The model’s design
limitation, such as the maximum of 100 objects per window,
is adjustable, providing flexibility for various applications.
Another limitation was the choice of a classification-like
head for tracking the objects. While providing faster infer-
ence speed, it introduced the duplicated ID problem, which
presents a big challenge in the current model architecture.
In terms of application scenarios, this model provides un-

matched processing speeds, this being a good option, even
though it presents lower metrics scores besides the FPS.
From the qualitative analysis of the results, the issues with
the re-identification of objects can present a challenge for
the practical usage of this solution. Still, it can present a base
work for this type of model, focusing now on inference time
without sacrificing as much performance on the other met-
rics.
Future work includes exploring different data representa-

tions at the model’s input, possibly employing alternative en-
coders to the Vision Transformer for enhanced results. In-
vestigating new output data representations and refining the
tracking stage to better handle ID assignments by consider-
ing object similarities are promising avenues. The model’s
adaptability also warrants testing against diverse datasets in
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Table 5. Table with comparative results
Model MOTA (%) HOTA (%) IDF1 (%) FPS

StrongSORT 79.6 64.4 79.5 7.1
BoT-SORT 80.6 64.6 79.5 6.6
FairMOT 69.2 59.3 73.3 26.8
ByteTrack 76.0 63.1 79.0 29.6
SparseTrack 81.0 65.1 80.1 19.9
MOTR 73.4 - 68.6 6.9
MOTRv2 78.6 62.0 75.0 7.5
TransTrack 74.5 54.1 63.9 12
TrackFormer 62.3 - 57.6 7.4
CenterTrack 67.8 52.2 64.7 17.5
OneTrack 64.7 56.3 64.5 43.5

various domains. These tests can include higher object per
frame window configuration (from the value of 100 used in
our tests), which can attest to the scalability of this model.
The disparity in frame representation between convolu-

tional feature extraction and linear projection poses a chal-
lenge. A dedicated loss function, tailored to simultaneously
address both detection and tracking aspects, could further op-
timize the model’s performance. Another challenge can be
evaluating how this model in particular performs with criti-
cal occlusion scenarios, although this requires specific data
which was unavailable at the time of this work.
We believe this paper brought another paradigm of imple-

menting such models while using transformer-based models.
Onewhich could not produce fast responses, limiting its prac-
tical use in real-life cases and applications. Further improve-
ments to this model can allow it to perform even better over
time, with improved training data for specific domains, and
further working on the actual model and its development.

6 Acronyms Table

Table 6. Acronyms Reference
Acronym Meaning
MOT Multiple Object Tracking
MOTA Multiple Object Tracking Accuracy
HOTA Higher Order Tracking Accuracy
IDF1 Identification F1-Score
FPS Frames per Second
ID Object identification number
IoU Intersection Over Union
ViT Vision Transformer
OAV Object Averaged Vector
DETR Detection Transformer
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