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Abstract
Network Functions Virtualization (NFV) and Information-Centric Networking (ICN) are promising networking
paradigms for the future of the Internet. Concurrently, microservice architecture offers an attractive alternative to
monolithic architecture for software development. This work addresses a scenario composed of these concepts,
where an ICN network must be deployed and managed using ICN microservices. In this scenario, ICN microser-
vices must be created, connected, configured, and monitored at runtime, which is not trivial. To address these
challenges, this work proposes Micro-Chain, an architecture for deploying, scaling, and linking ICN microservices.
The architecture consists of four modules, relationships between them, and core operations. A Micro-Chain imple-
mentation is presented as proof of concept, which has a threshold-based scaling process and a placement method to
minimize the number of hops for an ICN microservice chain. The evaluation assesses a scale-on-demand scenario
in a cluster with three nodes. The results demonstrate that 1) the developed solution can scale on demand, 2) the
communication overhead is 0.632%, and 3) the placement of microservices affects network performance.

Keywords: Information-Centric Networking, Network Functions Virtualization, Microservice Architecture, Node Clus-
ter, Network Management

1 Introduction

The traditional location-based communication model em-
ployed by TCP/IP is not fully compatible with the Inter-
net’s operation, particularly with the Web protocols that use
name-based content requests. Information-Centric Network-
ing (ICN) appears as an alternative to solve these issues.
Specifically, ICN adopts a request-response communication
model that uses content data names directly at the network
layer, providing a more appropriate architecture for content
acquisition on the Internet. As a promising candidate for the
future of Internet communication, ICN has the potential to
transform the delivery of network services and accommodate
the evolving digital landscape [Singh and Ujjwal, 2020].
ICN offers substantial benefits in network architecture com-
pared to the TCP/IP paradigm. For instance, ICN devices
store content locally, leading to faster and more reliable con-
tent retrieval, reducing latency, and improving delivery per-
formance, especially for frequently accessed content. The
distributed caching approach improves network resilience,
guaranteeing continuous access to content even during node
or link failures. The capability of ICN to separate content
from specific locations enables user access to content at dif-
ferent network points, which can be leveraged in scenarios in-
volving mobile users and devices [Singh and Ujjwal, 2020].

The widespread adoption and deployment of ICN face sev-
eral challenges and obstacles. One of the primary challenges
is the fact that applications are typically IP-based. Adapting
these applications to be compatible with ICNmay require ex-
tensive adaptations. Therefore, there must be robust support
to stimulate companies’ adoption of ICN. Another challenge
to consider is the required replacement of network hardware,
including routers, switches, and other network equipment,
which requires both time and monetary resources. Within
this context, the implementation of ICN can be leveraged
by using Network Functions Virtualization (NFV) [Marchal
et al., 2018]. Specifically, generic hardware can implement
ICN network functions and other existing protocols, facili-
tating the gradual transition to this new paradigm while min-
imizing long-term expenses.
Traditionally, software is implemented using a monolithic

architecture characterized by high interdependencies among
their components and functionalities [Alencar et al., 2022].
The tightly coupled nature of the monolithic architecture
harms application maintenance and updates, leading to po-
tential inefficiencies in system management. Moreover, ap-
plications over monolithic resemble singular software enti-
ties, requiring complete application replication for horizontal
scaling. However, these applications comprise multiple soft-
ware components with distinct resource demands, resulting
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in the inability to scale up these components independently
and inefficiencies in resource utilization. Addressing these
limitations is crucial, which has led to exploring alternative
software design approaches to improve scalability, resource
usage efficiency, and overall application robustness [Cerny
et al., 2022].
Microservices architecture emerged primarily to address

the scalability and interdependence issues associatedwith the
monolithic approach [Cerny et al., 2022]. This architecture
divides an application (or service) into small, loosely coupled
modules that can be independently developed and deployed.
Compared to the monolithic architecture, the microservices
architecture can provide advantages in terms of scalability,
resource usage optimization, modularity, isolation, and flex-
ibility. When using microservices, each system module (mi-
croservice) can be scaled independently according to its re-
quirements. For example, highly-trafficked microservices
can be scaled without impacting others. Modern network
approaches are exploring the concept of microservices to en-
hance network resource utilization and meet the demanding
needs of diverse applications [Marchal et al., 2018]. In ad-
dition, the small size of the microservices contributes to un-
derstandability. It enables teams to focus on specific system
parts, speeding up the development process and improving
maintainability and code reuse.
In this context, VirtualizedNetwork Functions (VNF)s can

be implemented from a microservices architecture for en-
hancing the use of ICN [Marchal et al., 2018], where the
advantages of both concepts can be leveraged. However,
managing and orchestrating microservices poses consider-
able challenges. Microservices must be deployed, connected,
and monitored in runtime. Additionally, current solutions fo-
cus on managing and orchestrating cloud applications. Since
VNFs microservices handle network operations, modifica-
tions in the data link and network layers are required. To
support these requirements, it is necessary to define an archi-
tecture that determines an organization of entities and their
relationships to perform these operations.
This paper proposes Micro-Chain, an architecture to or-

chestrate and manage ICN microservices. More specifically,
it deals with the ICN implementation called Named Data
Networking (NDN) [Zhang et al., 2014]. Micro-Chain de-
fines a group ofmodules and their relationships formanaging
and monitoring NDNmicroservices across a cluster of nodes.
For this, concepts and technologies used in cloud computing,
such as Kubernetes and Prometheus, are extended. Micro-
Chain operations are tested in a scaling scenario with multi-
ple nodes, which employs several of the operations suggested
for the architecture. In this scenario, a microservices place-
ment problem that degrades communication performance is
identified.
The main contribution of this work is the development of

an architecture for deploying and managing an NDN local
network composed of multi-nodes and based on microser-
vices. The secondary contributions are:

• An architecture with an online implementation accessi-
ble for validating other solutions based on NDN. The
implementation leverages tools like Kubernetes and
Prometheus, benefiting from robust community support

and regular updates.
• The development of a method for placing microser-
vices.

• A discussion on how to deal with NDN microservices
and identify challenges and future work.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the main concepts necessary to understand
the proposed solution. Section 3 presents the related work.
Section 4 describes the proposed architectural solution and
the implementation details of this architecture. Then, in Sec-
tion 5, the addressed application scenario is defined, the pro-
posed architecture is evaluated, and the results are presented.
Finally, Section 6 discusses the outlines, and Section 7 con-
cludes the paper.

