
Journal of Internet Services and Applications, 2024, 15:1, doi: 10.5753/jisa.2024.4026
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Resource Allocation Based on Task Priority and Resource
Consumption in Edge Computing
Guilherme Alves Araújo [Universidade Federal do Ceará | guialves@alu.ufc.br]
Sandy Ferreira da Costa Bezerra [Universidade Federal do Ceará | sandycosta@alu.ufc.br]
Atslands Rego da Rocha [Universidade Federal do Ceará | atslands@ufc.br]

 Departamento de Engenharia em Teleinformática, Universidade Federal do Ceará (UFC),
Campus do Pici, Bloco 725, 60455-970, Fortaleza, CE, Brasil.

Received: 12 January 2024 • Accepted: 29 May 2024 • Published: 16 September 2024

Abstract The computational power of Internet of Things (IoT) devices is usually low, which makes it necessary
to process data and extract relevant information on devices with higher processing capacity. Edge Computing
emerged as a complementary solution to cloud computing, providing devices at the network edgewith computational
resources to handle the data processing and analysis that constrained IoT devices eventually cannot perform. This
solution allows data processing closer to the IoT devices, reducing latency for IoT applications. However, the
resource constraints of edge nodes, which have lower computational power than the cloud nodes, make resource
allocation and processingmassive requests challenging. This study proposes an edge resource allocationmechanism
based on task priority and machine learning. The proposed approach efficiently allocates resources for IoT requests
based on their task priorities while monitoring the resource consumption of edge nodes. This study evaluates the
performance of different classification algorithms by using well-known metrics for classifying models. The most
efficient classifier achieved an accuracy of 92% and a precision of 90%. The results indicate good performancewhen
using this classifier in the evaluated approach. The proposed mechanism demonstrated that resource management
can be done more efficiently with significantly lower resource utilization when compared to an allocation method
based only on distance. The study tested different scenarios regarding the number of requests, edge nodes, and a
proposed failure mechanism to schedule failed node tasks to functional nodes. This failure control mechanism is a
significant contribution of the proposal. Therefore, the proposed method in this study can become a valuable tool
for efficient resource management with reduced computational cost and efficient resource allocation.

Keywords: Edge Computing, Resource Management, Resource Allocation, Classification Models, Machine Learning,
Task Priority.

1 Introduction

The Internet of Things (IoT) paradigm has been widely
adopted in various practical applications, such as smart cities
[Rejeb et al., 2022]. This paradigm is enabled through the
interconnection and interoperability of physical and virtual
entities, enabling the creation of intelligent services and in-
formed decision-making for monitoring, control, and man-
agement purposes [Tran-Dang and Kim, 2018]. Combining
edge and cloud computing provides a system offering contin-
uous services with varying QoS requirements to end-users.
Edge Computing emerges as an innovative paradigm that

aims to address the demands of IoT applications with mas-
sive access and critical latency, bringing processing capac-
ity closer to the end-users. This paradigm has been widely
applied in IoT environments, representing a decentralized in-
frastructure composed of processing nodes strategically dis-
tributed between end devices and the cloud. This approach
allows a more agile and efficient process, transforming the
edge into an extension of the cloud [Martinez et al., 2021].
The essence of Edge Computing architecture consists of

multiple interconnected layers. Generally, IoT devices are at
the bottom layer, responsible for collecting, pre-processing,
and forwarding data to the edge nodes. The middle layer

comprises the edge nodes with higher processing capacity
than the IoT devices. These nodes perform data process-
ing, decision-making, and action-taking functions. Finally,
the top layer, represented by the cloud, is responsible for
storing permanent information and processing data that the
edge nodes do not have enough computing power to perform
[Arena and Pau, 2020].

Unlike cloud nodes, computing resources (such as process-
ing, storage, and energy) at edge nodes are limited and dy-
namic, resulting in constantly changing workloads and ap-
plications competing for these restricted resources. Given
this situation, effectively managing restricted computing re-
sources at endpoints becomes a considerable challenge to
maximize their use optimally, as highlighted by Sharif et al.
[2022].

Resource management has become a significant focus in
Edge Computing in recent years. This area is crucial because
it ensures that the resources present in the network are allo-
cated efficiently at the network’s edge and nodes can perform
their activities efficiently. Proper management of resources
is crucial to prevent some nodes from consuming more re-
sources than necessary while others may have insufficient
resources. This situation could lead to performance and op-
erational issues.

https://orcid.org/0009-0001-9200-4468
mailto:guialves@alu.ufc.br
https://orcid.org/0000-0002-7149-3258
mailto:sandycosta@alu.ufc.br
https://orcid.org/0000-0002-3069-132X
mailto:atslands@ufc.br

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

Resource allocation involves carefully selecting an edge
node, which can provide the resources needed to perform a
given task or request from an end device [Liu et al., 2020].
However, this process can be challenging due to limited re-
sources. Furthermore, due to the sharing of resources be-
tween IoT devices, unpredictable events, unavailability of
resources on network nodes, and extended response times
are possible [Dlamini and Ventura, 2019]. Efficient resource
allocation is a crucial starting point for this solution, aimed
at avoiding excessive consumption of node resources and en-
suring more effective management [Wang et al., 2022].
However, as IoT applications have different needs (such

as sensitivity or tolerance to delays), it is interesting that the
efficient allocation of resources considers their requirements.
A potential approach is prioritizing application requests and
allocating edge resources to execute tasks based on their rele-
vance and urgency. This will be particularly useful for prac-
tical applications such as digital health, industrial systems,
and intelligent manufacturing.
In digital health systems, prioritizing real-time requests

from connected medical devices is important. This helps
to ensure that critical data, such as vital signs, is processed
and sent with high priority to improve emergency medical
decision-making. In the context of Industry 4.0, for indus-
trial systems, prioritizing sensor and device requests in inno-
vative manufacturing environments can ensure that critical
demands, such as production monitoring and safety parame-
ters, are treated with priority to avoid downtime or failures
in the production process.
Researchers and practitioners have extensively explored

machine learning techniques to solve this resource manage-
ment problem and automate increasingly different solutions
to managing resources at the edge, as surveyed in Hussain
et al. [2020]. Using machine learning in resource manage-
ment provides a more intelligent and adaptive approach, im-
proves operational efficiency, and allows computer systems
to adapt more effectively to new demands. The benefits
include automatic optimization, anomaly detection, and au-
tonomous decision-making.
In this context, this work presents a mechanism for al-

locating resources in edge computing environments. The
proposed mechanism is based on continuously monitoring
the resources available on edge nodes and uses a task prior-
ity classifier for task/request scheduling. This approach en-
ables efficient management of these resources and simulta-
neously selects the most appropriate edge node to handle the
requirements demanded by the applications, considering the
resources needed to run the requested services. This mech-
anism aims to optimize the edge computing environment’s
performance allowing tasks to be processed quickly and ef-
fectively, according to their specific needs and efficiently us-
ing node resources. This work provides important contribu-
tions:

• A classification mechanism based on machine learning
that prioritizes IoT device tasks according to their rele-
vance and urgency of execution.

• A set of rules and weights for prioritizing tasks that con-
sider various factors, such as the type of request, latency,
type of connection, request time, distance, and available

resources, providing more appropriate and personalized
treatment for each task.

• Amechanism for allocating the resources of edge nodes,
taking into account different criteria such as node capac-
ity and distance, which aims to guarantee appropriate
use of these resources, and also considering the priority
of tasks and monitoring the use of edge node resources.

• A mechanism for controlling node failures.

This paper extends our previouswork [Araújo et al., 2023],
providing the differential aspects:

• A failure control mechanism to bypass potential failures
on edge nodes.

• Adjustment of the weight computation formula of the
classification model, which now also considers the
elapsed time of the request.

• The resource allocation mechanism considers a score to
assign the most appropriate node to receive the request.
To determine the resource allocation, the mechanism
now considers the distance from the node and the per-
centage of the edge node’s resource usage in real time.

• Experiments comparing different simulation scenarios
to validate the proposal.

• Experiments with more complex simulation scenarios:
greater variety of request variations and edge nodes.

• The classifier uses a data set with more features to de-
fine priority and a more significant amount of data, thus
benefiting the training and validation of the Machine
Learning Model.

• Performance evaluation including other edge node re-
sources (RAM).

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work and the differences between
them and our proposal. In Section 3, we describe the pro-
posed resource management mechanism for the edge envi-
ronment, from receiving the request by the classifier to de-
ciding where to allocate these requests. Section 4 presents
the proposed failure control mechanism and how it works.
Section 5 introduces the methodology and proposal imple-
mentation. Section 6 describes the simulation experiments
conducted and their design. In Section 7, we describe the
results of the experiments to evaluate the proposal. Finally,
Section 8 presents some conclusions and outlines future re-
search directions.

2 Related Work
Many efforts from the academic community are being di-
rected towards resource management in Edge Computing.
This is because the inefficient allocation of resources avail-
able at the network’s edge significantly impacts performance
improvements. As a result, various algorithmic solutions
and methodologies have been proposed, and considerable
progress has already been made in this area.
In the work Tran-Dang and Kim [2021], the authors

present TPRA (Task Priority-based Resource Allocation), a
resource allocation algorithm for edge computing based on

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

the priority of tasks. This study divides tasks into two cat-
egories: standard and priority. Resource providers can re-
ject standard tasks, assuming they might encounter delays if
left unattended. Resource providers must execute priority-
categorized tasks successfully and cannot reject them. The
system queues standard tasks and calculates the delay dura-
tion until standard tasks transition into a priority status. Once
they reach this status, they require immediate attention with-
out the option of rejection.
The study Bhushan and Mat [2021] proposes a prior-

ity queue-based edge computing architecture in which edge
nodes are dynamically allocated based on system load. Task
allocation is performed considering priority, which is defined
based on service provisioning and divides tasks into two
classes: High priority (delay sensitive) and low priority (de-
lay tolerant). The work also assumes a parameter, which rep-
resents the average proportion of the number of high-priority
tasks relative to the total number of tasks, to calculate the av-
erage delay time for each class.
The work Madej et al. [2020] presents different scaling

techniques. The first is a FCFS strategy, in which tasks are
scheduled in the order they are received. Furthermore, the pa-
per proposes three additional strategies: customer-oriented,
priority-oriented, and a hybrid approach that considers cus-
tomers and task priorities. The customer-oriented strategy
treats all customers as having the same priority without con-
sidering individual task priorities. The priority-oriented ap-
proach considers the tasks’ priorities independently of the
customers. Finally, the hybrid strategy considers customers
and task priorities, ensuring an equitable and efficient allo-
cation of edge resources. These scheduling techniques pro-
posed in the paper aim to deal with the issue of limited re-
source availability at the edge, ensuring fairness between
clients and considering task priorities.
To achieve effective resource allocation and optimal use of

resources, the work Sharif et al. [2023] presents an adaptive
resource allocation mechanism for Edge Computing. This
mechanism aims to dynamically allocate available resources
considering the nature of the requests received to obtain op-
timal utilization. In the scheme proposed by the authors, the
mechanism adapts to the demands and priorities of the re-
quests received. After identifying a request, priority is set
based on the delay sensitivity of the task, which is checked
during the identification process. The available resources are
then allocated according to the priorities of the requests to
meet the established restrictions.
The article Bui et al. [2021] introduces an enhancement to

the ”Score Based Match-Making” algorithm aiming to op-
timize task distribution on edge nodes and service quality
in resource allocation. It proposes an algorithm utilizing a
score based on six factors (node distance, network condition,
latency, memory, CPU capacity, and node task execution his-
tory) to address challenges related to resource allocation pri-
ority. Additionally, the algorithm incorporates a preemption
factor to handle emergencies. The preemption factor allows
temporarily interrupting a running task if a higher-priority
task enters the queue; the interrupted task is later resumed.
This approach is implemented through an orchestration plat-
form across various scenarios. The proposed algorithm is
compared with two other allocation types: random and a

”naive” approach similar to ”first come, first serve.” The best
node for task execution is chosen by comparing the scores of
available nodes.
In Yin et al. [2020], the optimization method focuses on

finding theminimum average delay point for task completion
to optimize and allocate system resources. The authors use a
lower bound based on a quadratic function to determine the
minimum amount of resources required to process each task.
Additionally, the model implements a scheduling function
that considers three criteria: delay time, transfer time, and
resource consumption. This scheduling function calculates
the necessary processing time and the minimum resources
required for each task type.

Table 1. Related works.

Failure Criterion for Task
Study Control Prioritization

Tran-Dang and Kim [2021] No Delay Time

Bhushan and Mat [2021] No Delay Sensitivity
Waiting Time

Madej et al. [2020] No Distance
Memory
Processor

Sharif et al. [2023] No Time Constraint

Bui et al. [2021] No Distance
Latency

Network Condition
Memory
Processor

Connection History

Yin et al. [2020] No Delay Time
Transfer Time

Minimum Resource

Our work Yes Service Type
Resources
Latency

Connection Type
Time

Distance

In summary, as shown in Table 1, research proposes to use
criteria to prioritize tasks and balance the use of available re-
sources. These approaches consider the tasks and resources
of edge nodes as essential prioritization criteria. However,
our proposal stands out from others in that it takes into ac-
count not only the tasks/requests but also the limitations of
resources available at the edge nodes. It also considers impor-
tant factors like the distance from the node, the latency, the
type of connection, and the time elapsed since the request of
the task. Furthermore, failure control is an essential contribu-
tion of our approach, ensuring that all requests are fulfilled
regardless of edge node failures. Our work aims to manage
resources on edge nodes, classify their priorities, and deter-

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

mine the best node for allocation. This approach allows for a
balanced use of edge resources to meet the needs of request-
ing services.

3 Resource Management Based on
Task Priorities and Edge Node Re-
source Consumption

The proposed resource management mechanism uses ma-
chine learning to classify and prioritize end device (IoT) re-
quests in edge computing environments.
Figure 1 shows the architecture of our proposed mecha-

nism. IoT applications send their requests to a classifier node.
This node receives the requests and classifies them into prior-
ity levels using machine learning. After classification, tasks
are performed based on a defined task priority for the cho-
sen edge node. The resource consumption of edge nodes is
monitored during execution.

I/O CPU High

Query
CPU and
Memory

Medium

Storage Memory Low

IoT Devices

Device Layer

Edge Layer

Edge Nodes

Node 1

Node 2

Node 3

Classifier Node

Method of
Classification

Resource PriorityTask

Priority queue

Failure Control Mechanism

Monitoring resource usage

Figure 1. Architecture of the Proposed Mechanism.

Figure 1 shows four essential elements (IoT Devices, Clas-
sifier Node, Failure ControlMechanism, and Edge Nodes) of
our proposal, divided into two layers: device and edge. The
Devices layer is where the requests come from, the so-called
end devices closest to the users, such as IoT devices, sensors,
and actuators. The Edge layer contains three elements (Clas-
sifier Node, Failure Control Mechanism, and Edge Nodes).
In the classifier node, incoming requests are classified based
on rules and weights established later. A priority queue is
then generated and allocated to the edge node. Edge nodes
process the requests and provide the resources for the en-
tire application. Finally, there is the failure control element,
which stores the status of the requests allocated to the edge
nodes in case one of these nodes fails, making it possible to
get around this situation. It is important to note that the Edge
layer continuously monitors the use of edge node resources.
The architecture is detailed in the following subsections.

3.1 Requests
Requests coming from IoT devices encompass several tasks,
such as activation, storage, and processing. In the context of
these requests, we consider the following assumptions:

1. Each request has a specific type of task; therefore, the
types of services were added to the data set (Storage,

Processing, Query, and I/O);
2. Requests come from devices that may have different

types of network connections;
3. Request latency changes depending on the type of net-

work used.

Following these premises, we adopted the principle that
each request requires a specific type of service. A request is
defined as a tupleRi = (TRi, Li, RNi, Hi, Di, TCi), where:

• TRi represents the type of request i.
• Li indicates the latency of request i.
• RNi refers to the resource needed to fulfill request i.
• Hi is the time at which request i is fired.
• Di represents the distance of the devices about the re-
quest classifier i.

• TCi represents the connection type of request i.

These variables constitute the inputs of the classification
models used. Furthermore, we incorporate weights to bal-
ance the priorities of different tasks, ensuring a weighted ap-
proach in the analysis and processing of requests (detailed in
Section 3.2).

3.2 Classifier
Classification is a machine learning technique that assigns
one or more classes to a data set based on their characteristics
or variables. This classification can be binary (two classes,
1 or 0) or multiclass (three or more). This technique is used
to identify patterns and trends in data, allowing automated
decision-making in different contexts [Scikit-Learn, 2023].
This work usedmulticlass classification (three classes for pri-
ority levels).
We implemented three machine learning classifiers: kNN

(k-Nearest Neighbors), SVM (Support Vector Machine), and
Logistic Regression to compare and select the most suitable
model for classifying the mechanism.
A classifier and an allocation model were implemented to

classify application requests coming from end devices into
different priority levels (classes), thus allowing an allocation
of resources based on established priorities. IoT devices send
their service requests (data) to the Classifier Node.
The data used for training and validating the classifiers

were extracted from Kaggle1. This data set has valuable
characteristics, such as latency, connection type, and net-
work rate, and has been enriched with other information
such as weight, distance based on latency to simulate re-
quests from IoT devices with a more significant number of
variables. This information includes the type of service, re-
sources, time, latency, network type, rate, and geographic co-
ordinates, which are used to calculate the Euclidean distance
to choose the most appropriate nodes for a given request in
addition to the failure control mechanism.
This data is sent to the classifier node, where different

weights are applied to resources, and priorities are assigned
to each type of request based on predefined rules. The pri-
ority rules are defined as follows. Initially, request priorities

1https://www.kaggle.com/datasets/suraj520/cellular-network-analysis-
dataset

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

were classified into three levels: High (2), Medium (1), and
Low (0). To establish request priority rules, two types of
services were categorized into critical services (SC) and non-
critical services (SNC), as presented below.

• Critical Service
– I/O (Input/Output)
– Real-time

• Non-critical Service
– Query
– Storage

Services in the critical class are assigned High priority (2),
while services in the non-critical class are classified as either
Medium priority (1) or Low priority (0).
According to studies Cheng et al. [2015] and Wang et al.

[2019], the I/O service is considered critical due to its di-
rect interaction with the end user, significantly impacting the
overall user experience. Therefore, the need for an I/O ser-
vice application is an essential factor to be considered, sug-
gesting priority over other resources. Similarly, the criteria
for real-time services are also based on the principle used for
I/O services, as these services also influence the user experi-
ence and require fast responses. On the contrary, query ser-
vices (which only provide information to the user) and data
storage services (where data is stored locally at the edge or
later sent to the Cloud) are considered non-critical. Requests
that require the use of the Cloud are generally services that re-
quire less immediate response or involve more complex pro-
cessing, considering that the Cloud is generally distant from
end devices [Hong and Varghese, 2019].
In addition to this distinction based on the criticality of

the tasks, the request time and the weights defined for the re-
sources necessary to meet each request are also considered.
This approach of adding weight to resource priorities aims to
achieve an adequate balance between the priorities of differ-
ent types of services and the availability of resources at the
edge, allowing efficient system operation, as such resources
are limited.
In this sense, services that demandmore resources, such as

RAM and CPU, have their priorities adjusted (receive higher
weights) compared to services that only require CPU. This
decision is made considering that priority services requiring
multiple resources can cause extensive queues and lead to
system unavailability. At the same time, other priority ser-
vices that use only one computing resource can be served
more quickly. Furthermore, the complexity of requests can
increase energy consumption, contributing to services’ un-
availability. Therefore, it is necessary to appropriately assign
weights to resources to deal with these different situations.
This aspect considers the real-time availability of resources
at Edge nodes.
Therefore, the rule for assigning resource weights is as fol-

lows and is described in Equation 1:

Reqweight = (0.3 ∗ QR) + (N ∗ TR) (1)

The QR value (representing resource requirements) plays
a crucial role in determining the priority weight (Reqweight)
of service requests. Requests with higher QR values (QR

= 2) can make a larger contribution to Reqweight, indi-
cating higher priority for single-resource requests. For re-
quests with multiple resources (QR = 1), the contribution to
Reqweight is still significant but may be lower than single-
resource requests. This prioritization scheme balances the
efficiency of single-resource requests with the needs of multi-
resource requests while also considering service type (N) and
resource availability.
The constant value ’0.3’ can be interpreted as a base

weight assigned to all service requests. This suggests that
even the most fundamental requests have a certain level of
priority in the system. This base weight ensures that all re-
quests receive some level of consideration, preventing them
from being entirely overlooked. serves to offset the impact
of variables like resource requirements (QR) and service type
(N), thereby crafting amore refined prioritization framework.
This value was determined through experimentation, result-
ing in the most favorable outcomes.
The N value in Equation 1 is an addition variable that

takes on different values depending on the type of service
requested. Non-critical services (SNC) have either 0.5 or
0.7 values, while critical services (SC) have either 0.1 or 0.3
values. The value of N changes based on the time that has
elapsed since the service was requested. The higher the re-
sulting value of Equation 1, the greater the priority of the
service request.
The value of TR depends on the type of connection, which

can vary between LTE, 3G, 4G, and 5G. The higher the trans-
mission rate, the lower the latency tends to be. Requests
with a network type with a lower transmission rate receive
a higher value of TR. These values are set to 0.3 (LTE), 0.2
(3G), and 0.1 (4G and 5G). This approach aims to prioritize
requests from slower connections, giving them a more signif-
icant weight (in terms of priority) to compensate for latency.
This way, a high weight is assigned to requests with higher

priority to compensate for latency. In this way, the different
characteristics of services and connections are considered,
enabling better performance.
The values of the weights used were determined empir-

ically through simulations. This practical approach has
proven satisfactory in balancing elapsed time, resource quan-
tity, service types, and connection types. Through weight as-
signment, it is possible to adjust the priority of requests so
that critical services receive the necessary attention.
It is essential to highlight that the weights may vary ac-

cording to the context and specific needs of the addressed
problem. Conducting simulations and adjusting the weights
based on observed results is a valid and commonly adopted
approach in practice. This medium allows for adapting the
model to the particular characteristics and constraints of the
system, aiming to maximize request performance and effi-
ciency.

3.3 Resource Management with Allocation
In the resource allocation mechanism proposed in this work,
the priority classification technique for client requests de-
scribed in the previous section is used. By establishing pri-
orities for requests, the system can direct resources more ef-
fectively, ensuring immediate response to the most relevant

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

and urgent tasks. This medium helps to improve network
performance, saving available resources.
To determine the most suitable edge node to meet the re-

quest, in addition to real-timemonitoring of resource use, the
distance of the edge nodes about the classifier is considered.
In this study, Equation 2 is used to calculate the Euclidean
Distance between the edge node and the classifier node, con-
sidering a two-dimensional plane:

Distance =
√

(x2 − x1)2 + (y2 − y1)2 (2)

The choice of Euclidean distance is based on the fact that
when you want to minimize latency, the physical distance
between IoT devices and edge processing nodes is crucial.
Using Euclidean distance as a metric allows us to allocate re-
sources to edge nodes in a way that optimizes this distance,
resulting in lower communication latency and better overall
IoT system performance. Furthermore, Euclidean distance
is a common and widely accepted metric in the context of
IoT data science. It is often used in load balancing strategies,
where edge computing resources are distributed to balance
the processing load across different geographic regions, tak-
ing into account the spatial distribution of IoT devices.
When using a criterion that combines the resource utiliza-

tion percentage at the edge node and the distance about the
classifier node, a score [Costa et al., 2020] is assigned to se-
lect the node. The higher the score, the greater the chance of
choosing the node. Equation 3 is used to calculate the score:

Scorei = (α∗Resourcesnode%)+(1−α)∗Distancenode)
(3)

We conducted empirical analysis with different values for
α and found that 0.3 provided the best results in terms of
performance and accuracy. The values 0.3 and 0.7 represent,
respectively, that 30% of the final score is determined by the
node’s resources and 70% by the distance from the node to
the destination. This intuitive division facilitates the under-
standing of the equation and its impact on the selection of the
ideal node.
In this way, the most suitable node for executing a given

priority task is selected to choose the most capable and clos-
est node, aiming to minimize latency. Equation 3 was tested
empirically until satisfactory results were obtained, reaching
the values in question.
In Figure 2, a flowchart represents the complete process

from the request to the task allocation on the edge nodes.

4 Failure Control Mechanism
A crucial and significant point in this work is failure control.
Controlling failures in computing environments can include
redundancy, continuous monitoring, network resilience, self-
healing, and regular maintenance. These procedures aim to
guarantee the availability and reliability of services, detect
failures early, guarantee connectivity and recovery capacity
in the event of interruption, and keep systems updated and
functioning correctly.
This work implemented a control and failure management

mechanism based on continuous monitoring and redundancy

A

END

START

IoT Devices Classifier Edge Nodes

Calculation of
weights

Requests

Allocate to the node
with the highest score

Priority queue

Activates request
completion flag

Awaits release of
resources

Sending requests

Setting
Priorities with

ML Models

Does the node have
enough resources?

Database
(Requests)

Yes

No

Activates Fault
Control Mechanism

Request
completed?

Yes

No

Figure 2. Flowchart: Process from the request to the task allocation on the
edge nodes.

to process requests at edge nodes efficiently. When setting
priorities, a Thread is assigned to calculate the score of each
edge node in order to determine which one will be chosen
for allocation. Once the selection is made, the requests are
allocated to the corresponding nodes.
This Thread assumes the responsibility of monitoring the

requests allocated at a given time and keeping them in a
checkpoint state, maintaining a copy of this data until they
are entirely resolved. This checkpoint state is crucial for fail-
ure control if any edge node presents problems. Thread mon-
itors edge node states continuously and identifies whether
a given node is inactive. Suppose this situation is detected
based on the information stored in the checkpoint state. In
that case, Thread can reallocate the requests that were on the
failed node, as long as they have not been completed, to other
edge nodes that have sufficient resources to complete them.
The state of the checkpoint is then updatedwith the new infor-
mation, allowing the system to adapt and continue processing
requests even in the event of a failure.
Figure 3 illustrates how the failure control mechanism

works. In scenario I, observing the requests allocated to the
edge nodes is possible. At the same time, the checkpoint
state stores this information to ensure that it is not lost un-
til its complete execution. In scenario II, node 1 fails, and
the Thread takes control to reallocate the requests initially
assigned to this node to other edge nodes in the network. Af-
ter this relocation, the checkpoint state is updated with the
new information.

Node 2

Thread

R request
queue

R5
R6
...

RN

Node N

R2

R1

[N1;R3,R4] [N2;R2] [N;R1]

Node 1

R3
R4

Edge nodes

Thread

R request
queue

R5
R6
...

RN

[R3;R4]

[N2;R2,R3] [N;R1,R4]

Node 1

Node 2

Node N

R2
R3

Edge nodes

R1
R4

Scenario I Scenario II

Figure 3. Fault control flow.

These two scenarios illustrate how the fault-checking and

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

management mechanism works in action. The checkpoint
state plays a crucial role in controlling allocated requests and
enabling recovery in the event of an edge node failure. With
this approach, the system can guarantee continuous opera-
tion, even in the face of failures, and ensure that all requests
are processed correctly. In the event of a node failure, the
system can recover by maintaining the states of these nodes
for a finite period.

5 Methodology

This section describes the architecture of the resource man-
agement mechanism proposed in this section and its compo-
nents, in addition to the prioritization criteria and the choice
of nodes.

5.1 Implementation of the Proposed Mecha-
nism

We use Docker containerization to implement the architec-
ture presented in this work. The utilization of Docker con-
tainers played a fundamental role in this study, enabling an
edge environment where each edge node operates indepen-
dently within its container. This approach offers several ad-
vantages, such as facilitating themigration of applications be-
tween devices with varying hardware configurations. More-
over, Docker containers provide complete isolation of oper-
ating systems, enabling multiple edge nodes to run simul-
taneously on the same machine. This medium ensures that
the resources of each node are isolated and utilized indepen-
dently, even during the execution of tasks on other nodes.
Using the ’docker stats’ API allows information about the
resource usage of each edge node (container). This informa-
tion is leveraged to assign requests to edge nodes, enabling
a more dynamic allocation of resources based on application
needs, defined priorities, and available resources.
The following steps were taken to classify priorities. After

conducting a series of tests with several classifiers, evaluat-
ing their performance metrics, such as accuracy, precision,
and possible occurrence of overfitting, three models were
chosen: kNN, SVM, and Logistic Regression. These mod-
els are widely studied and have been consistently successful
in several studies, guaranteeing satisfactory results, accord-
ing to Arowolo et al. [2022], Aqib et al. [2022] and Rusman
et al. [2019].
Communication between the edge nodes and the clas-

sifier is established using the lightweight Message Queu-
ing Telemetry Transport (MQTT) protocol, designed for
device-to-device communication on low-power, bandwidth-
constrained networks. MQTT is widely used in IoT environ-
ments due to its simplicity, efficiency, and ability to support
asynchronous and bidirectional communication between IoT
devices [Sasaki and Yokotani, 2019].
MQTT works on a publish-subscribe model [Bayılmış

et al., 2022]. Devices can post messages on specific topics,
while other devices can subscribe to those topics and receive
messages specific to that topic. Each edge node is assigned
a specific topic in a resource allocation scenario. Requests

allocated to an edge node are sent to that particular topic, al-
lowing the edge node to subscribe to it and receive requests
directed to it.
We chose to use a distance-based technique as a bench-

mark for comparison due to the nature of validating the con-
cept of our work. Likewise, we selected a technique highly
relevant to the context of IoT devices, where the physical
distance between devices and edge processing nodes plays a
crucial role in minimizing latency.
It is important to note that our proposal is also distance-

based, but we consider other factors such as resource con-
sumption and request time. Our goal is to validate the effec-
tiveness of an approach that incorporates these various fac-
tors, aiming to achieve a more robust and efficient strategy.

6 Experiments
We used a physical machine with a Linux operating system
equipped with an i7-7560U processor and 8 GB of RAM for
the simulations. The machine was connected to a local net-
work via Wi-Fi, and containers were used to implement the
edge computing architecture.
We developed a script in Python in version 3.10.12 to pop-

ulate the dataset, adding information for simulating requests
from IoT devices. The classifier node that received these re-
quests is responsible for assigning and classifying the prior-
ities of each request. These requests contained information
about the type of services, required resources, latency, dis-
tance from nodes, elapsed time of the request, type of con-
nection, and network transmission rate.
We followed the flow described below in the experiments,

varying the number of task requests to the edge nodes:

1. The request/task data is sent to the classifier node.
2. This data serves as input for the classifier to calculate

the priorities for each request.
3. Monitoring of the resources of the edge nodes occurs

and is sent to the manager node that contains the classi-
fier. This way, the priority table is adjusted according
to available resources.

4. The allocation of requests is made based on the prior-
ity queue, the resources these tasks require, and the re-
sources available on the edge nodes at that time, in ad-
dition to the Euclidean distance of the nodes about the
classifier node.

5. A run-time check occurs on the state of the containers
so that if there is a failure (state offline), the requests can
be relocated to other nodes so as not to compromise the
execution of the tasks.

To run the experiments, the simulation starts based on all
the configurations defined in the Docker Compose file, such
as containers, the number of edge nodes, and the type of com-
munication between them, among other configurations.
The experiments carried out allow evaluate the presented

classification models (kNN, SVM, and Logistic Regression)
and select the one that obtains the best results as the priority
classification model. Furthermore, they allow evaluation of
resource management efficiency using the proposed mech-
anism, allocating requests to edge devices based on estab-

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

lished task priority rules and evaluating resource consump-
tion by these nodes.

6.1 Experimental Design
Six simulated experiments (A, B, C, D, E, and F) were per-
formed using different scenarios. Experiment A evaluates
the classification models (kNN, SVM, and Logistic Regres-
sion) presented for the priority classifier node based on the
evaluation metrics: Confusion Matrix, Accuracy, F1-score,
Precision, and Recall. The model that obtained the best clas-
sification results was selected.
The initial configuration of nodes with 256 megabits of

memory, aims for a more faithful relationship with real IoT
devices. The use of different percentages of available CPU
during execution is a crucial point for realism. It is signif-
icant to recognize that computers often run other processes
in parallel, impacting the availability of resources for each
application. The heterogeneity of nodes in terms of CPU ca-
pacity is a fundamental aspect of simulating edge devices.
IoT environments often feature devices with varied computa-
tional resources, and considering this heterogeneity in testing
is essential for evaluating the real performance of distributed
solutions.
In Experiment B, requests were allocated to edge devices

based on predefined rules, using a classifier to determine pri-
orities. Three edge nodes processed requests ranging from
500 to 1000, varying the workload. Next, we evaluated the
CPU consumption by the edge nodes, analyzed the behav-
ior of the resource management mechanism compared to an
approach where tasks are assigned by selecting the nearest
node to the classifier (based on distance), and monitored the
resource consumption by edge nodes in both environments.
In Experiment C, six edge nodes were used, with the num-

ber of requests received varying between 500 and 1000. A
comparison was carried out in an environment in which the
proposed architecture was adopted and in another environ-
ment that did not incorporate the mechanism proposed in this
study. The requests were allocated exclusively based on the
latency criterion, selecting the node closest to the classifier.
Experiments D and E followed the same scenarios as ex-

periments B (3 nodes and edges and requests varying be-
tween 500 and 1000) and C (6 nodes and edges and requests
varying between 500 and 1000), respectively. The objec-
tive of these experiments is to evaluate memory consumption
with different numbers of edge nodes in each experiment.
In Experiment F, a failure is forced to simulate the shut-

down of an edge node, aiming to demonstrate the process
of action of the proposed failure mechanism in this situation.
Therefore, this experiment evaluates how the system behaves
in the event of a node failure, analyzing resource consump-
tion at the edge nodes. This assessment allows understand-
ing how the system reacts and whether it can adapt and re-
distribute tasks efficiently, ensuring service continuity even
with the temporary unavailability of one or more edge nodes.
Initially, we opted for this scenario as an initial proof of

concept, aiming to investigate the effects of specific nodema-
nipulation. The results obtained were satisfactory in achiev-
ing the initial objectives of the study. However, we recognize
the importance of expanding these tests to more complex and

realistic scenarios in the future, in order to further validate
our findings and assess the scalability of the system under
more diverse conditions.
In the experiments carried out, strategies were imple-

mented to balance the use of resources. When a resource
monitored by an edge node reaches 85% utilization, the edge
node stops receiving new requests until the resource is free.
Additionally, a check of the condition of the edge nodes is
performed.
We summarize the main objectives of the experiments car-

ried out:

1. Evaluate the implemented classification models.
2. Compare the proposal with the traditional approach of

choosing the nearest node.
3. Evaluate the proposal about the adaptive use of re-

sources, considering different quantities of requests.
4. Verify the behavior of the proposal in case of failure at

any edge node.

Each experiment addressed these objectives in different
settings to comprehensively assess the proposal’s perfor-
mance and effectiveness. Table 2 summarizes each experi-
ment’s objectives, scenarios, and metrics.

7 Results and discussions
In this section, we present the results of our study, which
focuses on analyzing various classification models such as
kNN, SVM, and Logistic Regression, determining the most
suitable algorithm for allocating requests to edge nodes. We
evaluate the results using validation metrics for classifica-
tion algorithms. Furthermore, we implement and analyze the
model that provides the best CPU and RAM consumption re-
sults for varying numbers of edge nodes and requests. The
study also compares the proposed allocation method with a
distance allocation approach, where requests are sent to the
nearest edge nodes. We highlight the differences between
the two methods.

7.1 Experiment A
The results of the experiments confirm the effectiveness of
the implemented classifier in determining the priority and al-
location of resources to edge nodes. The attributes obtained
from the Ri requests, such as latitude, longitude, network,
transmission rate, resources, priority, and weights, play a cru-
cial role in the classification model’s outcomes. Initially, the
relationship between these variables is studied, and a corre-
lation graph of the variables is displayed in Figure 4. This
graph shows the relationship between different variables in
a data set, identifying possible linear relationships and eval-
uating the strength and direction of these relationships. Cor-
relation charts help identify relationships between variables
and provide insights into their dependence or independence
within the data set.
Based on Figure 4, we have identified some correlations

between variables. The most significant relationships are
found in network, rate, and latency cases. A better network
connection has a positive impact on throughput and reduces

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

Table 2. Summary of Conducted Simulations.

Experiment Scenario Objectives Evaluation
A — Evaluate classification models Validation metrics of the models

B
I and II - 3 nodes: 500 requests Compare the mechanism Resource consumption

III and IV - 3 nodes: 1000 requests proposed with allocation of nodes (CPU)
(I and III use the mechanism) by distance

C
I and II - 6 nodes: 500 requests Compare the mechanism Resource consumption

III and IV - 6 nodes: 1000 requests proposed with allocation of nodes (CPU)
(I and III use the mechanism) by distance

D
I and II - 3 nodes: 500 requests Compare the mechanism Resource consumption

III and IV - 3 nodes: 1000 requests proposed with allocation of nodes (Memory)
(I and III use the mechanism) by distance

E
I and II - 6 nodes: 500 requests Compare the mechanism Resource consumption

III and IV - 6 nodes: 1000 requests proposed with allocation of nodes (Memory)
(I and III use the mechanism) by distance

F 6 nodes: 1000 requests Evaluate the failure mechanism Reallocation of requests

Figure 4. Correlation of dataset variables

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

latency. In addition, there is a strong correlation between the
service and priority variables. This suggests that any changes
made to the service would also affect the priority.
The chart is useful in identifying outliers, which are points

that significantly differ from the primary trend in the data.
These points may represent exceptional cases that require
more detailed analysis. However, it is crucial to consider that
these conclusions are drawn based on a visual analysis of the
correlation graph. A correlation coefficient, such as the Pear-
son coefficient, can be calculated to obtain a more accurate
and statistically based analysis. This quantifies the intensity
of the relationships between variables and determines the sta-
tistical significance of these correlations.
In this experiment, we inserted the Ri requests from the

devices into the classifier. The dataset we used had specific
and above-mentioned characteristics. We divided the dataset
into training, testing, and validation sets, allocating 70% of
the data for training and 30% for testing. We used a set of
16829 requests for validation, corresponding to the dataset’s
total size. The classifier was trained to correctly classify the
priority of each type of service based on factors such as la-
tency, type of network, location, and necessary resources.
We applied the previously established rules to the classifier
to achieve this. Finally, we present the results for each im-
plemented classification model.

7.1.1 Confusion Matrices

We generated confusion matrices for each model to validate
the results and for comparison purposes, as depicted in Fig-
ure 5.
Below, we provide a comprehensive analysis of each

model’s matrix and the information that can be derived from
these results.

7.1.2 SVM - Support Vector Machine

The SVM, Figure 5(a), presented inferior results to the other
two classification models (Logistic regression and kNN).
Some critical informationwas revealed during the analysis

of the SVM classification model’s performance. The confu-
sion matrix allowed for a clear visualization of hit and error
distributions for each class. It was observed that the model
struggled to classify classes with a priority set to ”Medium”
and could not accurately classify this category. However, the
classes with ”High” and ”Low” priorities were more accu-
rately classified, although there were still a significant num-
ber of errors for the ”Low” class.
The analysis of evaluation metrics also brought relevant

insights. The accuracy of approximately 73% showed that
the model was correct in approximately half of the predic-
tions but made errors in approximately 44%. This medium
indicates that the model is not achieving a desirable level of
accuracy in its predictions.
The values obtained for precision indicate that of the times

the model made an optimistic prediction, it was correct in
around 63% of cases, a relatively low value. In contrast, a
recall of 53% indicates that the model is ineffective. Fur-
thermore, the average value of the F1-score reaching 56%
showed that the model managed to find a moderate balance

between precision and recall, being able to identify positive
examples and limit false positives correctly, but still far from
satisfactory results for the problem in question.
The priority classification model using SVM has some

strengths but presents significant challenges. Although the
model balanced precision and recall, its predictions must be
more accurate as its performance is not uniform across all
classes. Precision suggests that the model is making positive
decisions with some confidence, but recall indicates missing
a significant proportion of positive examples.
The SVM model proved less effective than other models,

such as kNN and Logistic Regression. Inaccurate classifi-
cation lowered evaluation metrics values and negatively af-
fected the overall model performance.

7.1.3 Logistic Regression

Logistic Regression, Figure 5(b), outperformed SVM, with
an accuracy of approximately 89%.
The results indicate that the classification system performs

well, with acceptable levels of accuracy and reliability. Upon
reviewing Figure 5, it is clear that the Logistic Regression
model outperforms the SVM method in terms of accuracy.
The Logistic Regression model more accurately categorized
priorities, leading to a more balanced distribution between
correct and incorrect classifications for each category in the
confusion matrix.
Based on the confusion matrix analysis, it is evident that

the Logistic Regression model had relatively fewer correct
predictions in the High and Low-priority categories. How-
ever, it performed exceptionally well in the Medium prior-
ity classification, surpassing the performance of the SVM
model.
By examining the confusion matrix and taking into ac-

count the values of True Positives (VP), True Negatives
(VN), False Positives (FP), and False Negatives (FN), we can
calculate the accuracy rate, which reached 89%. This sug-
gests that the model performs well in classifying categories
correctly and minimizing errors.
As for the accuracy of the model, which shows the num-

ber of correct optimistic predictions, it recorded around 84%.
This format indicates that the model issues positive decisions
with a reasonable degree of confidence andmakes errors only
in a few cases. With an average F1 score of 78%, the model
achieves a satisfactory balance between precision and recall.
The recall, which was 84%, indicates that the model can

identify the majority of positive examples and minimizes the
cases in which it misses examples that it should have iden-
tified. The model operates consistently with frequent suc-
cesses and controlled errors.
The priority classification model using logistic regression

performs well and has promising results. It could be the
primary classifier for the entire architecture. However, the
kNN model performs even better, with an accuracy exceed-
ing 90%. You can see the results below.

7.1.4 kNN - K-Nearest Neighbors

The kNN, Figure 5(c), presented the best results compared to
the other two classification models (SVM and Logistic Re-

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

(a) Confusion matrix for SVM model. (b) Confusion matrix for RL model.

(c) Confusion matrix for k-NN model.
Figure 5. Confusion matrix for each model.

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

gression), with an accuracy of approximately 92%.
The confusion matrix allows us to visualize the number

of correct and incorrect predictions a model makes for each
class. According to the results, the classification models
have performed very well in this scenario. The kNN model
has achieved an accuracy of 92%, indicating that it can accu-
rately predict and classify priorities with high precision.
An accuracy of 90% indicates that the model is making

positive decisions with considerable confidence and mini-
mizing the errors obtained; combined with this, an average
recall of 89% means that the model could correctly identify
around 89% of the positive instances present in the dataset.
These positive instances refer to samples or instances within
the data set that belong to the class considered ”positive” for
the classification problem. In this case, they are the classes
that the request belongs to Low, Medium, or High.
The model achieves an average F1 score of 87%, indicat-

ing a well-balanced performance between precision and re-
call. This score reinforces a consistent and well-balanced
performance of the model.
Therefore, the classification model that proved to be most

efficient was kNN, despite being only slightly superior to Lo-
gistic Regression. An interesting factor that can influence
this and change the performance of a model is its hyperpa-
rameters. Classification models can be ”tuned.” based on
hyperparameters to improve results, it was not the object of
study in the present work.
kNN and Logistic Regression are machine learning algo-

rithms with unique properties and advantages. Depending on
the problem at hand, one may be more suitable than the other.
Below, we highlight some advantages of kNN compared to
logistic regression, which can contribute to obtaining more
favorable results, although it does not necessarily guarantee
superior results:

• kNN is a non-parametric method, which means it does
not make any specific assumptions about the data distri-
bution. It relies on its nearest neighbors to make deci-
sions, giving it more flexibility when dealing with input
data. Logistic regression, on the other hand, assumes a
specific distribution of data, usually a binomial or multi-
nomial distribution.

• kNN can handle non-linear relationships between fea-
tures and output. It can capture intricate decisions that
logistic regression, being a linear model, struggles to
model effectively. kNN makes no assumptions about
the functional form of the data and can adapt to more
complex patterns.

• kNNmay be more robust to outliers than logistic regres-
sion. Since kNN relies on nearest neighbors, the impact
of outliers on the outcome may be minimized. On the
other hand, logistic regression can be influenced by in-
dividual data points and can be sensitive to outliers.

• kNN can better handle imbalanced datasets where tar-
get classes have different proportions. Because classi-
fication relies on nearest neighbors, kNN can adapt to
varying class ratios. Logistic regression can encounter
issues with a significant class imbalance since it can fa-
vor the majority class.

Table 3 compares all priority classification models used

in our experiment. It presents average Accuracy, Precision,
Recall, and F1-score values and errors.
The performance of these classification models may vary

depending on the data and the nature of the problem. In some
cases, logistic regressionmay perform better in terms of accu-
racy. In other cases, KNN may be better suited to capturing
complex patterns in data. It is essential to choose the correct
evaluation metrics for each type of problem (classification or
regression).

7.2 Experiment B - (CPU)

After selecting KNN as the most suitable model, we will use
it to manage resources. This includes regulating resource us-
age based on each request’s priorities, denoted as Ri. Fur-
thermore, we will continue to assess resource consumption
in the edge environment.
In Experiment B, this analysis aims to evaluate the impact

of the proposed mechanism on CPU utilization compared to
a traditional approach. In the traditional approach, we select
the closest edge node to perform a task without considering
other factors that affect the use of limited edge resources.

7.2.1 Scenario I and II

We conducted two different scenarios for comparison. In
Scenario I of Experiment B, three edge nodes (fog) were cre-
ated, and 500 requests were processed using the mechanism
proposed in this work. In Scenario II of Experiment B, the
traditional approach, which only considered the edge node
closest to the task for processing, was used.
Figure 6 shows the CPU consumption during the execution

of the experiment with three edge nodes and 500 requests. It
compares the approach proposed in this work with allocation
only by distance. In the approach proposed in this work (a),
CPU usage remains relatively balanced, not exceeding 80%
of node resource utilization. The threshold established for
this Scenario is 85%; therefore, if a monitored node reaches
or exceeds 85% of its resource usage, it does not receive new
requests temporarily.
Without approach (b), requests are directed to the near-

est edge node, resulting in irregular consumption with sev-
eral peaks in usage, maintaining an average consumption be-
tween 85% and 90% of resources.
We established a threshold of 85% as a barrier for receiv-

ing new requests in all scenarios of the proposed architecture,
aiming to avoid overloading the nodes and possible failures.
However, if a node reaches, for example, 79% resource uti-
lization, new demand may lead it to exceed this established
limit. This measure aims to prevent overloads on nodes to
avoid failures. Allocation by distance showed peaks of 100%
resource utilization, suggesting overload and potential node
failure.

7.2.2 Scenario III and IV

In scenarios III and IV of Experiment B, we doubled the num-
ber of requests (1000 requests) to reevaluate the performance
of the proposed mechanism. Figure 7 displays the CPU con-

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

Table 3. Evaluation metrics of the models

Classification Models Accuracy Precision F1-score Recall
SVM 0.73 0.63 0.56 0.53

Logistic Regression 0.89 0.84 0.78 0.84
kNN 0.92 0.90 0.87 0.89

(a) Proposed mechanism (b) Allocation by distance

Figure 6. Comparison of CPU consumption for 500 requests.

sumption for this scenario; the scenario involves using three
edge nodes handling 1000 requests.
While analyzing the graphics, we observed that the mech-

anism can increase the volume of requirements. The mech-
anism operates with permanent but balanced CPU manage-
ment to ensure that the usage of the system does not exceed
the limit of 86% to 87%. Ideally, we should aim to maintain
the usage within the 85% limit to meet most of the require-
ments.
On the other hand, in the scenario where allocation is

based on the distance of requests, there is a notable escalation
in CPU utilization peaks with the increasing number of re-
quests. These peaks may occur at both higher and lower val-
ues, signifying an imbalance in the utilization of resources.
During this experiment, we monitored CPU consumption

and all data, allowing us to observe the distribution and use
of processing resources in each case. The results obtained
are useful for analyzing the proposedmechanism’s efficiency
by comparison with a traditional approach, especially when
using the CPU on our node’s edge.

7.3 Experiment C - (CPU)

In Experiment C, we increased the number of fog nodes to 6
and maintained a range of 500 to 1000 requests.

7.3.1 Scenario I and II

In Scenario I and II, with 500 requests as shown in Figure 8,
the use of the proposed mechanism resulted in a maximum
CPU utilization of around 41% of the total capacity and an
average of around 39%, demonstrating its effectiveness in
the equitable distribution of tasks among all nodes.

On the other hand, without the mechanism, in Scenario II,
with 500 requests, CPU utilization peaks close to 58%, and
an average of around 41% can be observed.
These results show that the proposed mechanism has at-

tractive advantages in managing CPU resources and keeping
the load distributed among edge nodes. This results in more
efficient use of available resources, reducing the risk of over-
load and enabling more stable performance of the entire sys-
tem.

7.3.2 Scenario III and IV

In scenarios III and IV, the number of requests increased to
1000.
On the other hand, when we used allocation by distance

(Figure 9 (b)), we observed the highest spikes in CPU uti-
lization, which exceeded 60% usage. It is crucial to note that
consumption at the nodes increased exponentially between
t=5s and t=7s. However, on average, the consumption re-
mained around 55%, which did not compromise the behavior
of the nodes.
We have noticed that the usage of resources never exceeds

80% of available capacity at any given time. This is due to
the increase in the number of edge nodes, which means that
the more nodes are available, the more resources are there to
distribute the load.
However, it is essential to consider that increasing the num-

ber of edge nodes results in higher computational costs. This
leads to a trade-off in design decisions that must consider
available resources, associated costs, and infrastructure man-
agement capacity.
We applied the Student’s t-statistical test in Experiments

B and C and found sufficient statistical evidence to reject the
null hypothesis. The null hypothesis (H0) states that there is

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

(a) Proposed mechanism (b) Allocation by distance
Figure 7. CPU consumption 1000 requests.

(a) Proposed mechanism (b) Allocation by distance
Figure 8. CPU consumption 500 requests.

(a) Proposed mechanism (b) Allocation by distance
Figure 9. CPU consumption 1000 requests.

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

no significant difference between the means of the compared
groups.
Therefore, this result concludes that there is a significant

difference between the groups. This indicates that the group
means are distinct to a degree that cannot be attributed to
chance. Thus, it implies a natural effect from using the two
compared approaches.

7.4 Experiment D - (Memory)
During the execution of an experiment, a detailed analysis
of RAM consumption was carried out, considering differ-
ent quantities of requests. Two different environments were
compared again: one environment with the implementation
of the proposed mechanism and another environment with-
out this mechanism. In the latter environment, the system
sends requests to the nearest fog node without considering
the management mechanism.
An assessment of RAM consumption is necessary to un-

derstand how the proposed mechanism affects system mem-
ory resource usage compared to the traditional request dis-
patch approach. This analysis is valuable for determining the
engine’s effectiveness in managing memory usage and ensur-
ing adequate resource allocation, especially in high-demand
scenarios and under different request loads.
Based on the results obtained, it is possible to better under-

stand the system’s behavior regarding memory consumption,
evaluate the effectiveness of the proposed mechanism, and
make informed decisions to optimize the performance and
stability of the edge environment.

7.4.1 Scenario I and II

In Scenario I, the figure (Figure 10 (a)) shows the use of the
mechanism proposed in this work with three edge nodes and
500 requests. It is evident from the analysis that memory
usage remains low, not exceeding 20%, and with an average
utilization of around 16% of total capacity. This indicates
that the allocation mechanism efficiently controls the use of
resources and performs well.
In contrast, in Scenario II, without using the proposed al-

location mechanism, the figure (Figure 10, (b)) still shows
three edge nodes and 500 requests. However, the RAMmem-
ory consumption has spikes of up to 40% on edge node 1.
This is because it is the closest node in the experiment and re-
sults in a greater allocation of requests to it. Despite this, due
to the low number of requests, the use of memory resources
was not affected much. Nevertheless, the proposed architec-
ture and allocation mechanism have proved to be more effi-
cient and controlled regarding memory usage.

7.4.2 Scenario III and IV

In Figure 11, (a), Scenario III, we increased the number of
requests to 1000. This time, the memory consumption was
greater. We observed peaks of more than 60% memory us-
age with the proposed mechanism and an average of around
38% to 40%. However, despite the increase, memory con-
sumption is still lower and more regulated than the results
obtained without using the mechanism, as shown in (Figure

11, (b)), Scenario IV. In this case, average usage exceeds
40%, and peaks even exceed the 80% barrier.
Again, it is essential to note that, as with CPU resources,

if a node becomes overloaded with memory due to uncon-
trolled request allocation, it can stop working and harm the
system. Thus, the results indicate that the proposed mecha-
nism effectively manages memory consumption, keeping it
at safe levels and avoiding overload of any particular node.

7.5 Experiment E - (Memory)

Experiment E was carried out in a similar way to Experiment
D, except that it involved twice the number of edge nodes,
i.e., a total of 6 nodes.

7.5.1 Experiment E - Scenario I and II

In Scenario I (Figure 12,(a)), the resource consumption was
significantly reduced due to the low number of requests and
a relatively high number of edge nodes, with usage peaks
reaching a maximum of 30%. In contrast, in Scenario II
(shown in Figure 12, (b)), where the proposed mechanism
was not used, the consumption was slightly higher, with
peaks reaching a maximum of 42%.
Despite the limited number of requests, the system demon-

strated balanced functioning in this scenario. An average re-
duction of approximately 8% in memory consumption was
observed when compared to the absence of the proposed ar-
chitecture. Although this may seem like a modest improve-
ment, any gain can be considered a positive indicator in en-
vironments with limited resources.

7.5.2 Experiment E - Scenario III and IV

In stages III and IV of Experiment E, when the number of re-
quests increased to 1000, it was possible to observe a similar
pattern in stages I and II. The proposed mechanism resulted
in a slight increase in RAMconsumption, as illustrated in Fig-
ure 13, (a), with usage peaks reaching a maximum of 41%.
Meanwhile, in Scenario IV, where the proposed mecha-

nism was not used (as illustrated in Figure 13, (b)), mem-
ory consumption increased slightly, slightly exceeding 60%.
On average, memory consumption with the minimal engine
ranged between 20% and 40%, while distance-based alloca-
tion resulted in consumption between 30% and 60%.
Despite the increase in memory consumption as the num-

ber of requests increases, it is notable that the proposedmech-
anismmaintains its role of controlling the use of this resource
in an effective and balanced way. In both scenarios, memory
consumption does not reach a critical level that could com-
promise the stable functioning of the system.
Thus, in scenarios III and IV, it is clear that the proposed

mechanism continues to provide benefits in terms of manage-
ment and optimization ofmemory consumption, ensuring the
proper functioning and performance of the system even in sit-
uations with more demanding requirements.
It is important to note that the advantage of the proposed

mechanism becomes more apparent as the request load in-
creases and the number of edge nodes becomes smaller. In

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

(a) Proposed mechanism (b) Allocation by distance
Figure 10. Memory consumption 500 requests.

(a) Proposed mechanism (b) Allocation by distance
Figure 11. Memory consumption 1000 requests.

(a) Proposed mechanism (b) Allocation by distance
Figure 12. Memory consumption 500 requests.

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

(a) Proposed mechanism (b) