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Abstract Regular management practices are crucial to assessing colonies’ conditions and implementing measures
to improve their strength. However, constant revisions can induce stress and even contribute to swarm loss. There-
fore, effective management that considers the well-being of the bees is necessary. In order to assist the bee-
keeper in managing the hives, this study proposes a noninvasive approach integrating Apis mellifera L., 1758 (Hy-
menoptera: Apidae) colony sound processing with machine learning and deep learning techniques to identify colony
strength, essential for the productivity of apiculture. We developed an audio acquisition process focused on colony
strength, resulting in a dataset with 3702 samples. We explored features extracted by CNNs, including VGG16,
ResNet50, MobileNet, and YOLO, comparing them with cepstral features such as Mel-Frequency cepstral coef-
ficients (MFCCs). Cepstral features significantly outperformed those extracted by CNN, with MFCCs achieving
an accuracy of 95.53%, compared to the 78.99% achieved by the best-performing CNN. These results highlight
the effectiveness of MFCCs in accurately identifying hive strength. This work differs from literature because it
presents a protocol for categorizing beehives as either weak or strong, with a focus on reducing intervention time.
It also includes a public dataset containing MFCCs and Deep Features extracted from audio recorded at different
apiaries. Additionally, it offers a method for automatically classifying hives based on their strength. These contri-
butions aim to serve as a knowledge base for the scientific community and to support beekeepers in non-invasive
and cost-effective apiary management.
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1 Introduction

Bees play an indispensable role in agriculture by providing
essential products such as honey, wax, pollen, and propo-
lis, contributing approximately U$12 billion to the Brazilian
economy through pollination services [Vieira et al., 2021].
Beekeeping productivity depends on the strength of hives
due to their high correlationwith honey production. Colonies
with larger populations generally perform better than those
with smaller populations [Kumar and Mall, 2018]. Hives
with decreased honey bee populations are more suscepti-
ble to attacks from natural enemies [Mazepa and Laurenti,
2022].
Regular management practices are crucial to assess colony

conditions and implement necessary measures to improve
their strength [Gorroi et al., 2020]. However, constant revi-
sions can induce stress, and during periods of food scarcity,
they may contribute to swarm loss. On the other hand, the
absence of management and weak colonies’ existence in api-
aries negatively impact activity [Oliveira Costa et al., 2016].
Therefore, beekeepers consistently have to decide between
carrying out management practices that stress the colonies
and needing to assess hive conditions to implement neces-
sary measures.
Management involves opening each beehive and observ-

ing the condition of the combs, presence of the queen, laying
pattern, presence of predators, and the amount of stored food
[Gorroi et al., 2020]. For large-scale beekeepers, periodic
inspections may be impractical due to time constraints. Per-
forming these reviews safely and without causing stress to
the colonies is crucial for developing apiculture activities.
Bees use sound to communicate within the hives. Ex-

perienced beekeepers can perceive characteristic sounds in
queenless hives or colonies preparing to swarm [Phan et al.,
2023]. Research has shown that the sound patterns pro-
duced by bees are efficient indicators for monitoring the con-
ditions and needs of hives [Rustam et al., 2024]. As a re-
sult, studies have investigated noninvasive methods for api-
ary monitoring based on hive sounds for various applications
such as counting the bee’s entrance in the hive [Heise et al.,
2020], detection of queen bees [Ruvinga et al., 2021; Barbi-
san et al., 2024], swarming [Zgank, 2021], circadian rhythm
[Kim et al., 2021], presence of air pollutants [Sharif et al.,
2020], foraging period [Shostak and Prodeus, 2019], and
strength of colony [Zhang et al., 2021].
These studies have shown promising results by demon-

strating that the use of audio processing techniques combined
with artificial intelligence can assist in identifying colony de-
mands. This is achieved through the development of mod-
els that can automatically recognize acoustic patterns. This
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approach has the potential to reduce the necessity for daily
physical inspections, lower costs, and improve the overall
efficiency of beekeeping management.
Based on this, the present research aims to automatically

detect the strength of hives based on acoustic patterns. The
main hypothesis is that cepstral and deep features extracted
from sounds produced by colonies can discriminate hives
based on their strength. This hypothesis is grounded in the
literature, suggesting a relationship between bee sounds and
colony activity level, health status, and behavior [Rustam
et al., 2024].
This work provides to the academic and beekeeper com-

munity: (1) a protocol to inspect the beehives and catego-
rize them as either weak or strong focus on reducing the in-
tervention time and, consequently, the colony stress;(2) the
availability of a public dataset with MFCCs and Deep Fea-
tures extracted from audio collected from different classes of
hives, resulting in an extension of de Oliveira et al. [2023]
with 18 new audio samples with approximately 30 minutes
each; and (3) a methodology to automatically classify hives
according their strength that adopts cepstral and deep fea-
tures extracted from sounds produced by colonies to char-
acterize strength patterns. This methodology can be directly
extrapolated for different scenarios such as queen absence
detection, Varroa destructor detection, and detection of pol-
lutants, among others. These contributions serve as a knowl-
edge base for the scientific community and support beekeep-
ers in non-invasive and cost-effective apiary management.
This work provides to the academic and beekeeper com-

munity the following: (1) A protocol for inspecting bee-
hives and classifying them as weak or strong, with a focus
on reducing intervention time and colony stress; (2) A pub-
lic dataset containing MFCCs and Deep Features extracted
from audio collected from different classes of hives, includ-
ing 18 new audio samples, each approximately 30 minutes
long, extending the work of de Oliveira et al. [2023]; and
(3) A methodology for automatically classifying hives based
on their strength, which utilizes cepstral and deep features
extracted from sounds produced by colonies to characterize
strength patterns. This methodology can be extrapolated to
various scenarios, including queen absence detection, Varroa
destructor detection, and identification of pollutants, among
others. These contributions serve as a knowledge base for
the scientific community and support beekeepers in non-
invasive and cost-effective apiary management.
This work is organized as follows. Section 2 presents

a state-of-the-art survey of works related to the proposed
theme. Section 3 details the methodology proposed in this
work, outlining all process stages. Section 4 presents the re-
sults obtained with the methodology of this work and a com-
parison with state-of-the-art results, followed by a brief dis-
cussion. Finally, Section 5 provides the final considerations
of the work, addressing the main topics.

2 Related Work
Noninvasive methods for monitoring bees have been a sub-
ject of investigation in various studies, with audio analy-
sis and processing applied in various applications: count-

ing the entry and exit of bees in the hive [Heise et al.,
2020], detection of queen bees [Ruvinga et al., 2021; Barbi-
san et al., 2024], swarming [Zgank, 2021], circadian rhythm
[Kim et al., 2021], presence of air pollutants Sharif et al.
[2020], estimation of the peak foraging activity period of
bees [Shostak and Prodeus, 2019], and strength of colony
[Zhang et al., 2021]. Additionally, Abdollahi et al. [2022]
identified approximately 60 studies investigating audio pro-
cessing for hive monitoring.
The Mel Frequency Cepstral Coefficients (MFCCs) are

highly relevant for sound classification in apiary monitoring.
For instance, Ruvinga et al. [2021] achieved a 92% accuracy
for bee queen detection using 13MFCCs and log energy. The
authors used an LSTM and tested the MLP model for classi-
fication, which reached 90% accuracy. The work of Soares
et al. [2022] used the combination of cepstral, time, and fre-
quency characteristics to classify the presence or absence of
the queen in the hive, achieving their best result with a feature
vector of 58 dimensions. The author used the SVM classifier,
obtaining an accuracy of 99%. Similarly, Kulyukin [2021]
utilized MFCCs as features to classify between bees, crick-
ets, or noise. The author employed 13 MFCCs and achieved
an accuracy of 98.43% with Random Forest (RF) and 98%
with Support Vector Machine (SVM) classifiers. Although
both studies show promising results, there is still room to im-
prove the generalization capacity of the models, using audio
captured from different hives and at different periods of the
day, bringing it closer to the real apiary scenario. In addi-
tion, it would be beneficial to explore other types of features
in the extraction of audio, complementing the use of MFCCs,
to ensure greater reliability in the results obtained.
Barbisan et al. [2024] detected the presence of the queen

bee as well. The study utilized neural networks and support
vector machine (SVM) models to classify audio signals cap-
tured inside the hive. Features were extracted using Mel-
Frequency Cepstral Coefficients (MFCC) and Short-Time
Fourier Transform (STFT). The models achieved F1-score
exceeding 98%. However, convolutional neural networks
(CNNs) were not tested, and the approach relies on sensor de-
ployment, which may pose implementation and maintenance
costs for small-scale beekeepers.
Cejrowski et al. [2020] proposed amonitoring approach to

detect the circadian rhythm of bees, determining their night-
time interval through the energy level of the signal emitted by
the hive. They concluded that the nighttime period for Buck-
fast Apis mellifera is between 23:00 and 04:00. To achieve
this, the authors extracted the Mel Frequency Cepstral Coef-
ficients (MFCCs) and used them as input for the Support Vec-
tor Machine (SVM) classifier, ultimately obtaining an accu-
racy of 81.14%. Despite the promising results, the data was
collected in just two hives and only at one time of the year.
Evaluating the proposed approach in productive apiaries and
with a greater number of hives and different weather condi-
tions is valuable.
In the study by Sharif et al. [2020], three different sets

of characteristics were analyzed for detecting pollutants in
beehives, specifically focusing on the organic compound
Trichloromethane (CHCl3). The authors used Mel Fre-
quency Cepstral Coefficients (MFCCs) and sound landscape
indices as the feature sets. The features extracted were in-
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put into the Random Forest classifier, resulting in an accu-
racy of 91.66% with sound landscape indices and 80% with
MFCC. It’s worth noting that this evaluation is limited to
binary classification: distinguishing between blank air and
Trichloromethane. Additionally, the study proposes a differ-
ential method for determining the optimal sample size for
classification based on seasonal characteristics.

Bromenshenk et al. [2009] developed acoustic recording
equipment to observe that the sound emitted by bees can not
only detect pollutants but also identify the type of pollutant
present. However, the equipment comes at a higher acqui-
sition cost compared to other, more affordable alternatives,
which may increase the beekeeper’s production costs.

Shostak and Prodeus [2019] conducted a study to deter-
mine the honey harvesting period. The research involved
analyzing spectral density from audio recordings to assess
whether the beehive was prepared for honey collection. Clas-
sification was performed using a dividing curve equation to
separate the different categories in spatial space. Model val-
idation was carried out based on the probability of correct
classification, resulting in a 96% accuracy rate. Additionally,
the authors suggested combining the power spectrum den-
sity estimate at 200 Hz or 250 Hz with a Bayesian decision
rule. However, this method produced lower classification ac-
curacy compared to the initial approach, and the authors did
not evaluate its ability to differentiate between bee colonies.

Zhang et al. [2021] modeled beehives strength using a
semi-supervised deep learning approach. They proposed a
hardware system to collect audio and environmental data
from beehives and used a hierarchical generative-prediction
network to model hive strength based on audio. The model
achieved 78.1% accuracy, improving performance when
trained on labeled and unlabeled data. Despite these ad-
vances, the complexity of the sensors and the need for contin-
uous human annotations further restrict the model’s applica-
bility on a larger scale or in smaller beekeeping operations.

Among the works discussed, MFCC extraction combined
with machine learning techniques like RF or SVMhas shown
promising results for various apiary monitoring purposes.
Only Kulyukin [2021] used a publicly available database, the
lack of publicly accessible acoustic databases presents a chal-
lenge as it hampers the advancement of research in this area.
The works that utilize private data are limited to collecting
audio from a few hives in restricted periods and testing the
models in limited climatic variation conditions.

Our study discusses automatic audio classification in a sce-
nario that few have explored in the literature, only Zhang
et al. [2021] approached the strength of the hive detection.
Additionally, we aim to address one of the gaps in the current
state of the art by making the database of extracted MFCCs
publicly available, thereby contributing to the accessibility
and replicability of the research. This study used a smart-
phonemicrophone to record audio, which reduced costs com-
pared to studies using external sensors. Furthermore, we
adopted a real acquisition scenario with production hives
rather than manipulating the condition of the hive, consid-
ering different apiaries under varying climatic conditions.

3 Materials and Methods
We aim to develop a solution for the processing and classifi-
cation of bioacoustic signals that characterize the hive’s state
as strong or weak, assisting beekeepers in understanding the
condition of their hives. Depending on environmental condi-
tions, strong hives may be ready for honey collection, while
weak hives may require management to strengthen. Figure 1
illustrates the steps to identify the hive.

Figure 1. Methodology steps: (1) Data acquisition: Collection of raw data
from apiaries; (2) Preprocessing: standardization and normalization for con-
sistent and comparable features; (3) Feature extraction: identification and
extraction of pertinent features from preprocessed data; (4) Classification:
models evaluation to identify the most suitable for the dataset, and finally,
(5) Validation: different metrics to assess the model’s generalizability.

3.1 Data Acquisition
Motivated by the lack of publicly available databases related
to hive sounds of Apis mellifera L., 1758 (Hymenoptera: Ap-
idae), we constructed our database focusing on hive strength.
Additionally, inspired by Al-Tikrity et al. [1971], DeGrandi-
Hoffman et al. [2008] and Vallenas-Sánchez et al. [2023], we
developed a new methodology to characterize the colonies
as strong and weak, focusing on reducing the intervention
time and, consequently, the stress caused in the classifi-
cation colony. We consider the following aspects to clas-
sify colonies: population density, availability of honey and
pollen, broods quantity, queen posture quality, and presence
of natural enemies.
It is important to emphasize that the available studies on

the analysis of the sound produced by bees were carried
out by manipulating the hives for the characteristics studied,
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such as the presence and absence of queens [Rustam et al.,
2024], colony density [Di et al., 2023] and information on air
pollutants [Yu et al., 2023]. In this study, the sound was col-
lected in beekeepers’ hives used for honey production. There
was nomanipulation for the desired characteristics, but rather
monitoring of the natural development of the beehives used
for production.
Initially, we managed the hives, installed in two apiaries

in the rural area of Teresina, Piauí, Brazil (5°05′21″ S;
42°48′06″ W), observing and noting the number of frames
not used by bees and the number of frames occupied by adult
bees, worker bee brood, honey and pollen. We also observed
the queen’s posture and the appearance of the offspring, look-
ing for symptoms of diseases and infestations by natural ene-
mies. These characteristics affect the hive population, the
number of offspring, and the availability of food and, to-
gether, more efficiently reflect the classification of the hive
into strong and weak.
Subsequently, the data was analyzed to calculate the occu-

pancy rate of the hives based on the available space (Occu-
pancy rate = (number of occupied frames/number of unoc-
cupied frames) x 100). The hives were classified as strong
and weak according to this rate. Hives with an occupancy be-
tween 75% and 100% were classified as strong. Hives with
occupancy below 74% were classified as weak. Symptoms
of natural enemy attacks and queen posture (regular or ir-
regular) contributed to the decision-making process in cases
where hive occupancy was above the established rate limit.
All hives classified as strong had queens with assessed egg-
laying capacities rated as good or very good. Both strong and
weak hives were situated in the same apiaries and subjected
to identical environmental conditions and availability of bee
plants. All hives adopted in the experiments had queens and
no presence of natural enemies.
The beekeeper used a smartphone to collect audio record-

ings via the Voice Recorder app1 with the following configu-
ration: 11,000 Hz sampling rate, single channel (mono), and
the recording format set to Windows Wave (wav).
The development of honey bee colonies presents distinct

seasonal states related to the availability of food collected in
flowers. The recordings were conducted on different dates,
considering the seasonality of the hives: (i) period of food
shortage (November and December); (ii) beginning of flow-
ering (February); and (iii) period of high food availability
(April and July). In November 2022, three collections were
made on the 22nd and 28th. Between December 1 and 6 of
the same year, three additional collections were performed.
Finally, four new collections were conducted on February 1,
2023.
Audio recordings were made between 6:30 AM and 8:30

AM on sunny, windless days. This standardization was per-
formed because the number of bees inside the hive depends
on the environmental conditions and the time of day. In the
early hours of sunny days, there are more bees collecting
food outside the hive. To prevent the analysis of the collected
audios from being influenced by the number of bees inside
the hives due to their food-gathering behavior, we collected
the sound at the same times and under the same environmen-

1https://bit.ly/voice-recorder-app

tal conditions. The audios were collected in two different api-
aries, 11 recordings were made in Apiary A and 2 in Apiary
B. In total, 10 audios were recorded with an average duration
of 30 minutes and a standard deviation of 11.46. The audios
from the first collection have been made available and pub-
lished in a previous study [de Oliveira et al., 2023]. In the
second stage of audio capturing, the audio recordings were
captured between 1 April and 7, 2023, totaling 8, and be-
tween 5 July and 21, 2023, totaling 10. All samples from
the second collection belong only to Apiary A, located in
Teresina. The subsequent collection followed the same pat-
tern as the first, including 18 new recordings, each approxi-
mately 30 minutes in duration, with a standard deviation of
4.8. Consequently, the final dataset was composed of 28 au-
dio recordings. The distribution of the number of samples
per class after the collection is detailed in Table 1.

Class Samples (before cut) Samples (after cut) Total time (s)
Weak 11 1880 30255
Strong 17 1822 27840

Table 1. Distribution of dataset samples based on colony strength,
considering the number of recordings before and after the original
audio cutting in 15-second slices and the total recording time in
seconds. This results in an unbalanced dataset, with the longest
duration of samples coming from weaker colonies.

Before recording the audio, the hives received puffs of
smoke at the entrance of the hive to prevent highly defensive
behavior and, with the cover slightly open, over the frames.
After the smoke had taken effect, the smartphone was placed
between the cover and the frames, with half of the device
containing the microphone inside the hive and the other half
outside, allowing activation of the recording button, as illus-
trated in Figure 2. Once recording began, the smartphone
remained in the hive for approximately 30 minutes. The
beekeepers distanced themselves from the collection site to
avoid interference with captured sound.

Figure 2. Hive audio acquisition in a real-world apiary setting. Audio is
recorded by placing a smartphone with its microphone facing inside the hive,
positioned between the lid and the box. The smartphone is wrapped in plas-
tic film to prevent bees from covering the device with propolis.

3.2 Pre-processing
The preprocessing step was performed to achieve uniformity
in the acquired data, ensuring that all recordings had the same
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settings in terms of duration, sampling rate, quantization, and
number of channels. Additionally, as the captured audio
recordings had an average duration of 30 minutes, they were
cut to generate new audio clips with a duration of 15 seconds,
testing both with and without overlap. The decision to use
15-second clips was based on the goal of finding the shortest
audio segment that would still provide satisfactory classifica-
tion performance. Considering a scenario with a large num-
ber of hives, it is relevant to minimize the audio recording to
reduce the management time. We experimented several clip
lengths, including up to 1 minute, but found that 15 seconds
was efficient, since longer clips did not improve the results.
These shortened clips were used as individual samples in the
subsequent steps. The number of samples after the cut can
be observed in Table 1.
The manipulation of the audio recordings captured in the

previous stage was performed using the LibROSA library
[McFee et al., 2015]. By default, this library normalizes the
data to the range [-1,1] and converts the signals to mono. Fur-
thermore, it ensures that all samples have the same sampling
rate of 11,000 Hz, a parameterized value, and a quantization
of 16 bits [McFee et al., 2015].

3.3 Feature Extraction
In this phase, the goal was to extract features that allow the
classifier to better distinguish between the classes to which
the sound belongs. We evaluated the performance of cep-
stral features and features extracted through Convolutional
Neural Networks (CNNs) to differentiate the sound classes
associated with colony strength.

3.3.1 Mel Frequency Cepstral Coefficients (MFCCs)

Cepstral features are related to how the human auditory sys-
tem perceives sounds, especially speech. The most common
are the Mel frequency spectral coefficients (MFCCs) [Vir-
tanen et al., 2018]. MFCCs concisely describe the overall
shape of a spectral envelope, representing the boundaries
within which the signal’s spectrum is contained.
The LibROSA library was employed to extract 40 MFCCs.

The work of Soares et al. [2022] inspired this choice, which
utilized MFCCs, among other features, to classify sound sce-
narios involving bees, specifically the absence or presence
of the queen in the hive. In that study, the MFCCs were
ranked among the top 40 most relevant features. The ex-
tracted MFCCs are publicly available on 2.

3.3.2 Deep features

The extraction of features through Convolutional Neural Net-
works (CNNs) involves a detailed process to translate audio
into visual representations. Initially, we used the LibROSA
library to generate Mel spectrograms from the audio, produc-
ing images scaled to 224x224 pixels, as demonstrated in Fig-
ures 4 and 5. This resolution was selected to balance the
trade-off between computational efficiency and the preserva-
tion of relevant spectral details necessary for accurate pattern
recognition. To this end, it is necessary to follow the steps

2https://bit.ly/mfcc-and-deep-features-dataset

as presented in Figure 3, where the audio samples were split
into smaller windows (2048) to ensure a fine-grained anal-
ysis of the time-frequency components. The window size
of 2048 was chosen as it is a standard in audio processing,
providing a good resolution of frequency components while
maintaining manageable data sizes [Oppenheim and Schafer,
2009]. After signal partitioning, the discrete Fourier trans-
forms (DFT) over the overlapped windows were computed
using the Blackman-Harris windowing function. This spe-
cific window function was selected due to its superior abil-
ity to minimize spectral leakage, which is crucial for obtain-
ing accurate frequency representations [Blackman and Har-
ris, 1967]. Besides, we adopted an overlap of 50% of the
windows (hop length) to guarantee statistical dependence be-
tween the windows, enhancing the model’s capacity to cap-
ture temporal correlations in the audio signal.
These spectrograms served as input for different CNN ar-

chitectures, each specialized in extracting specific patterns.
We utilized models such as VGG16 [Simonyan and Zisser-
man, 2014], ResNet50 [He et al., 2016], MobileNet [Howard
et al., 2017], and YOLO [Zhang et al., 2022] to process the
spectrograms, resulting in feature vectors of distinct sizes:
512 for VGG16, 2048 for ResNet50, 1024 for MobileNet,
and 1728 for YOLO. These architectures were selected based
on their established performance in visual pattern recognition
tasks. Each model presents a distinct balance between model
complexity, parameter count, and the capacity to generalize
across diverse datasets. All models were utilized in both pre-
trained and fine-tuned versions.
We have chosen VGG16 and ResNet50 based on their es-

tablished effectiveness in feature extraction, as demonstrated
in the original papers by Simonyan and Zisserman [2014] and
He et al. [2016], respectively. VGG16 is renowned for its
deep architecture and outstanding performance in image clas-
sification, while ResNet50’s residual connections effectively
tackle the degradation problem in deeper networks. As for
MobileNet and YOLO, we have opted for them due to their
impressive computational efficiency and real-time perfor-
mance, making them particularly well-suited for mobile and
embedded applications. MobileNet, as outlined by Howard
et al. [2017], is purposefully crafted to be lightweight and
efficient, while YOLO, particularly the improved YOLOv5
version discussed by Zhang et al. [2022], excels in swift ob-
ject detection.
We used transfer learning principles to improve audio

feature extraction. Specifically, we fine-tuned preexisting
Convolutional Neural Networks (CNNs) such as VGG16,
ResNet50, MobileNet, and YOLO. We used the Mel spec-
trograms mentioned in the previous paragraph as input to the
CNNs. We utilized pre-trained weights from ImageNet to
VGG16, ResNet50 and MobilNet, and ultralytics to YOLO
to serve as the foundation for our fine-tuning methodology.
The work of Yosinski et al. [2014] inspired our method.
In fine-tuning, we freeze all base model layers and intro-

duce a fully connected layer. This hybrid architecture under-
went an initial ten epochs training phase with a conservative
learning rate of 0.0001. The choice of ten epochs for ini-
tial training is consistent with common practices in transfer
learning, where a limited number of epochs is sufficient to ad-
just the new layers without overfitting, especially when the
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Figure 3. Steps to generate Deep Features: (1) Signal Partition: Divid-
ing the input signal into smaller windows. (2) DFT: Transforming the sig-
nal from the time domain to the frequency domain. (3) Mel Spectrogram:
Converting DFT into Mel-frequency representations for human-like percep-
tion. (4) Blackman-Harris: Applying window function for enhanced reso-
lution and noise reduction. (5) Models Pre-training and Fine-tuning: Using
pre-existing models, then adjusting them to specific tasks. (6) Deep Fea-
tures: High-level abstract representations extracted from pre-trained and
fine-tuned models.

dataset is relatively small [Yosinski et al., 2014]. The learn-
ing rate of 0.0001 was selected to ensure stable convergence
during this phase, as it is generally considered a safe start-
ing point that prevents drastic updates to the weights, which
could destabilize the training [Smith, 2017].
Building on this foundation, we strategically unfroze the

final layers of the base model and continued training for an
additional ten epochs, employing a reduced learning rate of
0.00001. This second phase of fine-tuning, where specific
layers are unfrozen, typically requires a smaller learning rate
to allow for fine-grained adjustments without overshooting
the optimal weights, especially when the model is close to
convergence [Yosinski et al., 2014]. The reduction in the
learning rate to 0.00001 aligns with best practices in fine-
tuning, which advocate for progressively smaller learning
rates as training progresses to refine themodel’s performance
[He et al., 2016].
The resulting fine-tuned CNNmodels were used to extract

features from Mel spectrograms, generating feature vectors
of varying sizes (512 for VGG16, 2048 for ResNet50, 1024
for MobileNet, and 768 for YOLO). Their derived feature
vectors serve as inputs for machine learning models.

3.4 Classification

Three distinct classifiers were adopted: Multilayer Percep-
tron (MLP), Support Vector Machine (SVM), and Random
Forest (RF). These classifiers were selected to provide in-
sights into the performance of different types of models.
MLP is a neural network capable of learning complex and
non-linear relationships, making it suitable for capturing pat-
terns in audio features [Haykin, 2001]. We conducted man-
ual parameter tuning on theMultilayer Perceptron (MLP), fo-
cusing on the number of epochs, batch size, and the number
of hidden layers. SVMs are particularly effective for han-
dling non-linear data through kernel functions, which map
the data into higher-dimensional spaces, enabling the con-
struction of non-linear decision boundaries [Cortes and Vap-

Figure 4. The strong hive produces a distinct sound patternwith a prominent
peak occurring at around 0.6 seconds. This pattern repeats consistently over
the entire duration, with segments characterized by 0 dB power. Over a
duration of 5.4 seconds, the sound decreases in the higher frequency range
(above 1024 Hz), while its main power lies within the lower frequency range
(0 to around 512 Hz).

Figure 5. Melspectogram of a weaker hive, that exhibits a consistent sound
pattern over time. Within a 5.4-second time window, the sound is signifi-
cantly attenuated in the higher frequency range (above 2048 Hz), while most
of its power is concentrated in the lower frequency range (0 to approximately
512 Hz).

nik, 1995]. In the context of SVM, we conducted tuning on
the kernel type and the regularization parameter C to opti-
mize the performance of the decision boundary. Based on
decision trees, RF was chosen for its robustness and reduced
risk of overfitting, especially in cases with noisy or imbal-
anced data [Breiman, 2001]. In RF, we optimized the number
of trees (n_estimators) and the splitting criterion (e.g., Gini
impurity, entropy) to enhance the model’s accuracy and sta-
bility. Table 2 shows the parameters range of classifiers, the
best values of parameters are different for each experimen-
tal scenario. The selected values are presented in section 4.
Results and Discussion.
To define the training and test sets and avoid data leakage,

we first split the 28 audio recordings before any preprocess-
ing steps were performed, that is, before segmenting the au-
dios into smaller 15-second samples. We aimed for a split
close to 80/20 proportion, taking into account the duration
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Classifier Parameters Values

MLP No. of epochs
Batch-size

20, 25, 30, 35
1, 4, 8

SVM Kernel
C

poly, rbf, sigmoid, linear
1 - 11

RF Criterion
N-estimators

gini, entropy
10,20,30,40,50,60

Table 2. Range of values adopted for classifier parametrization.

of each recording to maintain balance between the sets
For the test set, we selected 2 recordings from weak hives

and 2 from strong hives, ensuring that the duration of these
recordings was similar. The training set included the remain-
ing 24 recordings, with 15 fromweak hives and 9 from strong
hives. Although there was a difference in the number of
recordings per class, the total duration of audio for each class
in the training set was kept as close as possible.
This approach ensured that no part of the training set was

present in the test set, and no part of the test set was present
in the training set. The preprocessing step, including the seg-
mentation into 15-second clips, was conducted separately for
each set, further preventing any potential data leakage. As
a result, the test set consisted of 303 samples from strong
hives and 235 samples from weak hives, while the training
set contained 1525 samples from strong hives and 1662 sam-
ples from weak hives.

3.5 Validation
To evaluate the results of audio classification, statistical mea-
sures widely used in the literature were adopted: Accuracy
(Acc), Kappa index (κ), F1 score, and confusion matrix,
which presents the proportion of errors and correct predic-
tions obtained by the classifiers [Wardhani et al., 2019]. The
F1 score balances precision and recall metrics, where the
ideal value is 1. The Kappa index was selected due to the
class imbalance, as shown in Table 1.

4 Results and Discussion
We conducted a comparative analysis of the performance of
Mel Frequency Cepstral Coefficients (MFCCs) and Convo-
lutional Neural Networks (CNNs) in feature extraction. We
evaluated both extraction methods using samples with and
without overlap. Moreover, we evaluated the performance
of pre-trained networks and those that underwent fine-tuning
for CNN-based feature extraction.
Tables 3 and 4 summarize the results of experiments con-

ducted withMFCCs, using non-overlapping and overlapping
data, respectively. Upon analyzing the results, we observed
that overlapping data did not enhance the classifiers’ perfor-
mance for MFCCs. The best accuracy was achieved with
non-overlapping data, with 1.65% accuracy higher than the
best result obtained with overlapping data. Notably, the
kappa and F1-score metrics showed significant improvement
without overlapping data. Considering the MFCCs, the over-
lapping could raise noisy information, making audio events
classification a challenge [Leng et al., 2015].
Based on the outcomes presented in Table 3, the MLP ex-

hibited the highest accuracy among other classifiers. This

was expected as the MLP can create complex models and
adjust to various data types. Additionally, Table 4 indicates
that Random Forest (RF) was the most effective classifier
when dealing with overlapping. The tree voting system of
RF can operate more reliably even in the presence of noise.
[Breiman, 2001].

Model Parameters Accuracy f1-score kappa
MLP (1 layer: 6) epc:30, bs:4 0.9553 0.9550 0.9082

SVM k:rbf, C:10 0.9182 0.9184 0.8348
RF est:20, crit:entropy 0.8996 0.9000 0.799

Table 3. Colony strength classification results are presented in
terms of accuracy, f-score, and kappa. MFCCs are used as input fea-
tures without data overlapping, and different classifiers with man-
ual parameter optimization are employed. The best results are high-
lighted in bold.

Model Parameters Accuracy f1-score kappa
MLP (1 layer: 6) epc:30, bs:4 0.7573 0.6045 0.2106

SVM k:rbf, C:10 0.6652 0.6620 0.3354
RF est:20, crit:entropy 0.7574 0.7566 0.5173

Table 4. Colony strength classification results are presented in
terms of accuracy, f-score, and kappa. MFCCs are used as input
features with data overlapping, and different classifiers with man-
ual parameter optimization are employed. The best results are high-
lighted in bold.

In our study, we assess the impact of fine-tuning pre-
trained CNNs for colony strength classification. The results
showed similar performance, suggesting that pre-trained
models without fine-tuning may be relevant for this specific
scenario. The fine-tuning offered fast overfitting, even with
an extremely low learning rate. Fine-tuning can lead to insta-
bility and overfitting, particularly for small datasets [Dong
et al., 2021].

Extraction model Classification model Parameters Accuracy F1-score kappa
VGG16 MLP (1 layer: 6) epc:30, bs:4 0.7147 0.7098 0.4348
VGG16 SVM k:linear, d:3, C:1 0.7707 0.7621 0.5476
VGG16 RF est:50, crit:entropy 0.6349 0.6349 0.2703
ResNet50 MLP (1 layer: 6) epc:30, bs:4 0.7860 0.7798 0.5771
ResNet50 SVM k:linear, d:3, C:1 0.7809 0.7747 0.5670
ResNet50 RF est:50, crit:entropy 0.7436 0.7434 0.4870
MobileNet MLP (1 layer: 6) epc:30, bs:4 0.6621 0.6614 0.3268
MobileNet SVM k:linear, d:3, C:1 0.6587 0.6587 0.3186
MobileNet RF est:50, crit:entropy 0.7215 0.7214 0.4431
YOLO MLP (1 layer: 6) epc:30, bs:4 0.6994 0.6994 0.3998
YOLO SVM k:linear, d:3, C:1 0.6332 0.6327 0.2691
YOLO RF est:50, crit:entropy 0.6842 0.6841 0.3683

Table 5. Colony strength classification results are presented in
terms of accuracy, f-score, and kappa. Features extracted from no
overlapping data through pre-trained deep networks are used as in-
put of different classifiers withmanual parameter optimization. The
best results are highlighted in bold.

In the context of this study, MFCCs demonstrated su-
perior performance over the deep features extracted from
CNNs due to several key factors. Pre-trained CNN mod-
els are inherently designed with generic feature representa-
tions, optimized for a wide spectrum of image classification
tasks. However, the original training datasets of these mod-
els do not align closely with the unique characteristics of
our domain, which involves analyzing audio signals to as-
sess colony strength. This significant domain shift implies
that the deep features extracted by these CNNs may lack the
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Extraction model Classification model Parameters Accuracy F1-score kappa
VGG16 MLP (1 layer: 6) epc:30, bs:4 0.7053 0.7049 0.4128
VGG16 SVM k:linear, d:3, C:1 0.7677 0.7591 0.5417
VGG16 RF est:50, crit:entropy 0.6037 0.6034 0.2099
ResNet50 MLP (1 layer: 6) epc:30, bs:4 0.7967 0.7917 0.5980
ResNet50 SVM k:linear, d:3, C:1 0.7890 0.7839 0.5828
ResNet50 RF est:50, crit:entropy 0,7284 0,7280 0.4561
MobileNet MLP (1 layer: 6) epc:30, bs:4 0.6515 0.6514 0.3031
MobileNet SVM k:linear, d:3, C:1 0.6823 0.6822 0.3647
MobileNet RF est:50, crit:entropy 0.7062 0.7061 0.4123
YOLO MLP (1 layer: 6) epc:30, bs:4 0.6020 0.5971 0.2107
YOLO SVM k:linear, d:3, C:1 0.6285 0.6282 0.2591
YOLO RF est:50, crit:entropy 0.6464 0.6464 0.2931

Table 6. Colony strength classification results are presented in
terms of accuracy, f-score, and kappa. Features extracted from over-
lapping data through pre-trained deep networks are used as input of
different classifiers with manual parameter optimization. The best
results are highlighted in bold.

Extraction model Classification model Parameters Accuracy F1-score kappa
VGG16 MLP (1 layer: 6) epc:30, bs:4 0.7181 0.7124 0.449
VGG16 SVM k:linear, d:3, C:1 0.7843 0.7787 0.5735
VGG16 RF est:50, crit:entropy 0.6519 0.6511 0.307
ResNet50 MLP (1 layer: 6) epc:30, bs:4 0.7403 0.7301 0.4874
ResNet50 SVM k:linear, d:3, C:1 0.7060 0.7516 0.5275
ResNet50 RF est:50, crit:entropy 0.7623 0.7622 0.5247
MobileNet MLP (1 layer: 6) epc:30, bs:4 0.7164 0.7164 0.4335
MobileNet SVM k:linear, d:3, C:1 0.672 0.6670 0.3362
MobileNet RF est:50, crit:entropy 0.7249 0.7248 0.4512
YOLO MLP (1 layer: 6) epc:30, bs:4 0.6757 0.6756 0.3528
YOLO SVM k:linear, d:3, C:1 0.6366 0.6356 0.2765
YOLO RF est:50, crit:entropy 0.6570 0.6567 0.3160

Table 7. Colony strength classification results are presented in
terms of accuracy, f-score, and kappa. Features extracted from no
overlapping data through fine-tuning deep networks are used as in-
put of different classifiers withmanual parameter optimization. The
best results are highlighted in bold.

Extraction model Classification model Parameters Accuracy F1-score kappa
VGG16 MLP (1 layer: 6) epc:30, bs:4 0.5978 0.5830 0.2063
VGG16 SVM k:linear, d:3, C:1 0.7412 0.7297 0.4900
VGG16 RF est:50, crit:entropy 0.6310 0.6291 0.2665
ResNet50 MLP (1 layer: 6) epc:30, bs:4 0.7011 0.6896 0.4104
ResNet50 SVM k:linear, d:3, C:1 0.7899 0.7847 0.5845
ResNet50 RF est:50, crit:entropy 0.7591 0.7589 0.5179
MobileNet MLP (1 layer: 6) epc:30, bs:4 0.7344 0.7319 0.4660
MobileNet SVM k:linear, d:3, C:1 0.6797 0.6797 0.3603
MobileNet RF est:50, crit:entropy 0.7002 0.6997 0.4028
YOLO MLP (1 layer: 6) epc:30, bs:4 0.6746 0.6745 0.3507
YOLO SVM k:linear, d:3, C:1 0.6703 0.6702 0.3422
YOLO RF est:50, crit:entropy 0.6831 0.6831 0.3668

Table 8. Colony strength classification results are presented in
terms of accuracy, f-score, and kappa. Features extracted from over-
lapping data through fine-tuning deep networks are used as input of
different classifiers with manual parameter optimization. The best
results are highlighted in bold.

specificity required to capture the nuances essential for this
classification task.
Additionally, the fine-tuning process, typically employed

to adapt pre-trained models to new tasks, presented chal-
lenges due to the limited size of our dataset. Fine-tuning
under such conditions requires a delicate balance to avoid
overfitting, where the model learns the noise of the training
data rather than generalizable patterns. Despite attempts at
fine-tuning, the CNN models tended to overfit rapidly, con-
tributing to their inferior performance compared to the more
stable and robust MFCCs.
Even lighter CNN architectures, such as MobileNet and

YOLO, which are less prone to overfitting due to their
smaller number of parameters, showed inferior performance
compared to MFCCs. The t-SNE plots in the Figures 7, 8, 9,
and 10 reveal that CNNs, even with mel-spectrograms as in-
puts, exhibit significant class overlap, indicating less distinct
feature representations. In contrast, MFCCs, as illustrated in

Figure 6, provide greater class separability, which is crucial
for distinguishing varying levels of colony strength in our
context.
The performance gap underscores the limitations of using

pre-trained CNNs and highlights the significance of tradi-
tional acoustic features like MFCCs, which effectively cap-
ture the tonal characteristics of audio signals. The challenges
encountered with CNNs underscore the necessity for deep
models specifically trained with domain-specific data, such
as beehive sounds, to achieve optimal performance. Fu-
ture research should consider expanding the dataset to ex-
plore how it might influence the comparative effectiveness
of CNNs versus traditional features in audio classification
tasks.
In addition, based on our experiment presented in Tables 3,

4, 5, 6, 7, and 8, it was found that introducing a 50% overlap
between audio samples did not have a significant impact on
the classification outcomes. Thus, it can be inferred that the
temporal overlap of samples does not substantially affect the
performance of the classification models used in our study.
It is important to note that all results obtained with features

extracted through CNNs were inferior to those obtained with
MFCCs. Additionally, the descriptors produced by the eval-
uated CNNs have higher dimensionality. This comparison
suggests that, for this specific context, CNN-derived features
may not be as effective as MFCCs. This may be justified by
Figures 7, 8, 9, and 10, which demonstrate the complexity of
data dispersion when using these features as descriptors.
Our analysis provides insights into the applicability of

different feature extraction methods in the classification of
colony strength and the effectiveness of overlapping data.
These findings not only contribute to the specific understand-
ing of colony strength classification but also provide broader
insights into the applicability of deep learning techniques
in complex acoustic contexts. They enrich the ongoing dis-
course and lay a solid foundation for the development of fu-
ture research and advancements in the field.

4.1 Comparison with the State of the Art
Table 9 presents the different applications for acoustic hive
monitoring such as queen bee presence, bee detection, bees’
circadian rhythm, hive pollutants, honey harvest period, and
colony strength. The latter is addressed in this work. Table 9
summarizes the relatedwork regarding the features extracted,
the size of the descriptor, the classifiers, and the respective
results in terms of accuracy, a metric common to all works.
Table 9 shows the relevance of MCCFs, which are the

most commonly used feature and contribute to high classi-
fication accuracies in various applications. Each study also
has a variety of descriptor sizes, ranging from 2 to 193 fea-
tures. Although there is no strict correlation between the de-
scriptor size and accuracy, we emphasize their importance
because they could impact the performance of the embedded
application on devices with limited computational capabili-
ties. SVM was the most commonly employed classifier, fol-
lowed by neural networks (NN), which yielded promising
results.
Our proposal achieved an accuracy of 95.53% in detecting

the strength of the hive using a descriptor of 40 MFCCs and
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Figure 6. TSNE scatterplot illustrates the separation between the weak and
strong classes based on the MFCC features. It is important to note the lim-
ited areas of overlap between classes, which further validates the promising
classification results.

Figure 7. TSNE scatterplot demonstrates the separation between the weak
and strong classes based on the features extracted by VGG16. Although
there are some overlapping areas, there is a considerable distinction between
the classes, which reinforces the high classification performance of this de-
scriptor compared to descriptors from lighter architectures such as YOLO
and MobileNet.

Figure 8. TSNE scatterplot demonstrates the separation between the weak
and strong classes based on the features extracted by Resnet50. Although
there are overlapping areas, there is a considerable distinction between the
classes, which reinforces the high classification performance of this descrip-
tor compared to descriptors from lighter architectures such as YOLO and
MobileNet.

Figure 9. TSNE scatterplot demonstrates the separation between the weak
and strong classes based on the features extracted by MobileNet. There is a
large region of overlap between classes, reinforcing the poor classification
performance presented by this descriptor compared to the descriptors from
dense architectures such as Resnet50 and VGG16.
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anMLPwith only 1 layer and 6 neurons. The reduced size of
the descriptor, based on a single feature and combined with
a model of little depth, suggests a viable alternative for real-
time use in an apiary on a device with limited computational
power.
The variety of objectives, methodologies, and datasets

makes direct comparisons challenging. It’s worth noting that
Zhang et al. (2021) conducted closely related work, focusing
on assessing colony strength. Their classification accuracy
was the lowest, but it’s important to note that no assump-
tions can be made about the audio complexity, as the authors
used a private dataset. These diversity highlights the com-
plexity of using sound for hive state classification, suggest-
ing a promising area for future investigations.

5 Conclusion
This research involved the collection of audio from beehives,
exploring the potential of MFCCs and Mel spectrograms to
describe colony strength. The main objective was to provide
relevant information to beekeepers, assisting them, for ex-
ample, in selecting hives for honey extraction. During de-
velopment, we identified that to provide more practical guid-
ance to beekeepers, classify the colony strength as strong or
weak, simplify the decision-making process, and intervene
when necessary. Additionally, audio capture in the apiaries
allowed the construction of a labeled and public database,
filling a gap in the literature.
The method proposed in this research achieved high ac-

curacy using a descriptor with 40 MFCCs, overperforming
CNN-based descriptors. Deeper models (VGG and ResNet)
captured more useful features than the light models (Mo-
bileNet and YOLO), achieving better classification accuracy.
These findings contribute to the specific understanding of
colony strength classification and provide broader insights
into the applicability of deep learning techniques in complex
acoustic contexts. They enrich the ongoing discourse for fu-
ture research and advancements in the field. The result sug-
gests that a compact descriptor effectively identifies colony
strength, offering a practical advantage: descriptors based on
a single feature reduce the number of necessary calculations
and extraction time. Moreover, they are more suitable for im-
plementation on devices with limited computational power,
often found in beehive monitoring environments in the api-
aries. This consideration suggests that the proposed method
is feasible for practical use in real-world conditions.
The nature of the field of beekeeping is complex. Environ-

mental conditions and various factors can lead to overlaps in
hive characteristics. Addressing this challenge is valuable,
as it mirrors the real inherent complexity of hive monitoring.
Additionally, it is crucial to emphasize the difficulty of col-
lecting new samples, as it requires appropriate conditions in
the hives and underscores the commitment to obtaining high-
quality data.
For future research, we will investigate how noise filter-

ing impacts preprocessing to improve classification perfor-
mance and extrapolate the descriptor to other scenarios of
interest in the beekeeping chain, such as identifying the pres-
ence or absence of the queen in the hive, detecting invaders,

monitoring hive temperature, among other applications. Ad-
ditionally, we evaluate the computational cost of different
classifiers, including Markov chains, to embed the classifica-
tion model and seek a representation of the colony strength
with intuitive numerical values for beekeepers.
Another future research direction could be to investigate

how MFCCs can be integrated as input to CNNs and evalu-
ate the performance of these models in comparison with cur-
rently employed methods, bearing in mind that in the current
work, CNNs were used only for feature extraction and not
for classification. This approach would not only broaden the
scope of input feature analysis but also offer valuable insights
into the effectiveness ofMFCCs in deep learning contexts for
the task at hand.
We also aim to expand the applicability of the methodol-

ogy developed in this study by increasing the number of sam-
ples, covering a variety of scenarios in beekeeping. A natural
extension would be to explore the system’s ability to identify
the presence or absence of the queen in hives. Additionally,
we consider integrating information on hive temperatures, a
critical variable for bee health and productivity, investigat-
ing how the methodology adapts to apiaries in different re-
gions and whether it will provide valuable insights for bee-
keepers and researchers. We also intend to explore the opti-
mization of neural network architecture and model parame-
ters to enhance the system’s accuracy and efficiency further.
Finally, we will develop robust models capable of extrapolat-
ing to various scenarios within hives, providing a versatile
and valuable tool for monitoring and effectively managing
bee colonies.
This study has consolidated the application of machine

learning predictive models as a valuable tool for improving
observability in complex IT systems. The microservices-
based architecture proved to be the right selection, with sig-
nificant benefits in terms of scalability and maintenance.
The GradientBoostingRegressor and RandomForestRegres-
sor models proved to be particularly efficient, with the for-
mer achieving an R² Score of 0.86 when predicting HTTP
request rates and the latter reducing the Mean Squared Error
(MSE) by 2.06% for memory usage predictions when com-
pared to traditional monitoring methods.
These advances highlight the models’ ability to identify

crucial patterns and anticipate anomalies with considerable
accuracy, enabling more agile and informed interventions.
However, challenges such as the need for fine-tuning models
and improving training performance still persist. The com-
plexity and computational cost of machine learning models
demand special attention, indicating the need for ongoing re-
search into optimization and efficiency.
Future work will explore strategies that can speed up the

training process without compromising the accuracy of the
models. This could include the application of more effi-
cient algorithms, the use of specialized hardware, and data
dimensionality reduction techniques. In addition, emphasis
will be placed on implementing auto-tuning mechanisms that
can simplify the selection of hyperparameters, making pre-
dictive models not only more agile but also accessible for
wider adoption in IT production environments. Furthermore,
modifying the application to be able to run more than one ap-
plication on different servers is also mapped out future work.
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Reference Objective Features Descriptor Size Classifiers Results
Ruvinga et al. [2023] Queen presence MFCCs 14 LSTM 91.81% acc
Kulyukin [2021] Bee or no bee MFCCs 193 RF 98.43%

Cejrowski et al. [2020] Circadian rhythm MFCCs 13 SVM 81.14% acc
Sharif et al. [2020] Pollutants detection Landscape indices 4 RF 91.66% acc
Zhao et al. [2021] Pollutants detection MFCCs 39 SVM 93.7% acc

Shostak and Prodeus [2019] Harvest period Spectral density 2 Divisive curve
equation 96% acc

Zhang et al. [2021] Colony strength Mel spectrograms, temperature, humidity, and pressure 96 GPN 78.1% acc
Barbisan et al. [2024] Queen presence MFCCs, STFT 1-50 NN, SVM 99.21% acc (STFT, NN)
Proposed Method Colony strength MFCCs 40 MLP 95.53% acc

Table 9. In comparing the use of audio processing in beehives across different literature, we emphasize the importance of the size of the
descriptor and classifier. This is crucial as it affects the performance of the embedded application on devices with limited computational
capabilities. Our proposal, highlighted in bold, achieves significant accuracy (acc) with a relatively small descriptor. However, it is important
to note that the classification complexity can vary greatly depending on the specific application.

These future guidelines aim to strengthen the proposition
that integrating machine learning into observability is a tech-
nical enhancement that can take IT systems management to
a new level of proactivity and resilience.

Declarations

Funding
This research was partially funded by FAPEPI via Centelha 2 Piauí
Program.

Authors’ Contributions
Jederson Sousa Luz was the main contributor and writer of this
manuscript. Fábia de Mello Pereira, Deborah Maria Vieira Mag-
alhães, and Myllena Caetano de Oliveira contributed to the concep-
tion of the study and performed the review. Jederson Sousa Luz
and Myllena Caetano de Oliveira conducted the experiments. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets generated and analysed during the current study
are available in: https://bit.ly/mfcc-and-deep-features-
dataset.

References
Abdollahi, M., Giovenazzo, P., and Falk, T. H. (2022).
Automated beehive acoustics monitoring: a compre-
hensive review of the literature and recommendations
for future work. Applied Sciences, 12(8):3920. DOI:
10.3390/app12083920.

Al-Tikrity, W., Hillmann, R., Benton, A., and Clarke,
WW, J. (1971). A new instrument for brood
measurement in a honeybee colony. Available
at:https://www.cabidigitallibrary.org/doi/
full/10.5555/19740200801.

Barbisan, L., Turvani, G., and Riente, F. (2024). A
machine learning approach for queen bee detection
through remote audio sensing to safeguard honeybee
colonies. IEEE Transactions on AgriFood Electronics.
DOI: 10.1109/TAFE.2024.3406648.

Blackman, S. and Harris, J. W. (1967). On the use of win-
dows for harmonic analysis with the discrete fourier trans-
form. IEEE Transactions on Audio and Electroacoustics,
15(2):236–241. DOI: 10.1109/PROC.1978.10837.

Breiman, L. (2001). Random forests. Machine learning,
45:5–32. DOI: 10.1023/A:1010933404324.

Bromenshenk, J. J., Henderson, C. B., Seccomb, R. A.,
Rice, S. D., and Etter, R. T. (2009). Honey bee acous-
tic recording and analysis system for monitoring hive
health. Available at:https://patents.google.com/
patent/US7549907B2/en.

Cejrowski, T., Szymański, J., and Logofătu, D. (2020).
Buzz-based recognition of the honeybee colony circa-
dian rhythm. Computers and Electronics in Agriculture,
175:105586. DOI: 10.1016/j.compag.2020.105586.

Cortes, C. and Vapnik, V. (1995). Support-vector net-
works. Machine learning, 20:273–297. Available
at:https://ise.ncsu.edu/wp-content/uploads/
sites/9/2022/08/Cortes-Vapnik1995_Article_
Support-vectorNetworks.pdf.

de Oliveira, M. C., Pereira, F. d. M., de Moura, V. G.,
Brito, M. A., dos Santos, B. R., de Oliveira, M. C.,
and Magalhaes, D. M. (2023). Aquisição e classifi-
cação da intensidade da colmeia usando características
cepstrais. In Anais do XV Simpósio Brasileiro de Com-
putação Ubíqua e Pervasiva, pages 31–40. SBC. DOI:
10.5753/sbcup.2023.230536.

DeGrandi-Hoffman, G., Wardell, G., Ahumada-Segura, F.,
Rinderer, T., Danka, R., and Pettis, J. (2008). Compar-
isons of pollen substitute diets for honey bees: consump-
tion rates by colonies and effects on brood and adult pop-
ulations. Journal of apicultural research, 47(4):265–270.
DOI: 10.1080/00218839.2008.11101473.

Di, N., Sharif, M. Z., Hu, Z., Xue, R., and Yu, B. (2023).
Applicability of vggish embedding in bee colony monitor-
ing: comparison with mfcc in colony sound classification.
PeerJ, 11:e14696. DOI: 10.7717/peerj.14696.

Dong, X., Luu, A. T., Lin, M., Yan, S., and Zhang, H. (2021).
How should pre-trained language models be fine-tuned
towards adversarial robustness? Advances in Neural
Information Processing Systems, 34:4356–4369. Avail-
able at:https://proceedings.neurips.cc/paper/
2021/hash/22b1f2e0983160db6f7bb9f62f4dbb39-
Abstract.html.

Gorroi, G., Freitas, L. P. V. d., and Assis, D. C.
S. d. (2020). Apicultura: o manejo das abelhas
do gênero apis. Cad. técn. Vet. Zoot., pages 9–36.

https://bit.ly/mfcc-and-deep-features-dataset
https://bit.ly/mfcc-and-deep-features-dataset
https://doi.org/10.3390/app12083920
https://www.cabidigitallibrary.org/doi/full/10.5555/19740200801
https://www.cabidigitallibrary.org/doi/full/10.5555/19740200801
https://ieeexplore.ieee.org/abstract/document/10557729
https://ieeexplore.ieee.org/document/1455106
https://doi.org/10.1023/A:1010933404324
https://patents.google.com/patent/US7549907B2/en
https://patents.google.com/patent/US7549907B2/en
https://doi.org/10.1016/j.compag.2020.105586
https://ise.ncsu.edu/wp-content/uploads/sites/9/2022/08/Cortes-Vapnik1995_Article_Support-vectorNetworks.pdf
https://ise.ncsu.edu/wp-content/uploads/sites/9/2022/08/Cortes-Vapnik1995_Article_Support-vectorNetworks.pdf
https://ise.ncsu.edu/wp-content/uploads/sites/9/2022/08/Cortes-Vapnik1995_Article_Support-vectorNetworks.pdf
https://doi.org/10.5753/sbcup.2023.230536
https://doi.org/10.1080/00218839.2008.11101473
https://doi.org/10.7717/peerj.14696
https://proceedings.neurips.cc/paper/2021/hash/22b1f2e0983160db6f7bb9f62f4dbb39-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/22b1f2e0983160db6f7bb9f62f4dbb39-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/22b1f2e0983160db6f7bb9f62f4dbb39-Abstract.html


Cepstral and Deep Features for Apis mellifera Hive Strength Classification Çuz et al, 2024

Available at:https://vet.ufmg.br/ARQUIVOS/
FCK/Cadernos%20T%C3%A9cnicos%20-%2096%20-
%20para%20internet%20(1).pdf.

Haykin, S. (2001). Redes neurais: princípios e prática.
Bookman Editora. Book.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778. Available
at:https://openaccess.thecvf.com/content_
cvpr_2016/html/He_Deep_Residual_Learning_
CVPR_2016_paper.html.

Heise, D., Miller, Z., Wallace, M., and Galen, C. (2020).
Bumble bee traffic monitoring using acoustics. In 2020
IEEE International Instrumentation and Measurement
Technology Conference (I2MTC), pages 1–6. IEEE. DOI:
10.1109/I2MTC43012.2020.9129582.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. (2017). Mo-
bilenets: Efficient convolutional neural networks for mo-
bile vision applications. arXiv preprint arXiv:1704.04861.
DOI: 10.48550/arXiv.1704.04861.

Kim, J., Oh, J., and Heo, T.-Y. (2021). Acoustic scene
classification and visualization of beehive sounds us-
ing machine learning algorithms and grad-cam. Math-
ematical Problems in Engineering, 2021:1–13. DOI:
10.1155/2021/5594498.

Kulyukin, V. (2021). Audio, image, video, and weather
datasets for continuous electronic beehive monitoring. Ap-
plied Sciences, 11(10):4632. DOI: 10.3390/app11104632.

Kumar, R. and Mall, P. (2018). Important traits
for the selection of honey bee (apis mellifera
l.) colonies. J. Entomol, 6:906–909. Available
at:https://www.entomoljournal.com/archives/
2018/vol6issue3/PartM/6-2-267-642.pdf.

Leng, Y., Sun, C., Cheng, C., Xu, X., Li, S., Wan, H.,
Fang, J., and Li, D. (2015). Classification of over-
lapped audio events based on at, plsa, and the combina-
tion of them. Radioengineering, 24(2):593–603. Avail-
able at:https://www.radioeng.cz/fulltexts/2015/
15_02_0593_0603.pdf.

Mazepa, C. I. and Laurenti, C. R. S. (2022). Evolu-
ción del estado sanitario en colmenas de apis mellifera l.
bajo distinas condiciones de manejo y su relación con el
aporte nutricional del polen. Agrotecnia, (32):34–56. DOI:
10.30972/agr.0326339.

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M.,
Battenberg, E., and Nieto, O. (2015). librosa: Audio
and music signal analysis in python. In Proceedings of
the 14th python in science conference, volume 8, pages
18–25. Available at:https://www.researchgate.net/
publication/328777063_librosa_Audio_and_
Music_Signal_Analysis_in_Python.

Oliveira Costa, R., Bezerra, A. H. A., Ferreira, A. C., Pereira,
B. B. M., Pimenta, T. A., and de Andrade, A. B. A.
(2016). Análise hierárquica dos problemas existentes na
produção de mel do estado da paraíba. Revista Verde de
Agroecologia e Desenvolvimento Sustentável, 11(2):24–
28. Available at:https://dialnet.unirioja.es/

servlet/articulo?codigo=7264999.
Oppenheim, A. V. and Schafer, R. W. (2009). Discrete-time
signal processing. Pearson Education. Book.

Phan, T.-T.-H., Nguyen-Doan, D., Nguyen-Huu, D., Nguyen-
Van, H., and Pham-Hong, T. (2023). Investigation on new
mel frequency cepstral coefficients features and hyper-
parameters tuning technique for bee sound recognition.
Soft Computing, 27(9):5873–5892. DOI: 10.1007/s00500-
022-07596-6.

Rustam, F., Sharif, M. Z., Aljedaani, W., Lee, E., and Ashraf,
I. (2024). Bee detection in bee hives using selective fea-
tures from acoustic data. Multimedia Tools and Appli-
cations, 83(8):23269–23296. DOI: 10.1007/s11042-023-
15192-5.

Ruvinga, S., Hunter, G., Duran, O., and Nebel, J.-C. (2023).
Identifying queenlessness in honeybee hives from audio
signals using machine learning. Electronics, 12(7):1627.
DOI: 10.3390/electronics12071627.

Ruvinga, S., Hunter, G. J., Duran, O., and Nebel, J.-C.
(2021). Use of lstm networks to identify “queenlessness”
in honeybee hives from audio signals. In 2021 17th In-
ternational Conference on Intelligent Environments (IE),
pages 1–4. IEEE. DOI: 10.1109/IE51775.2021.9486575.

Sharif, M. Z., Wario, F., Di, N., Xue, R., and Liu, F. (2020).
Soundscape indices: new features for classifying bee-
hive audio samples. Sociobiology, 67(4):566–571. DOI:
10.13102/sociobiology.v67i4.5860.

Shostak, S. and Prodeus, A. (2019). Classification
of the bee colony condition using spectral features.
In 2019 IEEE International Scientific-Practical Con-
ference Problems of Infocommunications, Science and
Technology (PIC S&T), pages 737–740. IEEE. DOI:
10.1109/PICST47496.2019.9061441.

Simonyan, K. and Zisserman, A. (2014). Very deep
convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556. DOI:
10.48550/arXiv.1409.1556.

Smith, L. N. (2017). Cyclical learning rates for training neu-
ral networks. In 2017 IEEE winter conference on applica-
tions of computer vision (WACV), pages 464–472. IEEE.
DOI: 10.1109/WACV.2017.58.

Soares, B. S., Luz, J. S., de Macêdo, V. F., e Silva, R.
R. V., de Araújo, F. H. D., and Magalhães, D. M. V.
(2022). Mfcc-based descriptor for bee queen presence de-
tection. Expert Systems with Applications, 201:117104.
DOI: 10.1016/j.eswa.2022.117104.

Vallenas-Sánchez, Y., Honorio-Javes, C. E., Valdivia-
Camargo, V., and Rodríguez-Soto, J. C. (2023). Efecto
de suplemento proteico sobre la postura y la población de
colonias de abejas (apis mellifera l.) comerciales ubicadas
en paisaje polifloral. Ciencia y Tecnología Agropecuaria,
24(2). DOI: 10.21930/rcta.vol24num2art : 3058.

Vieira, F. R., Andrade, D. C., and Ribeiro, F. L. (2021).
A polinização por abelhas sob a perspectiva da abor-
dagem de serviços ecossistêmicos (ase). Revista Ibero-
Americana de Ciências Ambientais, 12(4):544–560. DOI:
10.6008/CBPC2179-6858.2021.004.0042.

Virtanen, T., Plumbley, M. D., and Ellis, D. (2018). Com-
putational analysis of sound scenes and events. Springer.

https://vet.ufmg.br/ARQUIVOS/FCK/Cadernos%20T%C3%A9cnicos%20-%2096%20-%20para%20internet%20(1).pdf
https://vet.ufmg.br/ARQUIVOS/FCK/Cadernos%20T%C3%A9cnicos%20-%2096%20-%20para%20internet%20(1).pdf
https://vet.ufmg.br/ARQUIVOS/FCK/Cadernos%20T%C3%A9cnicos%20-%2096%20-%20para%20internet%20(1).pdf
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://ieeexplore.ieee.org/document/9129582
 https://doi.org/10.48550/arXiv.1704.04861
 https://doi.org/10.1155/2021/5594498
 https://doi.org/10.3390/app11104632
https://www.entomoljournal.com/archives/2018/vol6issue3/PartM/6-2-267-642.pdf
https://www.entomoljournal.com/archives/2018/vol6issue3/PartM/6-2-267-642.pdf
https://www.radioeng.cz/fulltexts/2015/15_02_0593_0603.pdf
https://www.radioeng.cz/fulltexts/2015/15_02_0593_0603.pdf
 https://doi.org/10.30972/agr.0326339
https://www.researchgate.net/publication/328777063_librosa_Audio_and_Music_Signal_Analysis_in_Python
https://www.researchgate.net/publication/328777063_librosa_Audio_and_Music_Signal_Analysis_in_Python
https://www.researchgate.net/publication/328777063_librosa_Audio_and_Music_Signal_Analysis_in_Python
https://dialnet.unirioja.es/servlet/articulo?codigo=7264999
https://dialnet.unirioja.es/servlet/articulo?codigo=7264999
 https://doi.org/10.1007/s00500-022-07596-6
 https://doi.org/10.1007/s00500-022-07596-6
 https://doi.org/10.1007/s11042-023-15192-5
 https://doi.org/10.1007/s11042-023-15192-5
 https://doi.org/10.3390/electronics12071627
 https://doi.org/10.1109/IE51775.2021.9486575
 https://doi.org/10.13102/sociobiology.v67i4.5860
 https://doi.org/10.1109/PICST47496.2019.9061441
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1016/j.eswa.2022.117104
https://doi.org/10.21930/rcta.vol24_num2_art:3058
https://doi.org/10.6008/CBPC2179-6858.2021.004.0042


Cepstral and Deep Features for Apis mellifera Hive Strength Classification Çuz et al, 2024

DOI: 10.1007/978-3-319-63450-0.
Wardhani, N. W. S., Rochayani, M. Y., Iriany, A., Sulisty-
ono, A. D., and Lestantyo, P. (2019). Cross-validation
metrics for evaluating classification performance on im-
balanced data. In International conference on computer,
control, informatics and its applications, pages 14–18.
IEEE. DOI: 10.1109/IC3INA48034.2019.8949568.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H.
(2014). How transferable are features in deep
neural networks? Advances in neural informa-
tion processing systems, 27. Available at:https:
//proceedings.neurips.cc/paper_files/paper/
2014/hash/375c71349b295fbe2dcdca9206f20a06-
Abstract.html.

Yu, B., Huang, X., Sharif, M. Z., Jiang, X., Di, N., and Liu,
F. (2023). A matter of the beehive sound: Can honey bees
alert the pollution out of their hives? Environmental Sci-
ence and Pollution Research, 30(6):16266–16276. DOI:
10.1007/s11356-022-23322-z.

Zgank, A. (2021). Iot-based bee swarm activity acoustic clas-
sification using deep neural networks. Sensors, 21(3):676.
DOI: 10.3390/s21030676.

Zhang, T., Zmyslony, S., Nozdrenkov, S., Smith, M., and
Hopkins, B. (2021). Semi-supervised audio representation
learning for modeling beehive strengths. arXiv preprint
arXiv:2105.10536. DOI: 10.48550/arXiv.2105.10536.

Zhang, Y., Guo, Z., Wu, J., Tian, Y., Tang, H., and
Guo, X. (2022). Real-time vehicle detection based on
improved yolo v5. Sustainability, 14(19):12274. DOI:
10.3390/su141912274.

Zhao, Y., Deng, G., Zhang, L., Di, N., Jiang, X., and Li, Z.
(2021). Based investigate of beehive sound to detect air
pollutants by machine learning. Ecological Informatics,
61:101246. DOI: 10.1016/j.ecoinf.2021.101246.

Figure 10. TSNE scatterplot illustrates the separation between the weak
and strong classes based on the features extracted by YOLO. It is important
to note the several regions of overlap between classes, reinforcing the poor
classification performance presented by this descriptor compared to the de-
scriptors from dense architectures such as Resnet50 and VGG16.

https://doi.org/10.1007/978-3-319-63450-0
https://doi.org/10.1109/IC3INA48034.2019.8949568
https://proceedings.neurips.cc/paper_files/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html
https://doi.org/10.1007/s11356-022-23322-z
https://doi.org/10.3390/s21030676
 https://doi.org/10.48550/arXiv.2105.10536
 https://doi.org/10.3390/su141912274
 https://doi.org/10.1016/j.ecoinf.2021.101246

	Introduction
	Related Work
	Materials and Methods
	Data Acquisition
	Pre-processing
	Feature Extraction
	Mel Frequency Cepstral Coefficients (MFCCs)
	Deep features

	Classification
	Validation

	Results and Discussion
	Comparison with the State of the Art

	Conclusion