2 Background
This section presents the main concepts about NDN and its
basic functioning. Subsequently, a set of NDNmicroservices
and a solution to manage them on demand are described.

2.1 Named Data Networking
NDN is one of the most used implementations of ICN, where
the communication in an NDN is based on two types of pack-
ets: Interest and Data. First, a client requests content by
sending an interest packet containing the content name. This
Interest travels through the NDN, looking for the requested
content. Then, the device that receives the Interest and has
the content stored responds by sending the Data packet with
the requested content. NDN devices execute three data struc-
tures and forwarding policies:

• Content Store (CS): A temporary cache of received
Data packets to satisfy future Interests. CS employs a
strategy to define whether content should be stored lo-
cally;

• Forwarding InformationBase (FIB): It contains infor-
mation about how to route Interest to get closer to the
data source based on their names. A name prefix-based
routing protocol populates the FIB and can have multi-
ple outgoing interfaces and next-hop for each prefix;

• Pending Interest Table (PIT): Stores all Interests for-
warded but not yet satisfied. Each PIT entry records
the name of the data transported in the Interest, together
with its input and output interface(s) to assist in routing
the Data packets along the reverse path of the Interest.

Fig. 1 shows the operation of an NDN device according to
the incoming packets received. When an Interest packet (red
arrow) arrives at the device, it is first checked whether the
content is stored locally in the CS. The content is sent to the
requesting party using a Data packet (green arrow) if it exists.
If the content does not exist locally, the device continues to
check whether there is any entry in the PIT for the name of
the requested content. If existent, the input face of Interest is
added to PIT. If there is no entry in the PIT, the device checks
the FIB for the next hop and forwards the packet. The packet
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can also be responded to with a NACK or discarded if there
is no adequate match in the FIB.
In addition, when a Data packet arrives at the device, it

is checked whether the name is registered in the PIT. If it
exists, the data packet is forwarded to all registered faces.
In parallel, the CS can store data according to the defined
strategy. The data is discarded if no record in the PIT exists.

'CS PIT FIB

Add Entry Face

Discard data

Data
packet

Interest
packet

Cache

Lookup
hit

Lookup
miss

Remove or
Nack

Figure 1. Packet processing and forwarding by an NDN device.

In more dynamic networking scenarios, as is the case of
satellite networks, as shown by Dynerowicz and Mendes
[2017], such NDN basic operation may need to be enhanced
with other functions, such as push-communication mecha-
nisms, aiming to reduce the communication overhead. There-
fore, having the NDN engine developed based on microser-
vices may bring advantages.

2.2 NDN microservices
The Microservices architecture is frequently used to develop
services that execute information processing functions dis-
tributed across network nodes. As this architectural approach
gained prominence, its applicability extended into the net-
work domain. In this context, protocols developed through
themicroservices paradigm are employed to execute network
tasks and operations. These protocols utilize Microservices
architecture’s inherent modular and scalable characteristics
to improve system adaptability on demand.
Marchal et al. [2018] developed a set of seven NDN mi-

croservices from the monolithic Named Data Networking
Forwarding Daemon (NFD) implementation. The microser-
vices are:

• Name Router (NR): It forwards an interest packet to
the next device towards the server. It is similar to the
FIB of NDN, and it only requires microservice because
it is the only one that can listen to route announcements
from the server.

• BackwardRouter (BR): Used to forward aData packet
towards the requesting client. This function is similar to
the PIT of NDN.

• Content Store (CS): This function aims to store Data
packets that pass through it to reuse them later.

• Strategy Forwarder (SF): This function is used to
forward packets to one or more selected destination(s)
based on a given strategy. The strategies can be load-
balancing, failover, or more specific to NDN.

• Packet Dispatcher (PD): Responsible for forwarding
each type of traffic to different outputs. This module

selects the correct processing pipeline and is best suited
to handle external traffic at the network’s edge.

• Signature Verifier (SV): NDN data packets have a sig-
nature field to prevent cyber attacks, and this function
verifies this signature.

• Name Filter (NF): This function is a filter used to avoid
specific packets on the network based on name.

The authors also developed a runtime Manager responsi-
ble for the NDN control plane and on-demand operations.
More specifically, the operations performed by the Manager
are i) Horizontal scaling: It increases or decreases the num-
ber of microservice instances based on CPU usage; ii) Cre-
ate and destroy microservices: New microservices can be
deployed or destroyed as needed, for example, during the
scaling up process, when new instances of microservices are
created; iii) Create and destroy links: Microservices are
connected in sequences to enable a set of desired functional-
ities; iv) Monitor metrics: Each microservice can provide
informative metrics to the Manager for decision-making.
Additionally, to compare performance between mono-

lithic NFD and microservices NDN, Marchal et al. [2018]
performed experiments evaluating CPU usage, throughput,
and latency of both. The results indicate that microservices
have higher throughput and lower latency at the cost of
higher CPU consumption. Therefore, a trade-off must be
considered when evaluating which architecture to use for a
given scenario.
The work developed by Marchal et al. [2018] presents sig-

nificant contributions to the usage and management of NDN
microservices. However, the evaluation was conducted on a
single machine, which does not align with real applications
like the Internet. In this context, NDN microservices require
deployment and management across multiple devices, which
is more challenging.
To address the limitations of the work by Marchal et al.

[2018], da Cruz et al. [2024b] proposed Micro-Chain, an ar-
chitecture designed to support the deployment and scaling of
NDN microservices in a cluster. However, the work lacks
sufficient architectural detail, making it challenging to com-
prehend and, consequently, to utilize and reproduce.
In another work, da Cruz et al. [2024a] utilized NDN mi-

croservices to deploy and manage an NDN network in a mil-
itary network setting, where a device is required to be re-
placed due to its low battery level. However, this work does
not address the automatic scale of NDN microservices.

3 Related Works
According to the motivation and goals of this work, this
section discusses works in the contexts of NFV, Software-
Defined Networking (SDN), ICN, and microservice archi-
tecture; management and orchestration in NFV context; and
placement problems.

3.1 NFV, SDN, ICN, and Microservice Archi-
tecture

Aldaoud et al. [2023] investigated the potential of integrating
ICN, NFV, and SDN technologies. The work concludes that
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combining these concepts can enhance networks’ reliability,
scalability, mobility, flexibility, and robustness. In addition,
the authors discuss the utilization of ICN, NFV, and SDN in
the context of 5G, 6G, and satellite networking, where these
technologies have the potential to improve performance.
In ICN, the use of NDN has been explored in several con-

texts. The authors Wang et al. [2021] and Dulal et al. [2022]
focus on NDN data plane or change part of this plane to en-
able communication between devices. Additionally, Qi and
Wang [2023] and Fang andWolf [2023] deal with the execut-
ing functions based on the NDN content naming and forward-
ing process. Conversely, other studies approach the NDN
control plane. One of the strategies used in this regard is a
SDN controller modified to support NDN operations.
Khalid et al. [2023] andKalafatidis et al. [2022] extend the

functionalities of an SDN controller for NDN, where the con-
troller is mainly responsible for configuring routes between
network devices. However, the authors do not address the
challenge of scaling on demand, i.e., dynamically adjusting
network resources in response to system requirements.
Microservices is an architecture traditionally used to de-

velop applications in cloud environments. However, Chowd-
hury et al. [2019], Nekovee et al. [2020] and Marchal et al.
[2018] addressed the use of microservice to develop VNFs.
The authors emphasize that this approach leverages microser-
vice characteristics, such as independence, modularity, and
continuous delivery, for NFV.
This work addresses the integration of ICN and microser-

vices architecture concepts. The interest of previous works
in addressing these concepts, whether jointly or separately,
indicates their importance for current and future networks.
Furthermore, the works presented in this section argue that
microservices architecture is a viable option for developing
VNFs. This approach can potentially improve VNFs flexibil-
ity, scalability, maintenance, development, and redundancy.

3.2 Management and Orchestration in NFV
Context

In their review of management and orchestration in NFV
architecture, Kaur et al. [2022] highlighted that container
technology has been gaining attention for developing VNFs,
mainly due to the gains in scalability, resource utilization,
and agile software development presented by containers.
These characteristics make containers more suitable than Vir-
tual Machines (VMs) when: 1) Applications were developed
using microservices architecture; 2) There is a need to min-
imize the number of servers; and 3) VNFs have only one
operating system. However, Kaur et al. [2022] also empha-
size that containers suffer from security issues due to kernel
sharing and are an early-stage technology.
Cziva and Pezaros [2017] compared the performance

of VMs (XEN dom0, clickOS, KVM virtio, XEN domU,
KVMe1000) and containers. The results show that contain-
ers have: 1) The third smallest delay, with KVM and XEN
presenting the lowest values; 2) A shorter initiation time, con-
suming 10 seconds to instantiate and start 50 VNFs, while
VM XEN consumed 40 seconds to instantiate; 3) The lowest
memory consumption, spending 2.21 MB per VNF, while
ClickOS consumed more than twice that amount. Conse-

quently, containers emerge as an interesting approach for
resource-constrained scenarios, such as at the network edge.
Mai et al. [2019] present a proposal to implement, man-

age, and protect an NDN network. Each node in the network
corresponds to a containerized NFD. The solution is evalu-
ated dynamically in a content poisoning and scaling attack
scenario. The scaling is performed according to the size of
the PIT. While the PIT size indirectly indicates a container’s
stress, it is more advantageous to scale based on CPU and
memory consumption in this case. CPU and memory-based
scaling is a common approach to scaling microservices in the
cloud.
Lema et al. [2019] proposed an architecture to handle the

dynamic deployment of a named function network and net-
work services for ICN infrastructure. The developed ap-
proach is based on Topology and Orchestration Specification
for CloudApplications (TOSCA), which defines VNF behav-
ior in VMs. Lema et al. [2019] highlight that the solution de-
veloped lacks more mature monitoring and automatic scaling
functionalities.
The European Telecommunications Standards Institute

(ETSI) developed NFV Management and Orchestration
(MANO) [ETSI, 2014], an architecture for management
and orchestration in the NFV context. MANO as a refer-
ence architecture inspired the development of solutions such
as Open Network Automation Platform (ONAP) and Open
Source MANO (OSM). However, ONAP and OSM are far
from complete or stable. Furthermore, implementing solu-
tions using these tools requires experience in cloud com-
puting network platforms, making the process non-trivial
[Yilma et al., 2020; Kaur et al., 2022].
This section presented works related to the use of contain-

ers for NFV, as opposed to the usual VMs approach. Con-
tainers are lighter and, therefore, more suitable for applica-
tions where resources are scarce, such as at the network edge.
Furthermore, both Mai et al. [2019] and Lema et al. [2019]
posit that MANO-based solutions are typically evaluated in
the context of IP networks, necessitating adjustments when
applied to ICN scenarios.

3.3 Placement Problem
In cloud environments, containerized microservices-based
applications commonly utilize Kubernetes as a tool for de-
ployment, scaling, and management [Ghorab and St-Hilaire,
2022; Abdollahi Vayghan et al., 2018; Rossi et al., 2020].
However, Kubernetes has some limitations. One of these lim-
itations is that Kubernetes alone does not perform runtime
operations, such as custom configurations and establishing
links between microservices. As these operations depend on
the use case, developing applications that work together with
Kubernetes to implement the business logic is necessary.
Another problem presented by Kubernetes is its method

for the placement of microservices. Kubernetes has a place-
ment method that does not consider network conditions
[Ding et al., 2023; Pallewatta et al., 2022]. Addressing the
microservices placement problem, Pallewatta et al. [2022]
present a scalable QoS-aware application scheduling policy
for fog devices. Obtained results indicate an up to 35% im-
provement in makespan satisfaction and up to 70% improve-



Micro-Chain: A Cluster Architecture for Managing NDN Microservices da Cruz et al. 2024

ment in budget satisfaction. Similarly, Ding et al. [2023]
also addresses this problem by developing a method for po-
sitioning with dynamic resource allocation to minimize the
sum of resources and communication costs. Both works ad-
dress network usage as a parameter, such as delay between
microservices or nodes.

4 Micro-Chain Architecture

This section begins by presenting a scenario based on satel-
lite systems, explaining why it is interesting to use ICN mi-
croservices. Subsequently, a conceptual definition of the
Micro-Chain architecture is outlined, summarizing its mod-
ules and interrelationships. Subsequently, the implementa-
tion details of each module are presented. Finally, the core
operations that enable the management of NDN microser-
vices across a cluster are described.

