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Abstract The microservices architectural style offers several advantages to software development, including inde-
pendence among development teams, greater autonomy for developers, faster product development, and improved
scalability. However, since the communication topology relies on distributed systems, faults become more frequent
and harder to manage, posing challenges to reliability and availability, which are key attributes of business-critical
services. To address these concerns, fault patterns, countermeasures, and technologies have been explored and
implemented in both industry and academia to prevent, tolerate, mitigate, and predict faults in microservices. To
understand current industry practices for achieving dependable microservices, we present the results of an opinion
survey with microservice practitioners, aiming to identify the main fault and failure patterns, countermeasure tech-
niques, supporting technologies, existing gaps, and the evolution of the field. We also provide a review of academic
research in this area, examining the connections between industry practices and academic literature, highlighting
key findings, challenges, and opportunities.
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1 Introduction

In modern software systems, single executable artifacts,
known as monoliths, have increasingly been migrated to
a microservices-based architecture. In this architecture,
the application is divided into several cohesive services,
each designed to fulfill a specific subset of responsibilities
within the overall system [Dragoni et al., 2017]. Specifi-
cally, a microservice is an independent process that provides
functionality to other microservices over the network, typ-
ically using remote procedure calls or messaging [Fowler,
2014]. A system comprises self-contained serviceswithwell-
defined boundaries, which are cohesive enough to be man-
aged and maintained by a small team of developers. The
microservice architectural style offers several benefits, in-
cluding faster product development, enhanced scalability for
users and developers, and greater autonomy for development
teams [Jamshidi et al., 2018].
Despite the benefits, microservices present certain chal-

lenges. These challenges include increased system complex-
ity and multiple potential sources of faults arising from inter-
process communication over a network. As a result, man-
aging faults in microservices effectively becomes a complex
task [Jamshidi et al., 2018]. Ensuring system dependability
is crucial to addressing these challenges. In particular, two
attributes are critical: Availability, defined as the proportion
of time the application is operational and able to receive re-
quests [Hammer, 2007]; and Reliability, which is the prob-
ability that a software component will function as specified
over a given period [Zo et al., 2007].
Research efforts on microservices have expanded signif-

icantly in recent years1. Architectural patterns and princi-
ples designed to enhancing the dependability of microser-
vices have been applied in industry [Richardson, 2019] and
cataloged [Taibi et al., 2018]. These patterns have been
utilized to enhance the quality and reliability of microser-
vices APIs [Stocker et al., 2018]. Studies have examined
failures to identify their root causes across various contexts,
including the web [Padmanabhan et al., 2006], data cen-
ters [Gill et al., 2011], and cloud environments [Jhawar and
Piuri, 2017; Potharaju and Jain, 2013]. Additionally, tools
and methods for monitoring microservices have been pro-
posed [Heger et al., 2017; Haselböck and Weinreich, 2017].
Verification techniques, such as formal methods and chaos
engineering [McCaffrey, 2015; Panda et al., 2017], have also
been adapted and applied to the microservices domain.
As the microservices architectural style continues to gain

relevance in the industry [Thönes, 2015], analyzing best prac-
tices for developing dependable microservices is of interest
to both industry and academia. This analysis helps identify
challenges and opportunities. These insights can inform fu-
ture research on dependable microservices. To this end, in
this study, we conducted an opinion survey with microser-
vice industry practitioners, supported by a literature review.
An opinion survey gathers knowledge from individuals to
understand specific aspects of a population [Wohlin et al.,
2012], while a literature review collects insights from aca-
demic research and evaluates gaps identified in the industry.
Particularly, our goal is to answer the following questions:

1According to Google Scholar, more than 8,000 studies on microser-
vices have been published annually since 2021, and over the last decade,
this number exceeds 38,000.
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RQ1: How is the industry dealing with dependability on mi-
croservices, in terms of experienced faults and fail-
ures, countermeasures applied (techniques and tech-
nologies)?

RQ2: What are the main gaps and difficulties in terms of mak-
ing microservices more dependable?

RQ3: What related topics have been researched by academia
in relation to the opinion survey? How much are they
correlated with industry gaps?

The contributions of this work are highlighted as follows.
We present the results of an opinion survey conducted with
industry practitioners in 2024, analyzing how faults and fail-
ures are perceived, the techniques adopted to address them,
the supporting technologies used, the methods for diagnos-
ing faults and failures, and the difficulties faced in the diag-
nostic process. We review the literature to identify academic
contributions in this area, focusing on works published be-
tween 2020 and 2024. This review enables a comparison
between the gaps identified in the industry and the related
topics explored in academia. Finally, we discuss the key find-
ings, challenges, and opportunities by connecting the survey
results with the insights from the literature review.
The opinion survey reveals that professionals are increas-

ingly adopting advanced technologies, such as load balanc-
ing, health checks, and the Kubernetes container orches-
trator. However, advanced techniques for fault removal and
prediction remain underutilized. In contrast, the literature
review highlights a strong academic focus on automatic di-
agnosis and fault injection techniques as countermeasures to
enhance the dependability of microservices-based architec-
tures. This academic trend demonstrates a clear understand-
ing of industrial challenges and a commitment to develop-
ing practical solutions. Nevertheless, there remains a gap
between the theoretical approaches investigated in academia
and their practical application in the industry, indicating a di-
vergence between academic advancements and the effective
use of these technologies by practitioners.
The remainder of this paper is organized as follows. In

the next section, we discuss related works. In Section 3, we
present the background on microservices and dependability.
Section 4 describes the methodology adopted to conduct the
opinion survey and the literature review. In Section 5, we
quantitatively analyze the main results of the survey. Sec-
tion 6 presents the results of the literature review. In Sec-
tion 7, we discuss the key findings, challenges, and oppor-
tunities. Section 8 addresses the threats to validity of both
the practitioners’ survey and the literature review. Finally,
Section 9 brings our main conclusions.

2 Related work
A number of studies have conducted opinion surveys with
industry practitioners to understand different aspects of mi-
croservice architecture and to gain insights into development
practices. Some of these studies have focused on specific
activities during the development process such as migra-
tions [Ghofrani and Bozorgmehr, 2019; Di Francesco et al.,
2018]. Others have provided a more general overview of the

state of practice [Viggiato et al., 2018; Bogner et al., 2019;
Knoche and Hasselbring, 2019; Ghofrani and Lübke, 2018].
Among the studies, Viggiato et al. [2018] conducted a quanti-
tative surveywith 122 professionals to understand how the in-
dustry usesmicroservices architecture and verify whether the
perception of microservices advantages and challenges is in
line with the literature. Similarly, Bogner et al. [2019] inter-
viewed 17 professionals from 10 companies in Germany to
explore the applied technologies, characteristics of microser-
vices, and thier perceived influence on software quality.

Knoche and Hasselbring [2019] considered responses
from 71 German participants to gain insights into the reasons
why companies are considering the adoption of microser-
vices. The authors investigated to what extent microservices
were perceived as a tool for software modernization, what
objectives are sought when introducing microservices into
existing software, and how the potential impact on runtime
performance and transactionality is evaluated.
Ghofrani and Lübke [2018] investigated the main

challenges and concerns in designing and developing
microservices-based systems, as well as the key reasons for
leveraging and hindering the use of systematic approaches
in a microservices architecture. The authors also reported
that resilience, reliability, fault tolerance, and memory usage
are essential points to consider duringmicroservices develop-
ment.
Zhou et al. [2018] conducted an industrial survey on fault

analysis and debugging microservices applications, incorpo-
rating a benchmark application for experimental validation.
The survey findings indicate that the majority of identified
faults are functional, leading to incorrect outcomes, runtime
failures, or lack of response. Conversely, a smaller propor-
tion of faults are non-functional, which contributes to unreli-
able services or prolonged response times. The survey also
reveals that all participants consistently rely on log analysis
as the primary method for both fault analysis and debugging.
The authors classified the debugging practices and tech-

niques into three levels of maturity: First, Basic Log Anal-
ysis, where developers manually sift through extensive log
data to locate faults, with success heavily dependent on their
familiarity with the system. The second is Visual Log Anal-
ysis, which employs tools to collect, retrieve, and visualize
logs. Third, Visual Trace Analysis involves the use of ad-
vanced tools for microservice execution tracing and visual-
ization.
Soldani and Brogi [2022] present the results of a liter-

ature review on existing techniques for anomaly detection
and root cause analysis in modern multi-service applications.
They classify the techniques into three main categories: log-
based, distributed tracing, and monitoring. Most techniques
rely on processing data collected during training runs of the
applications, using machine learning to create baseline be-
havior models. Additionally, some techniques already inte-
grate anomaly detection and root cause analysis into a sin-
gle pipeline, while others require additional integration to
interoperate. The study also identifies open challenges in
anomaly detection, such as the need to improve accuracy and
reduce configuration costs.
Nasab et al. [2023] accomplished an empirical study in

which 28 security practices were identified by analyzing se-
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Work System Type Focus Area Study Type Participants Year

[Viggiato et al., 2018] Microservices Overview Opinion Survey 122 2018
[Bogner et al., 2019] Microservices Overview Interviews 17 2019
[Knoche and Hasselbring, 2019] Microservices Overview Opinion Survey 71 2019
[Ghofrani and Lübke, 2018] Microservices Overview Opinion Survey 25 2018
[Nasab et al., 2023] Microservices Security Opinion Survey 63 2023
[Ghofrani and Bozorgmehr, 2019] Microservices Migration Interviews 17 2019
[Di Francesco et al., 2018] Microservices Migration Interviews, Opinion Survey 5 and 18 2018
[Zhou et al., 2018] Microservices Fault Analysis, Debugging Interviews 16 2021
[Waseem et al., 2021] Microservices Design, Monitoring, Testing Opinion Survey, Interviews 106 and 6 2021
[Niedermaier et al., 2019] Distributed Systems Observability, Monitoring Interviews 28 2019
[Wong et al., 2016] Service-oriented Systems Fault Localization Techniques Literature Survey N/A 2016
[łgorzata Steinder and Sethi, 2004] Communication Systems Fault Localization Techniques Literature Survey N/A 2004
[Soldani and Brogi, 2022] Services and Microservices Fault Localization Literature Survey N/A 2022
[Amiri et al., 2023] Distributed Systems Resiliency and Dependability Literature Survey N/A 2023
This survey Microservices Dependability Opinion Survey 46 2024

Table 1. A qualitative comparison with related work.

curity points from GitHub repositories and Stack Overflow
posts. The authors organized the practices into six groups:
Authorization andAuthentication, Token and Credentials, In-
ternal and External Microservices, Microservices Communi-
cations, Private Microservices, and Database and Environ-
ments. Based on this collection, they conducted a survey
with microservices practitioners to evaluate the practices’ ef-
fectiveness, concluding that most of them are recommended
for use in the industry.

Waseem et al. [2021] discussed results of a survey with
106 professionals and interviewswith six experts inmicroser-
vices, aiming to gain a deep understanding of the design,
monitoring, and testing of microservice architectures in prac-
tice. The survey results include the main practices and met-
rics used to monitor microservices and main design patterns
applied. The study highlights several significant findings.
Regarding monitoring, the most commonly used metrics to
evaluate microservices systems include resource usage, load
balancing, and system availability. Among the most adopted
monitoring practices are log management, exception track-
ing, and the use of health check APIs. The research also
identifies crucial challenges in monitoring, such as the col-
lection of metrics and logs in container environments and
the complexities of distributed tracing. In terms of testing,
the methods most utilized by participants include unit test-
ing, end-to-end (E2E) testing, and integration testing. The
main challenges are primarily related to manual testing, in-
tegration testing, and debugging microservices deployed on
container platforms.

Other works investigate the reliability of distributed sys-
tems more broadly. Amiri et al. [2023] presents a system-
atic review of resilience and reliability in distributed systems,
with a special focus on the Internet of Things (IoT) and its ex-
tensions, such as the Internet of Drones (IoD) and the Internet
of Vehicles (IoV). It introduces a new taxonomy that clas-
sifies distributed environments into seven main categories:
cloud, edge, fog, IoT, IoD, IoV, and hybrid systems. The
analysis of 37 articles highlighted that security, latency, and
fault tolerance are the most frequently encountered param-
eters, playing crucial roles in the resilience management of
these environments.

Niedermaier et al. [2019] carried out a study with industry
about observability and monitoring of distributed systems,
showing the available techniques, methods, and tools. Wong
et al. [2016] present a survey on software fault localization
techniques, including works on service-oriented systems. In
the same direction, łgorzata Steinder and Sethi [2004] pre-
sented a survey on fault localization techniques on commu-
nication systems, classifying the solutions proposed in the
last ten years.
Table 1 summarizes a qualitative comparison among re-

lated works. While several studies have investigated relevant
aspects of microservices architecture and development prac-
tices, to the best of our knowledge, there is no other study
that has taken a deeper understanding of the dependability of
microservices. In this context, this work attempts to fill the
gap by providing an overview of the state of practice regard-
ing microservices dependability. It covers all the means to
ensure it, i.e., fault prevention, tolerance, removal, and fore-
casting, instead of restricting to a specific aspect. The goal
is not to introduce new patterns, techniques, or technologies
but rather to collect and discuss existing ones based on the
results of an opinion survey conducted with industry practi-
tioners and a literature review.

3 Background
We present in the following the main concepts on microser-
vices and on software dependability.

3.1 Monoliths and microservices
An architectural style is a set of rules for developing applica-
tions, organizing components and interactions, and manipu-
lating data [Kumar, 2014]. Monolith and microservices are,
thus, architectural styles [Dragoni et al., 2017], specifically:

• Monolith: an application is decomposed into modules
that cannot be executed independently, while being en-
capsulated into a single executable artifact.

• Microservice: in contrast, the application is decom-
posed into independent artifacts in terms of develop-
ment, building, and deployment.
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Interaction Model Style Abstraction Data Format

Synchronous UC REST, RPC HTTP(S) JSON, XML
Synchronous UC RPC gRPC protocol buffers
Asynchronous UC, MC Message Broker text, binary

Table 2. Examples of communication attributes for microservices.

In fact, a monolith can be decomposed into microservices,
reducing the size of the application according to the desired
scalability and the organization of developers’ teams [New-
man, 2019]. While there is no consensus about the ideal
size of a microservice, its granularity potentially range from
a few dozen to thousands of lines of code [Jamshidi et al.,
2018]. Differently from monolith modules, that usually
share resources (e.g., database, memory, file system), a
microservices-based system is distributed, with smaller, in-
dependent applications communicating through message ex-
change. External requests can be received at a centralized
entity, typically an API gateway [Taibi et al., 2018], which
forward requests to the target microservices. Multiple repli-
cas of microservices can run concurrently to divide the work-
load over the replicas. When migrating from a monolith to
microservices, splitting the database into smaller instances
is also practice, preventing access serialization and conflicts,
while requiring synchronizing data between the databases in-
stances to avoid inconsistency [Newman, 2019]. Another
practice, although not very recommended due to synchro-
nization complexity, is sharing the database instances be-
tween monolith and microservices until the migration is fin-
ished [Taibi et al., 2018].

3.2 Communication models
Microservices usually communicate using request-reply or
publish-subscribe interaction styles. A request allows a mi-
croservice to use features provided by other microservices.
Such a communication can be accomplished with different
attributes [Richardson, 2019]: interaction mode can be syn-
chronous or asynchronous; traffic model can be unicast (UC),
for a transmission between a single pair of microservices
(i.e., point-to-point), or multicast (MC), for multiple destina-
tions (e.g., in a publish-subscribe pattern). Table 2 describes
common communication attributes for microservices archi-
tectures.

3.2.1 Styles

Remote Procedure Call (RPC) allows transparent point-to-
point and synchronous communications, similar to local pro-
cedure calls, while being possible to adapt it to asynchronous
and multicast transmissions [Tanenbaum and Van Steen,
2007]. Representational State Transfer (REST) architectural
style uses a remote, synchronous and point-to-point inter-
action. While RPC focuses on the definition of actions,
REST focuses on the business entities, modeling them as
web resources, with actions accomplished through Hypertext
Transfer Protocol (HTTP) methods [Newman, 2015]. Al-
though allowing transparency, both RPC and REST may not
meet non-functional requirements, like availability (when
the receiver is not available, the communication is lost). Al-

ternatively, message-oriented communication enables asyn-
chronous, non-blocking, point-to-point, and multicast com-
munication [Tanenbaum and Van Steen, 2007]. Such com-
munication style can increase system availability by handling
requests asynchronously in background worker processes.
Suitable for applications with no strict latency requirements,
message-oriented communications allow sending notifica-
tions, handling application events, while executing batch
jobs and distributed transactions [Richardson, 2019].

3.2.2 Abstractions

To encapsulate implementation details on top of socket de-
scriptors, abstractions have been a common practice [Tanen-
baum and Van Steen, 2007]. For synchronous mode,
HTTP [Fielding and Taylor, 2000] is widely used to provide
such an encapsulation with persistent, secure, and reliable
connections over TCP [Mogul, 1995]. Recently, greater per-
formance with multiplexed requests, data compression, and
binary headers are allowed with HTTP/2.0 [Belshe et al.,
2015]. For asynchronous mode, a central entity, namely
message broker, is responsible for validating, transform-
ing and forwarding messages, while providing a commu-
nication infrastructure for distributed processes [Rostanski
et al., 2014]. However, as it acts as an intermediate node,
a broker increases end-to-end response time. Common bro-
ker implementations are Apache Kafka [Apache, 2023],
RabbitMQ [VMware, 2023], and AWS Kinesis [Amazon,
2020].

3.2.3 Data formats

JSON and XML have been the most popular text-based for-
mats [Sill, 2016]. Due to standardization, these formats
are independent of the communication protocol and widely
supported by programming languages. However, their text
verbosity leads to overhead, more bandwidth usage, and
poor support for data types, e.g., large numbers, dates, and
time [Kleppmann, 2017]. With better support for schema
definition, XML introduces redundant tags, being more ver-
bose than JSON [Maeda, 2011]. On the other hand, bi-
nary formats such as Avro [Apache, 2022] and Protocol
Buffers [Protocol-Buffers, 2023] allow data compression. In-
stead of tagging data fields, binary formats combine an Inter-
face Definition Language (IDL) and primitive data types to
represent fields [Kleppmann, 2017].

3.3 Service meshes
Service discovery, traffic routing, security, and load balanc-
ing are system functionalities usually orthogonal to the mi-
croservices implementation. While enabling such functional-
ities into microservices would result in code duplication, ser-
vice meshes can handle orthogonal responsibilities through
an infrastructure that intermediates the communication be-
tween the microservices [Richardson, 2019].

3.4 Dependability in microservices
In this section, we describe microservice dependability
from three dimensions to substantiate the opinion sur-
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vey: (1) types of faults and failures, with general events
that microservice-based systems are prone to be affected;
(2) countermeasure techniques, with typical methods to over-
come the common faults and failures; and (3) technologies
from State-of-The-Art solutions that implement the counter-
measure techniques.

3.4.1 Terminology

Failures, errors, and faults are key terminologies in this work.
To distinguish each one, from [Avizienis et al., 2004], we as-
sume that a failure impacts end-users (or other services) and
it is caused by an incorrect system state, i.e., an error, while
the cause of an error is a fault. If a microservice preserves
its functionality in the presence of faults, it can mask or to-
lerate faults. A transient fault is intermittent in time, while
a permanent fault is continuous. A functional failure is re-
sulted from faults of specific application use cases, while a
non-functional failure comes from application-independent
faults, e.g., resource, communication [Zhou et al., 2018].
Failures can be classified according to their domain, de-

tectability, and consistency. If a service stops producing res-
ponses, it is classified as omission failure, e.g., HTTP status
code 503 (service unavailable) returned from a microservice.
If a service does not produce responses within the specified
deadline so it times out, then it is classified as timing failure.
As the output produced by the service is incorrect, we call it a
content or response failure, e.g. a HTTP service returning an
internal error with status code 500. If a failure is not consis-
tent, i.e., being perceived differently by different users, we
call it inconsistent or a Byzantine failure. Finally, if the ser-
vice stops responding until it is restarted, we call it a crash
failure [Cristian, 1991].

3.4.2 Common types of faults and failures

Communication faults. Microservices rely on remote inter-
process communication through the TCP/IP protocol stack.
At the network infrastructure, i.e., lower layers (physical,
link, or network), transient faults such as packet losses, bit er-
rors, congested links, firewall filters, and packet drops are the
most common ones, leading to connectivity loss [Potharaju
and Jain, 2013]. At the transport layer, even using TCP
to overcome network transient faults with reliable connec-
tions, microservice requests are exposed to connection er-
rors, e.g., connection refused, timeouts, resource exhaustion
in thread pools [Nygard, 2018; Al-Qudah et al., 2010; Pad-
manabhan et al., 2006]. Since common architectural styles
(REST, RPC, message-oriented) depend on upper layer pro-
tocols such as HTTP and, hence, Domain Name System
(DNS), microservice requests may fail at application layer
as well, e.g., DNS timeouts, HTTP errors. Communication
faults, if not masked, may cause timing, omission, and even
Byzantine failures. If amicroserviceA depends on amessage
sent to B to execute an use case, a failure on the communica-
tion with Bwill make unavailable that functionality provided
by A.
Hardware faults. Although commodity hardware has a

typical life span of a few years (3 to 5 years [Vishwanath and
Nagappan, 2010]), in a datacenter with thousands of hard-

ware components, the likelihood of failures is not negligi-
ble. One can mention [Vishwanath and Nagappan, 2010],
70% of failures come from hard drives, 6% from RAID
controllers, 5% from memory. If not handled correctly by
fault tolerance mechanisms at the upper layers, such faults
might cause crash failures onmicroservices. Cloud providers
usually offer limited fault-tolerance mechanisms, in most
cases requiring specific actions or configuration by the sys-
tem administrator. For instance, to recover a virtual ma-
chine (VM) from a hardware failure, the VM image must
be reloaded on another instance. While such a process is not
automatic, it can be automated through monitoring [Wittig
et al., 2016]. In catastrophic scenarios of hardware failures,
an entire data-center may become unavailable, so that an im-
portant measure would be using geographically distinct data-
centers [Barr et al., 2011].
Resources exhaustion faults. One can mention [Blo-

howiak et al., 2016; Nygard, 2018]: CPU exhaustion due to
traffic spikes, and frequent memory management (garbage
collection); memory exhaustion caused by spikes in request
traffic, memory leak, unbounded caches, unbounded data ac-
cess; disk exhaustion, when keeping microservice log files
without limit (e.g., file rotation); and connections pools ex-
haustion, when long-lived connections lock shared resources
in time, keeping other threads blocked, hence, increasing sys-
tem response time. CPU and pools exhaustion leads to tim-
ing and omission failures, as the service will not be able to
respond to the requests within the expected time. Memory
exhaustion causes crash failures, as the service will fail to
allocate new areas until it is restarted. In this scenario, the
operating system should choose which processes to interrupt
so as to keep the systemworking, e.g, Linux “out-of-memory
killer”. While disk exhaustion is taking place, response fail-
ures are returned from any request that requires writing to
disk.
Cascading failures. Such failures occur progressively

from a sequence of faults in a feedback loop, increasing
over time, affecting several parts of the system [Beyer et al.,
2016]. To take place, such failures are propagated through in-
tegration points between microservices [Nygard, 2018]. For
example, requests to a malfunctioning downstream service
can back propagate failures to the calling service. Cascading
failures are triggered by the other types of faults listed in this
section.

3.4.3 Countermeasure techniques

Figure 1 presents the corresponding set of techniques for
each common type. We organize and describe the techniques
into four categories, according to the goals in Avizienis et al.
[2004]: fault prevention, fault tolerance, fault removal, and
fault forecasting. Table 3 summarizes the description of the
techniques and their goals.
Fault prevention. It takes place along with the software

development, aiming at eliminating failures before happen-
ing in the production environment [Avizienis et al., 2004].
To prevent cascading failures, common countermeasure tech-
niques are [Nygard, 2018]: interrupting workload with cir-
cuit breakers [Homer et al., 2014]; defining logical applica-
tion delimiters with bulkheads. To prevent both cascading
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Goal Countermeasure Description

Prevention Timeouts Timers to limit delay of events, e.g., request processing, resource sharing.
Circuit breakers Temporarily interrupt requests upon recurrent failures or unavailability of external microservices.
Bulkheads Logical delimiters to isolate and decouple service components.
Rate Limiter Limiting the amount of tasks (e.g., requests) a microservice can handle in a time interval.

Tolerance Retries Successive attempts to perform an action (e.g., requests) upon an error caused by transient faults.
Fallbacks Masking faults of read-only operations with default responses, e.g. using static or cached values.
Health checks Probing the status of a microservice, e.g., availability, connections state, circuit breakers.
Replication Multiple distributed replicas to improve system availability and scalability.
Load balancing Workload distribution among existing microservice replicas to improve availability and scalability.
Horizontal auto-scaling Dynamic adjust on the number of replicas to meet current workload.

Removal Monitoring Collecting, processing, aggregating, and displaying real-time quantitative data about a system, e.g., query counts and
types, error counts and types, processing times, and server lifetime.

Chaos engineering Checking system dependability by raising fault hypothesis, taking possible inputs, running experiments in production,
and automating the experiments.

Canary deployments Verifying microservices for faults and anomalies by progressively deploying new versions of the application in pro-
duction, having the workload split between the stable and the new version.

Automatic diagnosis Automating root cause analysis by detecting, localizing, and testing hypothesis of faults.
Formal methods Modeling microservices in theoretical domain, where system correctness can be confirmed or refuted.

Forecast Fault tree analysis Offline analysis of faults by modeling the system structure to infer the causes of events from boolean operators.
Failure prediction Online machine learning techniques to predict faults based on the past events and collected metrics.

Table 3. Common countermeasure techniques to handle faults and failures in microservices.

Common types

Cascading failures

Communication faults

Hardware faults

Resource exhaustion

Timeouts
Circuit breakers
Bulkheads
Fallbacks
Health Checks
Automatic diagnosis (*)

Retries
Health Checks
Load Balancing
Automatic diagnosis (*)
Formal methods (*)
Fault tree analysis (*)
Online failure prediction

Health Checks
Replication
Load Balancing
Monitoring (*)
Chaos engineering
Canary deployments
Automatic diagnosis (*)
Formal methods (*)
Fault tree analysis (*)
Online failure prediction

Timeouts
Circuit breakers
Bulkheads
Rate Limiter
Fallbacks
Replication
Load Balancing
Horizontal auto-scaling
Monitoring (*)
Chaos engineering
Canary deployments
Automatic diagnosis (*)
Formal methods (*)
Fault tree analysis (*)
Online failure prediction

Figure 1. Common types of faults and failures and the corresponding coun-
termeasure techniques. (*) Technique that handles indirectly the fault or
failure.

failures and resources exhaustion, timeouts and rate limits
can be set [Richardson, 2019].
Fault tolerance. It prevents faults to become failures

through error detection and recovery [Avizienis et al., 2004].
Common implementation techniques for microservices are:
successive service request retries [Brooker, 2019]; tolerat-
ing a fault by masking it through fallbacks [Basiri et al.,
2016]; probing microservices to check whether they are
healthy [Homer et al., 2014; Burns et al., 2016]; using multi-
ple instances of the same microservices [Fowler, 2016]; bal-
ancing the workload among replicas [Newman, 2015]; scal-
ing horizontally the resources capacity (e.g., replicas) to dy-
namically adapt to the current workload [Richardson, 2019;
López and Spillner, 2017].
Fault removal. It aims to reduce the number of faults

or its severity in both development and in production envi-
ronments by applying techniques of verification, diagnosis,
and fault correction [Avizienis et al., 2004]. Common im-
plementation techniques for microservices are: making the
system observable [Niedermaier et al., 2019] with quanti-
tative data (logs, metrics, and traces) to monitor it [Beyer
et al., 2016]; verifying system dependability with chaos en-
gineering [Basiri et al., 2016; Heorhiadi et al., 2016; Blo-
howiak et al., 2016], i.e., by introducing and automating ex-
periments in production; splitting workload between stable
and new application version with canary deployments [Mc-
Caffrey, 2015; Schermann et al., 2016; Rajagopalan and
Jamjoom, 2015]; finding root causes with automatic fail-
ure localization and diagnosis [Kim et al., 2013; Wu et al.,
2020; łgorzata Steinder and Sethi, 2004]; and modeling for-
mal methods [Newcombe et al., 2015] to identify faults, e.g.,
specification languages [Lamport, 2002], and model check-
ers [Yang et al., 2009; McCaffrey, 2015].
Fault forecasting. It consists of assessing the system be-

havior in the presence of a fault but before it happens in pro-
duction [Avizienis et al., 2004]. Such assessment can be
qualitative, through identification and classification of fail-
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ures, or quantitative, by calculating fault probability. The
techniques may be applied offline or online (in runtime).
Fault Tree Analysis (FTA) is an offline technique applied
to microservices [Zang et al., 2019; Pai and Dugan, 2002;
Lee et al., 1985]. Online fault forecasting is usually applied
throughmachine learning models (e.g., bayesian, markovian,
regression, classifiers, deep learning) to train and predict
faults from data-sets of collected metrics [Grohmann et al.,
2021; Salfner et al., 2010; Pitakrat et al., 2018; Samir and
Pahl, 2019].

3.4.4 Supporting technologies

Here, we present solutions to support dependability on mi-
croservices into four technology types: frameworks and li-
braries, platforms, third-party applications, and tools. Most
of the existing technologies are of open-source projects made
available by big players such as Google, Netflix, Sound-
Cloud, and VMware. Refer to Table 9 in Appendix A, where
we provide weblinks as references for each technology we
mention in this section.
Libraries and frameworks. To prevent cascading fail-

ures, in 2012 Netflix realized the need for isolating integra-
tion points when their application was calling external ser-
vices. In this context, Hystrix was implemented through
a Java/JVM library, which provides protection against cas-
cading failures while providing fault tolerance through cir-
cuit breakers, bulkheads, timeouts, and fallbacks. Since
Hystrix, other libraries were built for different platforms
and languages, e.g., Steeltoe for .NET, Shopify Semian
for Ruby, and the Hystrix’s successor, Resilience4j for
the JVM. Extending Hystrix, Resilience4j includes re-
tries and rate limiters. With similar features in Java, one
canmention Eclipse MicroProfile, and Spring. Frame-
works such as Spring Boot, ASP.NET Core, Micronaut
provide support for health checks, allowing microservices
to expose metadata such as resources status information.
Spring Actuator and Prometheus are libraries capable
to collect metrics from multiple microservices and, through
HTTP requests, make the metrics available to external tools
to monitor the application.
Platforms. Cloud platforms such as Amazon AWS and

Google Cloud Computing Platform offer products support-
ing fault countermeasure techniques (Section 3.4.3). AWS
ELB provides load balancing and horizontal auto-scaling.
Storage systems as AWS S3, Google Storage, AWS RDS,
and Google Cloud SQL support data replication on multi-
ple geographical zones to tolerate hardware faults and data
loss. Since agnostic and reproducible environments are fea-
tures desired to run microservices applications, containeriza-
tion technologies such as Docker and rkt provide portable
and consistent environment of application deployment. In
this sense, container orchestration platforms are key enablers
for microservices. Apache Mesos but mostly Google’s
Kubernetes is a widely used platform. Kubernetes is a
very popular orchestrator which provides a uniform envi-
ronment to run microservices on cloud platforms, allowing
practitioners to implement load balancing, horizontal auto-
scaling, health checks, and replication.
Third-party applications. With the popularization of mi-

croservice architectural style, maintaining the libraries and
frameworks in multiple languages and platforms may be-
come unfeasible [Jamshidi et al., 2018]. For service meshes,
Linkerd and Istio are independent applications running
side-by-side to the services (i.e., sidecar pattern), capable to
connect, secure, control, and observe microservices, besides
enabling support for techniques such as circuit breaking, load
balancing, retries, request timeouts and fault injection. With
support of service meshes, microservice applications should
not concern with the implementation of such techniques.
Particularly, Istio is a popular solution which extends
Kubernetes to enable microservices applications aware of
network, providing traffic management, telemetry, and secu-
rity services. To enable chaos engineering, Netflix’s Chaos
Monkey is an application used to verify the resiliency of the
infrastructure layer by randomly terminating VMs. Since
the advent of Netflix’s Simian Army and Chaos Platform
ChAP [Blohowiak et al., 2016], practitioners can inject faults
and delays into microservices. One can mention other later
applications, such as Apache Chaos Toolkit, VMware’s
Mangle, and Litmus. Commercial solutions were also pro-
posed, such as Gremlin, which allows a wide range of fault
injections into infrastructure and application layers. Cross-
cutting functionalities, e.g., logs, metrics collection, mon-
itors, fault injection (chaos engineering), can be found in
third-party applications, i.e., autonomous agents running out
of the microservice application scope. Graylog, Logstash
and Loki are able to collect, store and search for logs gen-
erated by microservices. Prometheus, Metricbeat and
Apache Skywalking can collect metrics from the host op-
erating system and the target application, exporting the met-
rics to external visualization tools. Zipkin and Jaeger
can collect and exhibit microservices traces. Grafana and
Kibana provide interfaces to visualize metrics, logs, traces,
and manage alerts of abnormal conditions. Multi-functional
commercial products are also available, such as Dynatrace,
Datadog, Sentry, Rollbar, and New Relic.
Tools. General purpose dependability tools are mostly ap-

plied at the development time to check system functionalities
and remove faults before going to production. Specification
languages such as TLA+ [Lamport, 2002] and model check-
ers such as TLC [Yu et al., 1999] allow documenting and ver-
ifying system design. Static analyzers such as FindBugs,
Coverity, and Infer can catch critical errors, e.g., null
pointer exceptions, leaks, concurrency and synchronization
inconsistencies.

4 Methodology
In this section, we describe themethodologywe adopted 1) to
conduct the opinion survey with microservice practitioners,
and 2) to review the literature.

4.1 Practitioners survey
We conducted the opinion survey in February 2024, collect-
ing responses from industry practitioners to capture current
perspectives. We describe details on the opinion survey
methodology in the following.
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4.1.1 Study design

Since questionnaires are one of the main strategy of gather-
ing relevant data [Wohlin et al., 2012], we conduct the opin-
ion survey by preparing and disseminating a questionnaire
to practitioners, i.e., technology information professionals
who deal with microservices-based systems in their every-
day work. We followed the opinion survey guidelines de-
scribed in Molléri et al. [2016] to design the questionnaire.
Our questionnaire consisted of characterization questions to
outline the participants’ profile, and technical questions re-
lated to dependability in microservices.
To focus on practitioners, we preserved the number of

questions small enough to ensure more significant number
of responses, while limiting the questionnaire to four sec-
tions only. The first section presents the context of the opin-
ion survey and an informed consent form. The characteriza-
tion questions are in the second section. In the third section,
participants evaluated the types of faults and failures (Sec-
tion 3.4.2) using a Likert scale for their responses. In the
fourth section, participants were asked about countermeasure
techniques (Section 3.4.3) they have been using, with option
to inform others techniques. We also included open ques-
tions to understand which applications, products, libraries,
and frameworks the participants have used to improve de-
pendability in their applications. The list of all questions
asked is shown in Table 4. The last three sections were only
enabled to participants who agreedwith the informed consent
and confirmed that they held knowledge on microservices.

ID Sec. Type Question

Q1 CH Open What is your country of residence?
Q2 CH Closed What is the size of your company?
Q3 CH Closed How long have you been using microservices?
Q4 FP Closed How often have you experienced the fault patterns be-

low?
Q5 TC Closed Which techniques have you used to improve dependabil-

ity of microservices applications?
Q6 TC Open Which applications, products, libraries, and frameworks

are you using to improve application dependability?
Q7 TC Closed Which of the following inputs and tools have you used

to diagnose failures on microservices?
Q8 TC Closed In your opinion, what is the difficult level associated to

debugging and diagnosing failures on microservices?
Legend: CH (Characterization), FP (Fault Patterns), TC (Techniques
and Countermeasures

Table 4. Questions asked to practitioners in the opinion survey.

4.1.2 Pilot study

We conducted a pilot study to validate the questionnaire and
ensure that it fits to our purpose. To this end, we invited four
professionals from different companies and experience lev-
els to respond the pilot questionnaire in order to evaluate it.
A summary of the four pilot participants is the following: all
of them were from Brazil; one of 1-year experience, work-
ing for a company of up to 100 employees; the other three
were practitioners working for bigger companies, with up to
1K employees; two of them were of 3-year experience and
the other one of 2-year. After analyzing their responses and

feedback, we identify the need for minor adjustments, e.g.,
rewording to mitigate ambiguity, and adding new items to
closed questions. Although these adjustments did not change
the essence of the questionnaire, we decided to discard the pi-
lot participants’ responses to ensure the integrity of the final
analysis.

4.1.3 Participants selection

We disseminated the questionnaire through LinkedIn and
Twitter, encouraging our network connections to share it and
amplify its reach.

4.1.4 Execution and data analysis

As mentioned earlier, we disseminated the questionnaire in
February 2024. We collected a total of 46 responses and an-
alyzed them using descriptive statistics.

4.2 Literature review
To provide a comprehensive understanding of academic con-
tributions and provide an up-to-date overview of the state-
of-the-art, we conducted a literature review starting from
2020. By examining recent developments in the field, we
aim to bridge the gap between academia and industry, offer-
ing a well-grounded exploration that highlights how current
research aligns with industry needs.
To meet the aim of this review, we took well-defined steps,

which include: the definition of objectives and research ques-
tions, selection of search bases, selection criteria, and data
extraction. Such steps are in accordance with typical liter-
ature review protocols [Petersen et al., 2015], meanwhile
our review method does not strictly follow well-known sys-
tematic literature review (SLR) guidelines [Kitchenham and
Charters, 2007]. In the following, we provide details of each
step.

4.2.1 Objective and research question

This literature review aims to identify and analyze the most
recent approaches for detecting faults and ensuring reliabil-
ity in microservices systems. Our research is particularly fo-
cused on the dimension of countermeasure techniques, i.e.,
typical methods to tackle faults and failures.
The research question we intend to answer through this

literature review is:

What are the countermeasure techniques applied
to make microservices more dependable?

4.2.2 Search bases and search string

For a straight away comparison of opinion survey responses
with the contemporary research landscape, we limited our
literature review to publications from 2020 onward. Such
a comparison is crucial for identifying emerging trends and
verifying whether recent developments in the field are re-
flected in professional opinions and practices.
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Criteria Description

IC1 Studies that address countermeasures techniques to im-
prove the dependability of microservices.

IC2 Studies that address tools and frameworks to diagnose fail-
ures in microservices.

EC1 Studies that do not focus on microservices.
EC2 Studies that do not address tools and frameworks to diag-

nose failures in microservices.
EC3 Studies not written in English.
EC4 Posters, short papers, surveys, and tutorials.
EC5 Studies with no clear alignment among publication venue,

the publication year, and the number of citations.

Table 5. Criteria to include and exclude studies.

We selected ACM Digital Library2 and Google Scholar3
as primary search databases. Google Scholar particularly in-
teresting once it allows extensive coverage that includes a
wide spectrum of academic and gray literature sources. This
decision aimed to maximize the breadth of our literature re-
view.

The specific search string employed across these
databases, designed to address our research question was:

(fault failure dependab* resilien*)
AND (microservice*)

4.2.3 Studies selection

We conducted searches on two significant databases at differ-
ent times in 2024 to capture the most relevant and recent lit-
erature. The initial search was carried out on Google Scholar
in March, yielding 1,320 articles. We ordered these results
by relevance and reviewed the abstracts, applying our inclu-
sion (IC) and exclusion (EC) criteria described in Table 5.
Given the vast number of results, we decided to halt the se-
lection process after analyzing 50 consecutive works without
finding any suitable for inclusion. The abstracts of 210 pa-
pers were reviewed, resulting in 47 being selected for a full
analysis.
Subsequently, a more targeted search was conducted in

the ACM Digital Library in June, which returned 99 results.
This timing difference allowed us to incorporate the most re-
cent publications, ensuring comprehensive coverage of the
latest research. All 99 abstracts from the ACM search were
reviewed using our inclusion and exclusion criteria, identi-
fying 38 relevant papers. Among the selected documents, 6
were identified as duplicates between the two databases. Af-
ter consolidating the results and removing duplicates, we se-
lected 79 documents for complete analysis. During the com-
plete reading, we excluded 39 documents that did not address
the relevant themes for this study, finalizing the selection of
40 documents for detailed review.

4.2.4 Data extraction

Since this review does not adhere to all the traditional steps
outlined in the Systematic Literature Review (SLR) guide-
lines by [Kitchenham and Charters, 2007], it does not in-
clude bibliometric data extraction or scientometric analysis.
Instead, to conduct the literature review, we systematically

2https://dl.acm.org
3https://scholar.google.com.br

organized, categorized, and connected the extracted data to
identify countermeasure techniques researched since 2020.
The findings from this literature review are presented in Sec-
tion 6.

5 Results of the practitioners survey

In this section, we present results of the opinion survey.

5.1 Participants’ characterization

Table 6 presents the participants’ characterization from the
responses to the questions Q1, Q2, and Q3. Professionals
from three continents answered the questions, with themajor-
ity based in Brazil, where there were 28 responses (60.1%),
indicating a bias related to the authors’ nationalities. Partici-
pants from India represented 8.7% of the responses, while
Portugal, Germany, and the USA each contributed 4.3%.
The remaining participants were from several other countries.
Four participants mistakenly provided non-country names
when answering question C1, so we classify their origin as
“N/A”. A total of 54.4% of the participants work for compa-
nies with more than 1,000 employees, and 28.3% of them are
employed by companies with over 10,000 employees. Re-
garding experience, more than 89% of the participants have
been working with microservices for more than three years,
indicating that the responses primarily come from profession-
als with relevant experience in the field.

Continent % Company size % Experience %

Americas 67.4 1 employee 4.3 0–2 years 10.8
Europe 13.0 < 100 employees 10.9 3–4 years 32.7
Asia 10.9 < 1000 employees 30.4 ≥5 years 56.5
N/A 8.7 < 10,000 employees 26.1

≥ 10,000 employees 28.3

Table 6. Characterization of the participants. 46 in total.

5.2 Experienced fault patterns

For the question Q4, participants informed the frequency
they perceive fault and failures, ranging from 0 (never) to
4 (very often). The heatmap in Fig. 2 illustrates how often
practitioners experienced various fault patterns. While all
the faults were experienced, the ones that most frequently
occurred (i.e., often and very often) were the high memory
usage and the high CPU usage, with 50% and 43.5% of the
participants, respectively. Between 37% and 28% of the par-
ticipants experienced often and very often TCP faults (37%),
application layer faults (35%), configuration faults (35%),
thread/connection pool exhaustion (28.3%), and cascading
failures (28.3%). On the other hand, 80% and 72% of practi-
tioners answered that they never experienced or experienced
on rare occasions the hardware faults and disk space exhaus-
tion, respectively.
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Figure 2. (Q4) General percentages of how often practitioners have experi-
enced fault patterns.

5.3 Adopted countermeasure techniques
We list the techniques to improve microservice dependabil-
ity in Q5 question, allowing participants to indicate which
ones they have used. As shown in Fig. 3, the most com-
monly used techniques were Load Balancing, Retries, Cir-
cuit Breakers, Health Checks, and Monitoring, cited by 8/10
participants. Horizontal Auto-scaling and Timeouts were
also popular techniques, used by 7/10 participants. Fallbacks
and Replication were employed by 50% of the participants,
while Canary Deployments were used by 41%. More ad-
vanced techniques, such as Bulkheads, Chaos Engineering,
Automatic Failure Diagnosis, Fault Tree Analysis, and For-
malMethods, were the least used, adopted by fewer than 15%
of the participants.
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Figure 3. (Q5) Total numbers of responses from 46 participants in 2024 on
which countermeasures techniques they have used to improve dependability
of microservices.

5.4 Supporting technologies for dependability
Participants were asked to list the applications, products, li-
braries, and frameworks they use to improve the microser-
vices dependability (open question Q6). Fig. 4 presents
a word cloud of the responses. We observed the preva-
lence of Kubernetes as the main technology to improve
microservices dependability as more than 50% of the partic-
ipants mentioned it. Kubernetes was followed by Istio,
Spring, and Hytrix, with 19.6%, 8.7%, and 6.6% of men-
tions among the participants, respectively.

5.5 Diagnosing faults and failures
Question Q7 sought to identify which data sources and tools
are used by the professionals to diagnose microservice faults
and failures. While 98% participants made used of logs, at
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Figure 4. Applications, products, libraries, and frameworks to improve the
microservices dependability used by the participants.

least 83% of them also used metrics and traces. Third-party
vendor tools for diagnosing were mentioned by 48% of the
participants, while 24% of themmade use of tools developed
by their own companies.

45

41

38

22

11

0 10 20 30 40

Tools developed by your company
Tools from third party vendors

Traces
Metrics

Logs

Number of responses

2024

Figure 5. (Q7) Total numbers of responses from 46 participants on which
inputs and tools they have used to diagnose failures on microservices.

From question Q8, we caught participants’ perception on
difficulties with debugging and diagnosing faults and fail-
ures in microservices applications. Despite having inputs
and tools, most of the participants (63%) mentioned a high
degree of difficulty (i.e., difficult and very difficult) in de-
bugging and diagnosing faults. The remaining participants
answered that such a task was neutral (28.3%) and simple
(8.7%), while no one classified it as very simple.

6 Results of the literature review

This literature review provides a comprehensive analysis of
recent research published from 2020 onwards, specifically
addressing the research question discussed in Section 4.2.1.
A trend identified is the predominance of automatic diagno-
sis and fault injection techniques as countermeasures tech-
niques to enhance the dependability of microservices-based
architectures. Additionally, we have identified considerable
research contributions in areas such as failure prediction,
monitoring, testing, and circuit breakers. Table 7 summa-
rizes the key techniques identified in our literature review,
categorized by their application and primary studies. These
topics are explored in depth in the following subsections.
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Goal Countermeasure Reference

Prevention Circuit breakers Sedghpour et al. [2021]; Meiklejohn et al. [2022]

Removal Canary Deployments Gazzola et al. [2020]
Monitoring Scrocca et al. [2020]; Belkhiri et al. [2023]
Chaos engineering Camilli et al. [2022]; Poltronieri et al. [2021, 2022]
Chaos engineering (Fault injection) Meiklejohn et al. [2021]; Assad et al. [2024]; Wu et al. [2023]; Simonsson et al. [2021]; Zhang

et al. [2021]
Automatic diagnosis (RCA) Gu et al. [2023]; Yang et al. [2023]; Yu et al. [2023]; Bi et al. [2022]; Zheng et al. [2024];

Harsh et al. [2023]; Gan et al. [2021]; Zhu et al. [2024]
Automatic diagnosis (Anomaly detection) Chen et al. [2022]; Bento et al. [2021]; Guo et al. [2020]; Xie et al. [2023b,c]; Zhao et al.

[2023]; Huang et al. [2022]; Hrusto et al. [2022]; Xie et al. [2023a]
Automatic diagnosis (Autonomous correction) Sarda et al. [2023]; Lee et al. [2023]; Ma et al. [2020]; Yang et al. [2021]

Forecast Failure prediction Rouf et al. [2024]
Simulation Frank et al. [2022]

Table 7. Summary of countermeasure techniques for dependability in microservices found in the literature review.

6.1 Automatic diagnosis

In recent literature on automatic diagnosis in microservices
systems, we observed several studies that deal with detecting
and diagnosing anomalies. We classify such approaches into
three main categories, each exploring different techniques
and models: approaches that focus exclusively on root cause
analysis, those that focus on anomaly detection, and those
that focus on integrating anomaly detection and automated
diagnosis.

6.1.1 Root cause analysis

Root Cause Analysis (RCA) in microservices systems has
evolved in recent years, adapting to incorporate multimodal
data (logs, metrics, and traces) and applying advanced ma-
chine learning and artificial intelligence techniques.
TrinityRCL [Gu et al., 2023] and Hi-RCA [Yang et al.,

2023] are RCA frameworks which employ combination of
metrics, logs, and traces. The former builds causal graphs
that represent the relationships between entities associated
with anomalies. On the other hand, the latter adopts a two-
phase approach, starting with Kalman filtering to quantify
abnormalities, followed by correlation analysis to identify
anomalous metrics and root causes down to the code level.
Similarly, Nezha [Yu et al., 2023] also uses multimodal data
to locate root causes at granular levels, such as code regions
and types of resources. This technique transforms heteroge-
neous multimodal data into a homogeneous representation of
events, which facilitates the extraction of event patterns by
constructing and mining event graphs. Mulan [Zheng et al.,
2024] unifies causal analysis in multimodal systems, trans-
forming logs into temporal data and using contrastive learn-
ing to highlight causal relationships.
Murphy [Harsh et al., 2023] is designed to diagnose per-

formance issues within enterprise environments, focusing
on uncovering hidden faults and inferring causal relation-
ships among entities and specific metrics that contribute to
observed problems. In contrast, Sage [Gan et al., 2021],
an RCA system for cloud microservices, leverages unsuper-
vised machine learning techniques to pinpoint the causes of

unpredictable performance. This system streamlines the di-
agnostic process by eliminating the need for manual data
labeling, thus enhancing problem identification in dynamic
settings. Additionally, MicroIRC [Zhu et al., 2024] targets
root cause identification at the instance level within microser-
vices, utilizing metric-based data to provide precise diagnos-
tic insights.
VecroSim [Bi et al., 2022] is a tool that performs metric-

oriented fault simulations, generating datasets with abnormal
performance metrics on demand that can be used to assess
different techniques of root cause analysis.

6.1.2 Anomaly detection

In general, most approaches to anomaly detection in mi-
croservices systems employmachine learning techniques, us-
ing monitoring data that includes performance metrics such
as CPU usage, memory, and latency. These data are often
treated as multivariate time series, allowing for a detailed
analysis of system behavior over time.
Chen et al. [2022] introduce DAM (Deep Attentive

Anomaly Detection with Multimodal Data), which uses mul-
timodal data to detect when and where anomalies occur in
microservices systems. This method employs a predictive
model that uses LSTM (Long Short-Term Memory) and at-
tention mechanisms to forecast future values and identify
deviations from these forecasts as anomalies. Additionally,
Bento et al. [2021] developed the OTP (OpenTracing Pro-
cessor) tool, which extracts and analyzes metrics from data
in the OpenTracing format. Using machine learning models,
OTP analyzes this data to identify operational patterns that
deviate from the norm, pointing out services that may be ex-
periencing issues.
Guo et al. [2020] propose GMTA (Graph-based Microser-

vice Trace Analysis) to process real-time generated traces,
abstracting them into different paths and grouping them into
business flows. This method combines a graph database with
a real-time analytics database for more effective analysis. On
the other hand, GTrace [Xie et al., 2023b] categorizes traces
into groups based on their shared substructures, such as entire
trees or subtree structures. Additionally, Xie et al. [2023c] in-
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troduces TraceVAE, a dual-variable graph variational autoen-
coder that models structural and temporal characteristics, ad-
dressing the inversion of negative log likelihood (NLL) with
specific techniques to minimize entropy differences.
AnoFusion [Zhao et al., 2023] presents an approach that

leverages unsupervised multimodal data for failure detection
in microservices systems. Such an approach starts by seri-
alizing multimodal data into time series, then, AnoFusion
constructs heterogeneous graphs that effectively capture the
intricate connections and interactions among datasets. This
approach enables the identification of critical patterns and
trends that can signify existing anomalies and also predict
potential failures. SLA-VAE [Huang et al., 2022] is an ap-
proach tailored for industrial environments such as cloud
servers or microservices. This framework comprises three
main components: anomaly feature extraction that quantifies
deviations from historical data, a semi-supervised variational
autoencoder that enhances robustness and reduces suscepti-
bility to anomalous inputs, and active learning that updates
the anomaly detection model online using a small set of un-
certain samples.
Deep learning methods for anomaly detection in multivari-

ate time series are exploited in Hrusto et al. [2022], integrat-
ing a filter into a DevOps environment and utilizing contin-
uous feedback from the development team. Finally, Impact-
Tracer [Xie et al., 2023a] focuses on modeling the propaga-
tion of failures in microservices systems. Using the Isolation
Forest model, based on decision trees, ImpactTracer detects
anomalies using business golden indicators, such as response
and success rates. This system constructs an impact graph
that maps all possible paths of failure propagation, allowing
for the evaluation of failure probabilities from one node to
another, thus improving accuracy in failure prevention and
correction.

6.1.3 Integrating anomaly detection and automated di-
agnosis

This category encompasses approaches in which intelligent
systems are capable of not only identifying problems but also
suggesting or executing autonomous corrections.
ADARMA platform, proposed by Sarda et al. [2023], uses

Large Language Models (LLMs) for complete automation,
from anomaly detection to failure remediation. ADARMA
collects system logs and metrics, identifying anomalous be-
haviors and performing RCA through probabilistic reasoning
and historical data. The integration of prompt engineering
allows for the generation and execution of automatic remedi-
ation code, efficiently addressing faults.
Similarly, the Eadro framework Lee et al. [2023] and Au-

toMAP [Ma et al., 2020] also integrate detection and diag-
nosis, automatically facilitating problem resolution and min-
imizing manual intervention. Eadro is an end-to-end frame-
work that treats anomaly detection and root cause localiza-
tion as interdependent tasks, using multitask learning for a
more integrated approach. In turn, AutoMAP automatically
creates an anomaly topology with no need for prior knowl-
edge of the system architecture, using data collected from
microservice requests and container/host states.

Furthermore, Yang et al. [2021] introduces AID (Ap-
proach to Intensity of Dependency), a methodology devel-
oped to diagnose failures and enhance recovery in cloud-
based systems, considering the intensity of dependencies be-
tween microservices. According to the authors, AID im-
proves efficiency when identifying the root causes of failures
and optimizes the systems’ subsequent recovery.

6.2 Chaos engineering
In Chaos Engineering, many studies focus on fault injec-
tion techniques. Differently, Poltronieri et al. [2021] and
Poltronieri et al. [2022] introduce the ChaosTwin framework,
which applies the principles of chaos engineering using dig-
ital twins, allowing virtual representations of real systems.
Such a framework allows for testing resilience of IT systems
by simulating failures in their digital twin, assessing config-
uration and failure management strategies from a business
impact perspective.

6.2.1 Fault injection

Various techniques have been developed in the field of
fault injection in microservices. Approaches such as SFIT
(Service-Level Fault Injection Testing) [Meiklejohn et al.,
2021] and Filibuster [Meiklejohn et al., 2021; Assad et al.,
2024] integrate fault injection early in the development cycle
to detect andmitigate faults in advance. SFIT integrates fault
injection to introduce specific fault scenarios from the start of
development and combines static analysis and concolic exe-
cution with a dynamic reduction algorithm, aiming to reduce
the number of test cases generated without compromising
fault coverage. The Filibuster tool implements SFIT, facili-
tating early detection of problems, while eliminating the need
for chaos experiments in production environments. Addi-
tionally, Assad et al. [2024] extends Filibuster([Meiklejohn
et al., 2021], focusing on fault injection in database clients
within microservices applications, supporting both SQL and
NoSQL systems, and integrating this functionality during the
development phase.
In Wu et al. [2023] is introduced the concept of “Fault-

Tolerance Bottleneck”, which aims to identify a minimal set
of faults whose injection can interrupt all possible execution
paths in a microservices system. Based on this concept, the
authors proposed FBFI approach (Fault-tolerance Bottleneck
driven Fault Injection), which allows to validate correction
of each deployed component, without the need for complete
prior knowledge of the system structure.
CHAOSORCA [Simonsson et al., 2021] is designed to

inject faults into system calls in containerized applications.
CHAOSORCA focuses on assessing self-protection capac-
ity of microservices applications upon errors in system calls.
Operating under workload conditions similar to those found
in production environments, CHAOSORCA has no need
for application instrumentation. 3MileBeach [Zhang et al.,
2021] is a platform that combines fault tracking and injection.
It uses Temporal Fault Injection (TFI) technique, which al-
lows controlling the flow of messages between services with
specific temporal requirements. TFI focuses on the temporal
precision of interactions between services, allowing develop-
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ers and testers to simulate faults at very specific points into
interaction flows.

6.3 Failure prediction
Although some anomaly detection techniques can also be
used for failure prediction [Zhao et al., 2023; Huang et al.,
2022], we found InstantOps [Rouf et al., 2024] as the only
one which is specifically focuses on failure prediction. In-
stantOps employs an approach that combines multimodal
data to anticipate failures and conduct RCA. This method-
ology uses machine learning techniques to integrate and an-
alyze spatial and temporal data from various sources. Fail-
ure prediction is achieved by identifying patterns that in-
dicate imminent failures based on the dynamic interaction
between microservices components represented in a depen-
dency graph. After predicting failures, the system uses node
scores generated by the model to specifically identify which
components or services might be causing problem.

6.4 Monitoring and testing
Some techniques such as MIPaRT [Camilli et al., 2022], Ex-
VivoMicroTest [Gazzola et al., 2020], and Kaiju [Scrocca
et al., 2020], present approaches to monitoring and testing
microservices. MIPaRT is an ex-vivo framework that inte-
grates into the DevOps cycle, enabling continuous testing
and monitoring. This framework automates the generation
and execution of performance and reliability tests, collects
and analyzes monitoring data, and offers integrated visual-
ization of results. Concurrently, ExVivoMicroTest enhances
regression testing by collecting service interactions directly
from the production environment and converting them into
test cases that reflect real usage, thus addressing the gap be-
tween idealized test scenarios and actual operational condi-
tions. Additionally, Kaiju is focused on observability in mi-
croservices, facilitating the integration and analysis of met-
rics, logs, and trace data through an event-based model. This
approach provides a unified and detailed view of system be-
havior.
Extending these capabilities, Belkhiri et al. [2023] pro-

pose an approach for annotating application traces with
kernel-level data without the need to modify the application,
the trace system, or the operating system. This technique
focuses on diagnosing causes of longer latencies by integrat-
ing kernel information into traces from common distributed
tracing tools.

6.5 Circuit breakers
Sedghpour et al. [2021] introduces an adaptive circuit
breaker mechanism that prevents overload and ensures effi-
cient response time. Such a mechanism dynamically adapts
to changes in workload, server capacity, and service com-
plexity. By utilizing control theory principles, it adjusts the
activation thresholds of the circuit breaker so as to respond
more accurately to system variable conditions. Meanwhile,
Meiklejohn et al. [2022] offer a taxonomy for circuit break-
ers and propose the design of two new ones. The new circuit
breakers can handle more effectively abstraction and scope

within application code, dynamically adapting to changes in
operational conditions in real-time. Unlike traditional mod-
els that often apply generic and broad interruptions, these
new designs for circuit breakers allow for more granular con-
trol and transparent integration, facilitating continuous appli-
cation maintenance and development. These approaches rep-
resent a significant advancement in how microservices sys-
tems can remain resilient and efficient to face potential fail-
ures and operational variations.

6.6 Others
Other approaches explore issues concerning with an-
tifragility [Bangui et al., 2022], redundancy [O’Neill and
Soh, 2023; O’Neill and Soh, 2022], and latency prediction
[Tam et al., 2023] in microservices. MiSim [Frank et al.,
2022] stands out for its wide applicability in many counter-
measure techniques. MiSim [Frank et al., 2022] is a simu-
lator designed for assessing resilience of microservice-based
architectures. It facilitates a holistic assessment of resilience,
allowing for the configuration and execution of experiments
that simulate adverse conditions to observe how architectures
respond to such situations. To this end, MiSim integrates and
simulates a variety of resilience mechanisms, including cir-
cuit breakers, retries, load balancers, and autoscalers.
Bangui et al. [2022] propose a conceptual framework

based on antifragility to allow microservices to learn and
strengthen from adversities. Such a framework aims to pro-
tect critical infrastructures (CIs) against unexpected events,
encouraging exposure to uncertain conditions to develop ac-
tive resilience, leveraging from the system’s own disorders.
The resilience of cloud systems based on microservices is

further exploited by O’Neill and Soh [2022], who introduced
an approach based on Task-Based Reliability (TBR). The
technique optimizes redundancy of microservice containers
according to specific user tasks, taking into account the trade-
off between the marginal cost of added redundancy and the
expected cost of failure. Building on this, O’Neill and Soh
[2023] later introduced an orchestration algorithm that uti-
lizes the TBR model to manage redundancy efficiently. The
model dynamically adjusts to spot market changes, aiming
to balance operational costs with resilience requirements.
Tam et al. [2023] make use of graph neural networks

to predict end-to-end latency in microservices applications.
This framework enhances accuracy of latency predictions
and provides a solid foundation for proactive resource scal-
ing, improving reliability and efficiency in dynamic environ-
ments.

7 Discussion
Here, connecting the results of both the opinion survey and
literature review, we discuss the main findings, challenges,
and opportunities identified.

7.1 Key findings from industry practices
From the opinion survey results, we highlight key findings
regarding the adoption of microservices and the industry’s
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approach to dependability as follows.

7.1.1 Microservice adoption

By analyzing the responses from practitioners in the opinion
survey, we observe widespread adoption of microservices.
Companies, regardless of size, are adopting the microser-
vices architectural style as a way to give autonomy to their
teams and speed up development. As more companies adopt
it, opportunities to gain practical experience expand, leading
to greater proficiency within the community. Most partici-
pants (56.5%) reported having 5 or more years of experience,
and this professional experience combined with adoption by
companies creates a positive cycle.

7.1.2 Diverse patterns of faults and failures

The fault and failure occurrence patterns faced by practition-
ers were as follows.
Rare patterns. We observed that hardware and disk ex-

haustion faults are infrequent in production environments,
thanks to the fault tolerance mechanisms in place, such as
replication, health checks, and horizontal auto-scaling. The
adoption of cloud providers and container orchestrators also
contribute to this scenario, as they offer built-in features and
services to manage hardware faults effectively.
Balanced patterns. In examining fault patterns among

practitioners, we found moderate stability but noted signif-
icant areas of concern. TCP connection layer faults stand
out, with 43% rarely or never encountering them, while 37%
experience them often or very often. Configuration and
application-level faults share a similar pattern, with 35% for
never-rarely and 35% for often-very-often. Connection pool-
ing issues are infrequent for 39% of practitioners but com-
mon for 28%. Lastly, cascading failures are rarely or never
observed by 37% yet frequently for 28%. Despite this bal-
ance, these faults and failures were a notable concern for a
significant portion of practitioners, highlighting areas where
robust fault-tolerance mechanisms are essential.
Frequent patterns. Despite the continuous increase in

resources and computing power, failures due to resource
exhaustion are still common in microservices applications,
mainly related to memory and CPU usage, with 50% and
43% of practitioners, respectively, experienced them often
and very often. Applications are subjected to poorly devel-
opment, which might lead to memory leaks. Today’s appli-
cations are more data-intensive (more data is collected and
transformed), which demands resources.

7.1.3 Most and least used countermeasure techniques

Weobserved that the preference ofmost practitioners are sim-
ilar across the techniques. We highlight the following:
Popular techniques are for fault tolerance, prevention,

and removal. Nowadays, there is a rich ecosystem of
tools, libraries, and platforms equipped with implementation
of techniques to prevent and tolerate faults (see Figure 6
in Appendix A). Driven by the goals in Table 3, we ob-
served that the most commonly used techniques (i.e., those
applied by at least 50% of practitioners) were primarily fo-
cused on providing fault tolerance, including LoadBalancing

(87%), Retries (85%), Health Checks (83%), and Fallbacks
(50%). Secondly, to achieve fault prevention, practition-
ers reported using Circuit Breakers (83%), Horizontal Auto-
scaling (70%), Timeouts (70%), and Replication (50%). Fi-
nally, for fault removal, practitioners predominantly applied
Monitoring (83%).
Fault removal and forecasting remain underused. With

the exception of monitoring, techniques for these goals were
not frequently mentioned by practitioners. Few profession-
als reported using related techniques such as formal methods,
fault tree analysis, chaos engineering, and automatic diagno-
sis. This can be explained by the lack of standardized tools
and the complexity of these countermeasures.

7.1.4 Supporting technologies

As for the technologies to support dependability, we found:
Container-based sidecar facility. We observed a trend

to adopt platforms based on containers and sidecar patterns,
e.g. Kubernetes, and Istio. Firstly, as a way to transpar-
ently add a number of countermeasures to the whole system
without requiring language-specific libraries. Secondly, to
be independent of underlying cloud platforms.

Kubernetes at the top of technologies. Kubernetes has
become the de facto choice for orchestrating applications, be-
ing mentioned by 50% of practitioners. Such a strong popu-
larity is justified by a highly active open-source project, with
several important patterns implemented in it, cloud indepen-
dence support (multi-cloud possibility), and high application
portability (containers).
A number of other technologies. While container or-

chestration, service meshes, and libraries are spotted with
technologies of reference (i.e., Kubernetes, Istio, and
Hystrix, respectively), there are no best choice technolo-
gies for most applied techniques such as load balance and
monitoring, and powerful practices such as chaos engineer-
ing. Various technologies were mentioned by practitioners.

7.1.5 Complexity of diagnosing faults

Logs, metrics, and traces were identified as the primary
sources of data for diagnosing faults and failures, with 98%,
89%, and 83% of participants, respectively, relying on them.
Additionally, 48% of practitioners reported using third-party
vendor tools, while 23% relied on tools developed by their
companies. Despite having access to these data sources and
tools, diagnosing faults and failures remains a complex task
for microservices developers, according to more than 60%
of survey participants. Various aspects contribute to a highly
complex environment, e.g., diverse patterns of faults, fail-
ures propagate across microservice instances, intricate inter-
actions among distributed services and their dependencies,
and large amounts of input data are generated by monitoring
tools. As a result, even experienced practitioners – 56% of
whom have over 5 years of experience – find it challenging
to identify the root cause of faults and failures.
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7.2 Industry practices and academic research

Upon analyzing the two sides, i.e., current industry practices
and academic efforts between 2020 and 2024, the connec-
tions between them we discuss in the following.
Fault removal, an industry gap yet in papers. As high-

lighted in Section 6, the predominant focus for the academic
community has been developing fault removal techniques.
Particularly, automatic diagnosis has been gathering much
attention. Nevertheless, as outlined in Section 5, according
to the practitioners survey results, fault removal represents
the less applied means to enable dependability. A possible
reason for the underutilization is that the involved technolo-
gies might yet need to achieve higher maturity levels for a
broad application in industrial settings. On the other hand,
extensive research on this theme suggests that academia is
aware of the industry gaps, actively working to tailor solu-
tions aligned with the practical needs of industry. Further-
more, another potential reason for a slow industrial adoption
is that the industry has not sufficiently disseminated or em-
braced the state-of-the-art advancements made in academia
Towards autonomous failure diagnosis, while logs are

manually inspected in production. From the practition-
ers survey, we observed that logs are by far the main data
source used by human operators to diagnose issues in produc-
tion. Although metrics and traces are also commonly used,
the fault diagnosis process in industrial contexts is still prone
to be manually accomplished. In response to this limita-
tion, researchers have been proposing multimodal automated
support mechanisms, integrating advanced machine learning
techniques to predict patterns and anticipate failures (e.g. Gu
et al. [2023]; Yang et al. [2023]; Yu et al. [2023]; Zheng et al.
[2024]). Such investigations demonstrate improvements in
diagnostic accuracy and efficiency, showing their potential
for reducing downtime and increasing productivity in indus-
trial environments.
Well-established technologies also have room for im-

provements. Despite their proven usefulness in industrial
applications, there is a lack of studies focused on fault pre-
vention and tolerance techniques. This is somehow contra-
dictory, especially considering the critical role such tech-
niques play in ensuring reliability to microservices. One
of the factors that may contribute to that scenario is the
widespread adoption of well-established technologies such
as Kubernetes, which already offer effective solutions
to fault prevention and tolerance. However, our litera-
ture review highlights ongoing efforts to refine such tech-
niques. Recent studies exploit different designs of circuit
breakers aiming to optimize time in open state, suggesting
that countermeasures techniques even implemented in well-
established technologies can be improved to provide perfor-
mance gains in latency, availability, and reliability.
Emerging contexts off the practitioners’ radar. From

the literature review, we noticed that several studies address
microservices in specific contexts with application scenarios,
mostly in Edge Computing, Cloud Computing, and critical
infrastructures. When analyzing responses to the open ques-
tion Q6 (on application, products, libraries, and frameworks),
we didn’t observe trends in applications. In this sense, the
increasing amount of research with specific contexts and ap-

plication scenarios suggests that problems and challenges ad-
dressed in academia might not yet be fully recognized or ad-
dressed in current industry practices.

7.3 Research challenges and opportunities

From the results of the opinion survey and literature review
we conducted, we discuss the main challenges and opportu-
nities we found in the following.
Fault removal and forecast. From the means to improve

microservices dependability, we observed that fault removal
and fault forecasting are the least applied. Techniques like
fault-tree analysis, formal methods, canary deployments and
chaos engineering are complex and have a steep learning
curve. In this sense, we see an opportunity to have a bet-
ter tooling around them, reducing the complexity of its ap-
plication by abstracting details. Recent advancements from
machine learning, such as the use of LLMs, may also reduce
the adoption effort and increase the accuracy of automatic
failure diagnose methods.
Fault diagnosis. We observe that fault diagnosis remains

an open challenge regarding microservices dependability.
Such a diagnosis ultimately depends somehow on human
inspection, while being complex and requiring substantial
knowledge of the target system. Even from existing ob-
servability tooling, fault diagnosis is exhausting due to the
amount of data collected to be analyzed by engineers. Much
effort and significant amount of time may be spent 1) to iden-
tify, analyze, and interpret the events that led to a failure, and
2) to create relevant documentation for continuous system
improvement. In this context, we see research and develop-
ment opportunities to achieve better methods and tooling to
diagnosis faults.
Open experimental platforms. The lack of production-

like environments makes difficult to evaluate new meth-
ods and techniques to improve dependability, pushing re-
searchers to try to reproduce systems developed by the indus-
try. Meanwhile, companies in general are not willing to grant
access for their implementation details to competitors. In this
context, as an enabler to research new techniques, building
open experimental platforms and improving tooling for bet-
ter synthetic microservices environments able to reproduce
real production scenarios are interesting opportunities.

8 Threat to validity
Here, we outline potential threats to the validity of our study,
which incorporates both opinion survey and literature review
methodologies.

8.1 Opinion survey threats
• A risk of existing participants who misunderstand ques-
tions. To mitigate such a risk, we conducted the pilot
study with a constrained number of participants, who
gave us feedback on the questions.

• Undesirable audience (i.e., people who do not hold ex-
perience or knowledge in microservices) can respond
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the questionnaire as it was publicly available. To pre-
vent this, we disseminated the questionnaire exclusively
to our network contacts. In addition, we emphasized
in the questionnaire description that the target audience
are developers, software architects, testers, and man-
agers who deal with microservice-based systems. Fi-
nally, the questionnaire was only enabled for partici-
pants who confirmed, explicitly through a question in
the questionnaire itself, that they had experienced in the
topic.

• Survey respondents who do not represent completely
the target population (i.e., microservice practitioners).
To reach a broader and more diverse population, we
disseminate the questionnaire through our international
contacts who have significant influence in the field.

8.2 Literature review threats
• We provided the details of our methodology to allow
the reproduction of the survey. However, the results ob-
tained by performing the searches are dynamic in time,
depending on the criteria used by the search engines to
rank the studies.

• The literature selection process was guided by a search
string. Some studies may use a different vocabulary
than the words we used.

• Another related issue concerns subjectivity during the
selection of studies. The authors used their background
knowledge and research experience to decide on the rel-
evance of the studies.

• Moreover, as microservices are an attractive and evolv-
ing topic, we might miss recent studies due to the time-
line of the development of this survey.

9 Conclusions
As microservices are increasingly adopted, modern software
systems are transitioning from monolithic to distributed and
granular architectures with independent and executable arti-
facts. As an evolution of the client-server model [Salah et al.,
2016], microservices offer autonomy and faster development
for developer teams to build products more quickly while
minimizing dependencies and conflicts. However, distribut-
ing functionalities into microservices increases system com-
plexity, as each microservice can introduce potential points
of failure.
In this paper, we shed light on recent industry prac-

tices to make microservice-based systems more dependable.
Through an opinion survey with practitioners, we identified
how they address faults, countermeasure techniques, applied
technologies, and the challenges of diagnosing issues in pro-
duction environments. While there is a strong preference
for Kubernetes as a container orchestrator, we observed in-
creased adoption of techniques such as load balancing, re-
tries, circuit breakers, health checks, monitoring, and hori-
zontal auto-scaling. However, fault removal and forecasting
techniques receive limited attention. From a literature review
covering the period between 2020 and 2024, we identified

related topics addressed by academia. Using this two-fold
methodology, we discuss key findings from current indus-
try practices, correlate current research efforts with industry
gaps, and finally, identify challenges and opportunities. In
Table 8, we summarize the answers to the research questions
of this work.
In future work, we plan to include more open-ended ques-

tions to capture diverse professional perspectives, enhanc-
ing the connection between their experiences and our con-
clusions. We also aim to conduct interviews for a qualitative
analysis, providing deeper insights into the challenges pro-
fessionals face regarding microservice dependability.
This research involved the collection of audio from bee-

hives, exploring the potential of MFCCs and Mel spectro-
grams to describe colony strength. The main objective was
to provide relevant information to beekeepers, assisting them,
for example, in selecting hives for honey extraction. Dur-
ing development, we identified that to provide more practi-
cal guidance to beekeepers, classify the colony strength as
strong or weak, simplify the decision-making process, and
intervene when necessary. Additionally, audio capture in
the apiaries allowed the construction of a labeled and pub-
lic database, filling a gap in the literature.
The method proposed in this research achieved high ac-

curacy using a descriptor with 40 MFCCs, overperforming
CNN-based descriptors. Deeper models (VGG and ResNet)
captured more useful features than the light models (Mo-
bileNet and YOLO), achieving better classification accuracy.
These findings contribute to the specific understanding of
colony strength classification and provide broader insights
into the applicability of deep learning techniques in complex
acoustic contexts. They enrich the ongoing discourse for fu-
ture research and advancements in the field. The result sug-
gests that a compact descriptor effectively identifies colony
strength, offering a practical advantage: descriptors based on
a single feature reduce the number of necessary calculations
and extraction time. Moreover, they are more suitable for im-
plementation on devices with limited computational power,
often found in beehive monitoring environments in the api-
aries. This consideration suggests that the proposed method
is feasible for practical use in real-world conditions.
The nature of the field of beekeeping is complex. Environ-

mental conditions and various factors can lead to overlaps in
hive characteristics. Addressing this challenge is valuable,
as it mirrors the real inherent complexity of hive monitoring.
Additionally, it is crucial to emphasize the difficulty of col-
lecting new samples, as it requires appropriate conditions in
the hives and underscores the commitment to obtaining high-
quality data.
For future research, we will investigate how noise filter-

ing impacts preprocessing to improve classification perfor-
mance and extrapolate the descriptor to other scenarios of
interest in the beekeeping chain, such as identifying the pres-
ence or absence of the queen in the hive, detecting invaders,
monitoring hive temperature, among other applications. Ad-
ditionally, we evaluate the computational cost of different
classifiers, including Markov chains, to embed the classifica-
tion model and seek a representation of the colony strength
with intuitive numerical values for beekeepers.

Another future research direction could be to investigate
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RQ1: How is the industry dealing with dependability on microservices, in terms of experienced faults and failures, countermeasures applied (techniques
and technologies)?
The most frequent faults (§5.2) include high memory and CPU usage. The most common countermeasures (§5.3) are adopted for fault tolerance
(Load Balancing, Retries, and Health Checks); for fault prevention (Circuit Breakers, Horizontal Auto-scaling, and Timeouts), and for fault removal
(Monitoring). The main supporting technology (§5.4) used is Kubernetes. For fault diagnosis (§5.5), input data (logs, metrics, and traces) are widely
employed, while most participants report significant difficulties in debugging and diagnosing faults, highlighting persistent challenges.

RQ2: What are the main gaps and difficulties in terms of making microservices more dependable?
The main challenges to increasing the dependability of microservices include mainly faults and failures of frequent and balanced pattern of occur-
rence (§7.1.2), coupled with the complexity of fault diagnosis (§7.1.5). Advanced techniques for fault removal and prediction are underused due to
the lack of standardized tools and implementation complexity (§7.1.3).

RQ3: What related topics have been researched by academia in relation to the opinion survey? How much are they correlated with industry gaps?
Academia has been focused on automatic diagnosis, fault injection and prediction, monitoring, testing, and circuit breakers (§7.2). Although these
topics have been exploited, the efforts have not yet translated into effective adoption by the industry, which continues to face challenges in fault
diagnosis (§7.3).

Table 8. Summary of Answers to Research Questions.

how MFCCs can be integrated as input to CNNs and evalu-
ate the performance of these models in comparison with cur-
rently employed methods, bearing in mind that in the current
work, CNNs were used only for feature extraction and not
for classification. This approach would not only broaden the
scope of input feature analysis but also offer valuable insights
into the effectiveness ofMFCCs in deep learning contexts for
the task at hand.
We also aim to expand the applicability of the methodol-

ogy developed in this study by increasing the number of sam-
ples, covering a variety of scenarios in beekeeping. A natural
extension would be to explore the system’s ability to identify
the presence or absence of the queen in hives. Additionally,
we consider integrating information on hive temperatures, a
critical variable for bee health and productivity, investigat-
ing how the methodology adapts to apiaries in different re-
gions and whether it will provide valuable insights for bee-
keepers and researchers. We also intend to explore the opti-
mization of neural network architecture and model parame-
ters to enhance the system’s accuracy and efficiency further.
Finally, we will develop robust models capable of extrapolat-
ing to various scenarios within hives, providing a versatile
and valuable tool for monitoring and effectively managing
bee colonies.
This study has consolidated the application of machine

learning predictive models as a valuable tool for improving
observability in complex IT systems. The microservices-
based architecture proved to be the right selection, with sig-
nificant benefits in terms of scalability and maintenance.
The GradientBoostingRegressor and RandomForestRegres-
sor models proved to be particularly efficient, with the for-
mer achieving an R² Score of 0.86 when predicting HTTP
request rates and the latter reducing the Mean Squared Error
(MSE) by 2.06% for memory usage predictions when com-
pared to traditional monitoring methods.
These advances highlight the models’ ability to identify

crucial patterns and anticipate anomalies with considerable
accuracy, enabling more agile and informed interventions.
However, challenges such as the need for fine-tuning models
and improving training performance still persist. The com-
plexity and computational cost of machine learning models
demand special attention, indicating the need for ongoing re-
search into optimization and efficiency.
Future work will explore strategies that can speed up the

training process without compromising the accuracy of the
models. This could include the application of more effi-
cient algorithms, the use of specialized hardware, and data
dimensionality reduction techniques. In addition, emphasis
will be placed on implementing auto-tuning mechanisms that
can simplify the selection of hyperparameters, making pre-
dictive models not only more agile but also accessible for
wider adoption in IT production environments. Furthermore,
modifying the application to be able to run more than one ap-
plication on different servers is also mapped out future work.
These future guidelines aim to strengthen the proposition

that integrating machine learning into observability is a tech-
nical enhancement that can take IT systems management to
a new level of proactivity and resilience.
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Table 9. Example of dependability technologies for microservices.
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Figure 6. A big picture of dependable microservices, goals of dependability,
countermeasure techniques, and technologies.
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