4.1 Application Scenario

In satellite systems, the space segment, as illustrated in Fig.
2, focuses on relaying data, having limited capabilities to
store and process data. Hence, satellites are part of a more ex-
tensive system in which they are in direct or indirect contact
with ground stations to download data in real time.

ISP

Ground SegmentSpace SegmentUser Segment

LEO

GEO

Figure 2. Ground Station as a Service Scenario.

Ground stations, however, are pretty expensive to build
and operate. In such a scenario, the Ground Station as a Ser-
vice (GSaaS) business model, introduced by Amazon Web
Services (AWS) and Microsoft Azure Orbital, allows satel-
lite operators to concentrate on building satellites and appli-
cations, knowing that ground station services will be avail-
able for use as needed [Velusamy and Lent, 2022].
The concept of GSaaS relies on a virtualized satellite

ground station with a pay-per-usage model. Moreover, when
such a virtualized approach is based on a microservice archi-
tecture, satellite operatorsmay adjust their operations by scal-
ing up and down the microservice configuration of ground
stations according to different demands, such as changes in
traffic or detection of security hazards.
AWS and Azure Orbital’s ground station virtual archi-

tecture is very similar, leveraging Software Defined Radio
(SDR) technologies for transporting Radio Frequency sig-
nals over IP. However, developing a virtualized architecture

based on IP extends the space domain of the mismatch be-
tween today’s Internet architecture and its usage. Observ-
ing how the current Internet is, content-based networking
is already the dominant paradigm (e.g., YouTube, Netflix,
Amazon, iTunes). The same conclusion is achieved consid-
ering other Internet services, such as the Internet of Things
(IoT) and specific middleware used in industrial and mission-
critical environments (e.g., Data Distribution Services).
Hence, a better approach for developing a GSaaS model

is to support a networking approach based on data and not
host identifiers, following the ICN paradigm. ICN brings
potential advantages to dynamic networks, such as satellite
systems. ICN provides connectionless and topological inde-
pendent communications by identifying data and not devices,
allowing data to be retrieved on-demand, avoiding undesir-
able traffic, and potentially processing and storing in inter-
mediary nodes, such as Ground Stations.
Having Ground Stations fetching, storing, and redistribut-

ing data to support all data-centric Internet services allows
customers to focus on what is important to them: easy, non-
interrupted, and reliable access to data to build their business
cases. Hence, to ensure that this happens from the point in
time when data arrives at the space segment until it leaves
toward any consumer (e.g., data center or content delivery
network), via a set of ground stations. It is essential to de-
velop ground stations based on a data-centric networking
approach built upon a microservices architecture, allowing
an easy adaptation of the networking services, such as the
Micro-Chain ICN concept described in the next section.

4.2 Micro-Chain Architecture
The proposed Micro-Chain architecture to orchestrate and
manage ICN microservice is depicted in Fig. 3 and includes
four modules:

• Microservices module: it represents the microservices
used in the architecture. In the Fig. 3, it is represented
by rectangular boxes with the prefix ”micro”.

• Monitoring module: it acquires, stores, processes, and
exposes metrics via the monitor API. As needed, an-
other module can request the data acquired by the mon-
itoring module to be used in some internal logic.

• Orchestrator module: it is responsible for deploying
and ensuring the integrity of containers and/or VMs,
even in the face of failures;

• Manager module: it is the central point of the architec-
ture, responsible for implementing the business logic.
In addition, this module also implements a web applica-
tion that allows the operator to check information about
the system and perform manual operations.

In addition, Micro-Chain also defines communication be-
tween modules via APIs. The architecture defines three
APIs: monitoring API, micro API, and orchestrator API.

In Fig. 3, each dotted rectangle represents a ground station
of the application scenario described in the previous section.
Micro-Chain extends the work of Marchal et al. [2018]

to a local cluster, overcoming the restriction of a single lo-
cal machine, which is closer to the proposed use of NDN.
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Figure 3. Micro-Chain, modules and their relationships.

In this way, several devices may use this protocol to enable
communication between groups of clients and servers. Ad-
ditionally, Micro-Chain introduces the Monitoring module
to handle metrics, whereas Marchal et al. [2018] utilized the
Manager for this purpose. In this context, the proposed ar-
chitecture is designed to enhance the distribution of respon-
sibilities between modules.
This work also extends what is presented in da Cruz et al.

[2024b] by providing four key contributions: 1) details of
how the architecture works; 2) outlines an application sce-
nario where the solution can be used; 3) a placement method
based on the number of hops between devices; and 4) a more
comprehensive analysis of the limitations associated with the
solution.

4.2.1 Microservices Module

The implementation ofMicro-Chain employs a modified ver-
sion of the microservices developed and available online1 by
Marchal et al. [2018]. The main modifications are related to
the suitability of microservices for operations with the Mon-
itoring module. In this context, a server application was de-
veloped to respond to Monitoring requests.

To the best of the authors’ knowledge, there is no
microservices-based NDN implementation other than Mar-
chal et al. [2018].
For NDN communication, each microservice has egress

and ingress interfaces. A microservice’s egress interfaces
correspond to the interfaces where it is the source, and its
ingress interfaces are the interfaces where it is the destina-
tion [Marchal et al., 2018].
The microservices have two properties: cardinality and

orientation. A non-orientedmicroservice can process both in-
terest and data packets at its interfaces, whereas an orientated
one can only process one. Conversely, cardinality refers to

1https://github.com/Nayald/NDN-microservices

the number of distinct sources or destinations a microservice
can identify during forwarding. The microservice forwards
packets to all its ingress or egress interfaces when its cardi-
nality is ”1” (multicast). A microservice with a cardinality of
”N” can forward packets to a specific source or destination,
implying that some route information is maintained [Marchal
et al., 2018].
The intricate relationships between cardinality and orien-

tation present a significant challenge in deploying these mi-
croservices. To illustrate this, Fig. 4 presents an erroneous
configuration to scale up BR1. In this configuration, an inter-
est packet received by CS1 on an ingress interface would be
sent to two BR instances since CS1 has an egress cardinality
of N. This would lead to potential errors and the inefficient
use of resources, as two identical packets of interest would
pass through the network. To correct this configuration, ap-
propriately, utilizing an SF microservice to divide the data
flow is necessary. Consequently, establishing and manipulat-
ing an NDN network based on these microservices requires
a comprehensive understanding of their operation. This in-
volves identifying the configurations of these microservices
to achieve specific desired characteristics.

CS1

BR1

NR1

BR2Consumer

Figure 4. Microservices configuration for BR1 scaling with package dupli-
cation.

All microservices accept at least three operations: 1) the
addition of a new interface, which is used to create con-
nections between microservices; 2) the deletion of an inter-
face; and 3) configuration changes, which depend on the
type of microservice. Additionally, microservices can have

https://github.com/Nayald/NDN-microservices
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other specific operations. TheNRmicroservice, for example,
accepts operations to configure routing to content servers,
which the Manager uses to control the routes.

4.2.2 Manager Module

The Manager and micro API were developed based on Mar-
chal et al. [2018], with implementation modifications also
being made to adjust Micro-Chain operations.
The Manager plays a pivotal role in maintaining and man-

aging two distinct graphs: one representing the topology of
microservices and other network nodes. These graphs store
essential operational data, including CPU andmemory usage,
names, and routing information. Additionally, the Manager
offers a web application interface for operators to visualize
and interact with the data stored in the microservices graph,
enabling manual operations as needed.
One of the Manager’s primary responsibilities is the scal-

ing process, which is subject to certain constraints. To scale,
a microservice must meet specific requirements, including:
1) it cannot be located at the edge of the network to prevent
broken connections outside the managed network; 2) it must
be defined as scalable; and 3) it must have a CPU and mem-
ory consumption that exceeds a certain threshold, where each
microservice can have customized values.
To exemplify the scaling process, consider the scaling up

process of BR1 shown in Figure 5. This process involves
seven operations, as follows: deployment of SF1 (1), the con-
nection between SF1 and BR1 (2), the connection between
CS1 and SF1 (3), deletion of the connection between CS1
andBR1 (4), deployment of BR2 (5), the connection between
BR2 and NR1 (6), and finally, the connection between SF1
and BR2 (7). It is important to highlight that during the de-
ployment of microservices, the Manager sets consumption
limits for CPU and memory.

CS1

SF1

BR1

NR1

scaling up

4

2 7

3

6

1

CS1

BR1
BR2

NR1

5

Figure 5. Steps to scale up BR1.

Microservices and the Manager communicate via User
Datagram Protocol (UDP) (micro API) using the JavaScript
Object Notation (JSON). Most messages transmitted be-
tween them contain two fields: ”action” and ”id.” The ”id”
field is an integer the Manager generates to identify the op-
eration. When a microservice sends a response, it includes
the same ”id” received from the Manager, enabling the Man-

ager to associate the response with the corresponding request.
On the other hand, the ”action” field is employed to mapmes-
sages to a specific function, which then executes the pipeline
for that action.
To exemplify the communicationmodel betweenManager

and microservices, consider the message format presented in
Listing 1 and Listing 2 to create a connection between CS1
and SF1 in step 3 of Fig. 5. Listing 1 shows the message
transmitted by the Manager to CS1, requesting this microser-
vice to create a new interface with SR1. This message in-
cludes the address and port of the target microservice. Con-
versely, Listing 2 shows the response transmitted by CS1 to
the Manager, confirming the successful establishment of the
connection in the status field.

Listing 1: Message sent by the Manager to request a new
face.
{

” a c t i o n ” : ” add_ f a c e ” ,
” i d ” : 6 ,
” l a y e r ” : ” t c p ” ,
” a d d r e s s ” : ” 1 7 2 . 1 8 . 0 . 5 ” ,
” p o r t ” : 6363

}

Listing 2: Message sent by the CS1 microservice in response
to the Manager’s request.
{

”name ” : ”CS1 ” ,
” t ype ” : ” r e p l y ” ,
” a c t i o n ” : ” add_ f a c e ” ,
” i d ” : 6 ,
” s t a t u s ” : ” s u c c e s s ” ,
” f a c e _ i d ” : 3

}

TheManager centrally manages the routes available in the
network and transfers them directly to the relevant modules,
such as an SDN controller. Route changes are triggeredwhen
the content provider sends a route request or leaves the net-
work and when connections are created. This route control
is performed for the NR microservice since its objective is to
forward interest packets to the producer.
Implementing microservices faces the placement problem,

where inappropriate placement can result in quality degrada-
tion of communication. To mitigate this problem, the Man-
ager performs a method to select a node for deploying mi-
croservices. However, it is worth highlighting that the place-
ment problem is not the focus of this work.
The Pseudocode 1 presents the steps to determine which

node will deploy a microservice. The objective is to mini-
mize the hops between nodes required to execute a chain of
microservices. The method starts with acquiring the prede-
cessor nodes with sufficient resources, line 1. Next, in line
2, the number of hops required for the acquired nodes is cal-
culated, assuming the microservice deployment in each node.
The nodes with the lowest number of hops are selected in line
3. Then, it is checked if more than one node was selected,
lines 4 to 6. If yes, the node with more resources and the
lowest number of hops is returned (line 5). If not, the node
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with the fewest hops is returned (line 7). As the node with
the lowest number of hops is always the predecessor node,
the method tends to deploy the microservice in this node.

Pseudocode 1: Steps to select a node for deploying a
microservice.
1 Gets the predecessors of the microservice with

sufficient resources;
2 Calculates the number of hops from the microservice

to each node in the network;
3 Selects node(s) with the least number of hops;
4 if Is there more than one node? then
5 returns node with more resources and fewer hops;
6 end
7 returns the node with the fewest hops;

4.2.3 Monitoring and Orchestrator Modules

The Micro-Chain implementation employs Prometheus2 as
a Monitoring module and an Hypertext Transfer Protocol
(HTTP) client library3 as an API monitor. In particular,
Prometheus uses pull-type data acquisition methodology to
actively obtain metrics from microservices.
Marchal et al. [2018] suggest metrics that can be moni-

tored by the microservices they developed. These include
route statistics for the NR, unsolicited data packets and inter-
est packets retransmitted to the BR, and hit-and-miss coun-
ters for CS.
In Micro-Chain, the Monitoring module only captures,

processes, and exposes the metrics, i.e., it does not perform
any decision-making based on the captured metrics. The
Manager performs this type of operation. Considering this
context, in Micro-Chain, the metrics monitoring process can
be acquired in three ways: directly through the Monitoring
module, directly through the Manager, or using these two
modules. The default process for capturing metrics is via
Monitoring. In this case, the Manager needs to request the
metrics captured by Monitoring to execute its operations,
which intrinsically introduces latency. Therefore, another
form of capture is directly by the Manager, which provides
faster decision-making.
In addition, the Micro-Chain implementation employs

K3s4 as an Orchestrator module and an HTTP client library5
as orchestrator API. In particular, K3s and Prometheus have
an integration that allows the deployment of Prometheus in
K3s, which allows their combined use. Furthermore, these
tools have good tutorial support and periodic updates, accel-
erating development.
The Manager, Monitoring, and microservices are devel-

oped explicitly in containers and deployed within the K3s
cluster. This will allow modules like Manager and Monitor-
ing to scale on demand in the future. Furthermore, this ap-
proach leverages K3s’ robustness to restart modules in case
of failure automatically.

2https://prometheus.io/
3https://github.com/prometheus/client_python
4https://k3s.io/
5https://github.com/kubernetes-client/python

4.2.4 Core Operations

Fig. 6 shows the operation for deploying a microservice in
the cluster. Initially, the Manager requests the Orchestrator
via orchestrator API to create the microservice by providing
details such as the image name, deployment node, and maxi-
mum resource usage (1). The Orchestrator then receives and
communicates with the node to download and configure the
container according to characteristics defined by the Man-
ager (2). When this process is completed, the node responds
to Orchestrator (3), informing if the request was successful.
The Orchestrator then saves the status and communicates the
operation result to the Manager (4). Additionally, the Or-
chestrator is responsible for keeping the container running
correctly and restarting it in case of failure. If the deploy-
ment operation of a microservice is successful, the Manager
saves the state locally in a graph. The process of destroying
a microservice is similar to deploying it. Upon deploying the
microservice (1-4), the Manager configures the Orchestrator
with monitoring details for the deployed microservice (5 and
6), such as the capture port and interval. If all operations (1-
6) are successful, the Manager transmits its IP address and
port to the microservice via micro API (7) to enable direct
communication. The microservice performs the configura-
tion and responds, informing the operation result (8).

Manager Orchestrator Node
"Y"

request
deploy request

download

response
downloadresponse

deploy

1
2

3

4

config monitor 5

response  config6

Microservice
"X"

manager info

confirm info

7

8

Figure 6. Sequence diagram for deploying a microservice.

When a microservice runs, it starts a server that exposes
the acquired metrics to theMonitoring module. Fig. 7 shows
the operations for discovering and capturing metrics using
Monitoring. First, the Monitoring requests information from
the Orchestrator regarding new endpoints (1 and 2), which
enables the Monitoring to identify the deployment of new
microservices. Upon discovery, Monitoring executes its met-
rics capture process via monitor API (3 and 4), as configured
by the Manager.
Fig. 8 illustrates the Manager’s steps for acquiring met-

rics from a microservice. As previously presented, this can
be performed by three methods: through the Monitoring, di-
rectly by the Manager, or both. In the first method, the Man-

https://prometheus.io/
https://github.com/prometheus/client_python
https://k3s.io/
https://github.com/ kubernetes-client/python
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Figure 7. Sequence diagram for microservice discovery andmetrics capture
from the Monitoring.

ager can request the metrics stored by Monitoring via moni-
tor API (1 and 2). Alternatively, the Manager can configure
the microservice for direct metric transmission by sending
a command via micro API containing essential details (3).
Upon receiving this configuration request, the microservice
processes it and responds with the result of the operation (4).
So, the microservice sends metrics to the Manager according
to the configuration (5 and 6). Direct capture by theManager
has less delay than the capture performed through Monitor-
ing and requested by the Manager. Therefore, this strategy
can be used in cases where there is a delay restriction.

Manager Monitoring
Microservice

"X"

request metrics

config

result config

!

!

send metrics

send metrics

1

2

3

4

5

6

response metrics

Figure 8. Sequence diagram for configuring and capturing metrics from the
Manager.

Fig. 9 presents the operation to create a new link through
the Manager. First, the Manager sends a message via micro
API to the source microservice informing the IP addresses
and port of the destinationmicroservice (1). When the source
microservice receives this message, the address is saved in a
forwarding table. Like other operations, the Manager waits
for confirmation of the operation (2) before storing the state
in the microservice graph.

Manager Microservice "X"

config link

result config
link

1

2

Figure 9. Sequence diagram for creating a link between microservices from
the Manager.

5 Evaluation
This section commences with a description of the experimen-
tal setup used. Subsequently, the evaluation of an on-demand
scaling scenario is presented. Finally, the experimental re-
sults and findings are provided.

5.1 Setup Overview
The experiments focus on operating a set of ground stations
in the idealized scenario presented in Fig. 2. The experi-
ments contain three ground stations, a client, and a server. In
this way, the space segment and the Internet Service Provider
(ISP) were omitted. The experiment includes three comput-
ers, each simulating a ground station.
Fig 10 shows an overview of the testbed, where all com-

puters are on the same IP network, and the ellipses represent
the software resources installed on each one. The Computer
1 has a server K3s with Manager and the main Prometheus
features installed; Computer 2 has a K3s agent installed, and
Computer 3 has a K3s agent installed. Depending on the ex-
periment, the NDN client and server are deployed on Com-
puter 2 or 3.
Table 1 presents the technical specifications of each com-

puter used in the experiments. The three computers have
been configured to create a K3s cluster. First, the Computer
1 installs an Ubuntu 22.04.3 LTS operating system and the
K3s v1.26.5 6, in this order. Then, the Manager Pod is de-
ployed on the cluster. Finally, the Prometheus features are
also deployed using a helm project 7.
The Computer 2 and Computer 3 run Ubuntu 22.04.3 LTS

with ndn-cxx v0.6.1. The implementation is an open-source
project available in GitHub8.

Table 1. Technical specification of the nodes.

Devices Description

Computer 1 Intel Core i3-6100 with 2 cores and
4 threads; 8 GB of memory

Computer 2 Intel Core i5-3210M with 4 cores and
2 threads; 6 GB of memory

Computer 3 AMD Ryzen 7 6800H with 8 cores and
8 threads; 16 GB of memory

6https://docs.k3s.io/quick-start
7https://github.com/prometheus-community/helm-charts
8https://gitfront.io/r/otavio/kGTNssbpC7wL/

micro-chain/

https://docs.k3s.io/quick-start
https://github.com/prometheus-community/helm-charts
https://gitfront.io/r/otavio/kGTNssbpC7wL/micro-chain/
https://gitfront.io/r/otavio/kGTNssbpC7wL/micro-chain/
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Figure 10. Experimental setup.

Regarding the placement of microservices, it was assumed
that the first microservice in the chain has the client applica-
tion (NDNperf client) as its predecessor. It is important to
note that this assumption does not reflect reality, as the client
application does not operate within the controlled network
infrastructure. However, this consideration can be adapted
to real-world scenarios by deploying the first microservice
at one of the network’s entry nodes closest to the client. In
addition, it was assumed that only agent nodes can deploy
microservices (Computers 2 and 3), leaving the server node
to focus on the control plane. Finally, it is considered that
Computer 2 can deploy up to 1 microservices, and Computer
3 can deploy up to 4.

5.2 Evaluation Scenario
This use case addresses the following questions: Q1: Can the
implemented solution automatically scale a microservice?
Q2: What is the communication overhead introduced by the
Micro-Chain control plane? Q3: Does the placement of mi-
croservices affect network performance?
To answer these questions, a microservices scaling sce-

nario is addressed. All architecture modules are used to ex-
ecute this process, which represents the expected operations
well. In this scenario, a client varies the number of interest
packets sent, which results in fluctuations in microservices
resource consumption in terms of CPU and memory.
In the experiment, the microservices CS, BR, and NR

are deployed and connected in this sequence. This choice
is because these microservices correspond to the main NDN
functionalities (local content storage, FIB, and PIT). Specif-
ically, the experiment focuses on BR scaling, where thresh-
olds are set for CPU and memory consumption, causing BR
to scale up or down once these thresholds are reached.
To determine the threshold values, it was hypothesized

that a value of 70% would reasonably necessitate the scale-
up before reaching full capacity, allowing for some time to
manage the increased demand. Conversely, a threshold of
35% was considered low enough for scale-down. Therefore,
the thresholds are 70% and 70%, respectively, for CPU and
memory consumption for scaling up, and 35% and 35% for
CPU and memory consumption for scaling down, respec-
tively.

5.3 Results
Fig. 11 presents the CPU usage during the br1 scale experi-
ment (in orange). Initially, all microservices have CPU con-
sumption close to 0%. After an NDNperf client and server
are started, CPU consumption of br1 increases above the up-
per threshold (70%) at 90 s, which starts the scaling-up pro-
cess. At 120 s, the consumption of new instance of br1, br1.1
(in purple), and br1.sr1 (in orange), anSF microservice, can
be observed. In this configuration, br1.sr1 divides traffic be-
tween br1 and br1.1.
In Fig. 11, between 150 s and 180 s, the client stops re-

questing content, reducing CPU consumption in the follow-
ing seconds. The scaling down process is triggered as the
CPU consumption of br1 drops below the 35%. At the end
of this process, the microservices configuration is the same
as at time 0 s.
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Figure 11. CPU usage at every 30 seconds.

Fig. 12 illustrates the amount of memory utilized during
the same experiment, where the values for each microservice
remained practically fixed. Due to low fluctuations, the sys-
tem did not reach the threshold criteria required for scaling
based on memory usage. In addition, since the scaling pro-
cess occurred as expected, the answer to Q1 is yes.
To demonstrate the overhead resulting from the control

plane, Fig. 13 shows the communication between the Man-
ager and the other modules: Monitoring, microservices, and
Orchestrator modules. The amount of communication is cal-
culated from the absolute number of HTTP and UDP mes-
sages the Manager sends and receives. It should be noted
that the amount of communication does not consider the size
of the message but rather the number of occurrences. The
majority of the amount of communication is between 90 s
and 100 s. At 95 s, the scale-up process generates around
44 communications, of which 22 is with K3s. During this
process, the communication between the Manager and other
modules is used to create two microservices and four links
while also deleting one link.

Moreover, Fig. 13 shows another peak at 215 s resulting
from the scale-down process, with the amount of commu-
nication equal to 30. The reduced number of messages ex-
changed during the scale-down process is due to the smaller
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Figure 12. Memory usage at every 30 seconds.
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Figure 13. Number of messages at each 5 seconds.

number of operations. Specifically, excluding two microser-
vices and one link creates one new link. The number of com-
munications that occurred provided initial information about
the consumption of network resources to perform the desired
operations.
Answering the question Q2: a total of 29273 data pack-

ets were retrieved by the client during the experiment, while
the total amount of control communications that occurred
is equal to 185, representing 0.632% of the amount of data
packets recovered.
Fig. 14 and Fig. 15 show the time required to perform

scale-up and scale-down processes 30 times, with the image
download time excluded, since each computer has the mi-
croservices image downloaded locally in advance. The aver-
age time for scale-up is 5.7815 s, while the average time for
scale-down is 0.0274 s. The longer time required for scaling
up is attributable to the greater number of steps performed,
which encompasses all the steps presented in Fig. 5.

5.3.1 Placement problem

Communication performance is evaluated based on the per-
formance experienced by the client during a scaling-up pro-
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Figure 14. Time required to execute scale-up process 30 times.
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Figure 15. Time required to execute scale-down process 30 times.

cess in two contexts, the first placing microservices manu-
ally and the second using the Pseudocode 1. Fig. 16 shows
the result for the first context. Before scaling, the average
throughput is 21.9436 Mbps. Then, the scaling process is
completed (38 s) when the average throughput unexpectedly
drops to 13.2898 Mbps.
As verified by Marchal et al. [2018], an increase in

throughput was expected with the increase in BR instances.
Fig. 17 shows the location and connection between microser-
vices, in which packets require two hops between comput-
ers to go from the client to the server. This communication
overhead results in lower throughput and was not identified
by Marchal et al. [2018] because the experiments were per-
formed on a single machine.
Fig. 18 shows the placement of microservices for the sec-

ond context, and Fig. 19 presents the client throughput for
this configuration. Before scaling, the average throughput is
23.36 Mbps. After scaling, in 34 s, the throughput increased
to 35.1802 Mbps, corresponding to an increase of approxi-
mately 50%.
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Figure 16. Client throughput at every 2 seconds for the first context.

Figure 17. Positioning of microservices and their connections. The red
lines represent the hops between computers.

Figure 18. Positioning ofmicroservices and their connections. It only needs
a single hop.

As throughput varies depending on the placement of mi-
croservices, the answer to questionQ3 is: yes, the placement
of microservices affects performance.
The lower throughput in the first context can be attributed

to an increase in the delay between the client and the server,
where three factors stand out: (1) an increase in the number
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Figure 19. Client throughput at each 2 seconds for the second context.

of hops, which is supported by Pseudocode 1; (2) the inser-
tion of a new microservice (SR) in the chain; and (3) pro-
cessing speed since the computers used have heterogeneous
resources.
In this work, only the hop between nodes is considered for

the placement method. It should be noted that in other exper-
iments not presented here, it was verified that the proposed
positioning method (Pseudocode 1) did not improve through-
put. A possible justification for this is factor (3), which was
not considered. Therefore, a fair way to assess the impact
of the hops on performance is to use computers with identi-
cal technical specifications or virtual machines on the same
computer, where factor (3) would have no impact.

6 Discussions
The experiments demonstrated the flexibility of the microser-
vices architecture, where specific parts of the application
could be scaled separately without the need to scale the en-
tire application as in the monolithic architecture. Addition-
ally, the system can choose which NDN feature sets to im-
plement as needed. In future experiments, it is necessary to
compare monolithic and microservices implementation per-
formance in a cluster scenario. However, to ensure a fair
comparison between these architectures, it is essential to es-
tablish a method for scaling NFD.
Due to its modular characteristics, the microservices ar-

chitecture can facilitate the implementation of improvements
in NDN microservices. For example, new methods for CS
storage decisions can be implemented by changing the CS
microservice without needing to deal directly with other mi-
croservices. Another example is the development of new ap-
proaches for name lookup, which can be implemented and
tested via the NR microservice.
The architecture was initially designed for an NDN mi-

croservices approach. However, the structure can be ex-
tended to be used in more generic scenarios, like NFVs or
NFVs microservices. In addition, the implementation uses
Kubernetes and Prometheus as Orchestrator and Monitoring
modules, but the Micro-Chain architecture is not limited to
them. For example, with adjustments, it should be possible
to use other orchestrators such as Docker Swarm, Apache
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Mesos, and Nomad.
Compared to the ETSI NFV MANO architecture, Micro-

Chain includes a dedicated module for monitoring. This dif-
ference is also valid for the Marchal et al. [2018] solution,
where the monitoring process is the exclusive responsibility
of the Manager. This segregation aims to offer greater mod-
ularity, allowing for the independent development and main-
tenance of this Monitoring. This approach is effective in the
cloud, where monitoring software has been developed and
integrated into solutions.
Experiments conducted on a local machine by Marchal

et al. [2018] indicate that throughput increases with scal-
ing. Nevertheless, during these experiments, it was impos-
sible to identify the microservices placement problem in sce-
narios with multiple nodes. To address this problem, the
present work defines a method to minimize the number of
hops. However, it is essential to define a placement method
that considers other network parameters, such as bandwidth
and delay [Ding et al., 2023]. Additionally, an artificial
intelligence-based solution can be designed to predict de-
mands and prepare the network proactively [Manias and
Shami, 2021].
One challenge of implementing a microservices architec-

ture is determining the appropriate level of granularity, i.e.,
the scope of functionality for each microservice in the so-
lution. Evaluating and adjusting granularity can improve
performance by reducing latency in the context of NDN mi-
croservices. In principle, verifying the combination of NR
and BR functionalities in a single microservice is feasible,
as suggested by Marchal et al. [2018].
For large-scale geographic scenarios withmultiple devices

and microservices, it would be interesting to verify the divi-
sion of the network into regions based on specific parameters
of interest. This strategy is expected to facilitate the position-
ing and management of microservices.
Another extension consists of modifying the proposed ar-

chitecture to support multi-cluster context. A possible ap-
proach in this context would be to use a manager to control
each cluster and implement a way to communicate between
the managers. Therefore, each Manager would need to con-
sider the local variables of their cluster and the general vari-
ables of the set of clusters when making decisions. Or, there
could be a global Manager who controls the local Managers.
The proposed division for Micro-Chain can facilitate the

development of improvement and maintenance, as it isolates
responsibilities. For example, changing the Orchestrator
module without requiring many changes to the other mod-
ules is possible. In addition, the responsibilities of the mod-
ules can be executed by existing solutions, which improves
reusability.
Micro-Chain has a Manager responsible for dealing with

NDN forwarding policies by sending interfaces to the NRmi-
croservices and creating connections between microservices.
In the future, this function can be separated from theManager
by developing an SDN controller module to handle forward-
ing and routing strategies within the NDN network. This con-
troller can be connected to Monitoring and the Manager for
decision-making.

7 Conclusions
This work proposes Micro-Chain, an architecture to manage
NDN microservices on demand. The architecture defines
four modules: Manager, Monitoring, Microservices, and Or-
chestrator. It defines the interrelationships between these
modules and the operations that enable manipulating a set
of microservices according to specific interests.
Among the implemented Micro-Chain functionality, the

scaling and placement of microservices stand out. The scal-
ing decision is based on the upper and lower CPU and mem-
ory usage thresholds. A scaling up or down process is trig-
gered when a given microservice reaches one of these val-
ues. Additionally, theManager module employs a placement
method to minimize the number of hops.
To evaluate the architecture, the experiments focused on

a scale-on-demand scenario in a cluster of three nodes with
three distinct microservices, where all architecture modules
are used. This scenario addresses three questions: Q1: Can
the implemented solution automatically scale a microser-
vice? Q2: What is the communication overhead introduced
by the Micro-Chain control plane? Q3: Does the placement
of microservices affect network performance?
The results demonstrate that the microservices can be

scaled based on CPU usage, as memory did not reach the es-
tablished thresholds (Q1). Additionally, the communication
overhead was evaluated based on the number of messages
transmitted and received by the Manager, which represented
0.632% of the data packets recovered during the experiment
(Q2).

Furthermore, the throughput is evaluated in two con-
texts. In the first context, microservices are placed manu-
ally, whereas in the second context, the placement method
implemented by the Micro-Chan Manager is utilized. The
results demonstrate that inadequate microservice placement
negatively impacts performance (Q3).
In the future, it would be beneficial to investigate a place-

ment method that considers a broader range of network pa-
rameters and can predict demand and implement preventa-
tive measures. Additionally, working in a multi-cluster con-
text is a promising avenue for further research.
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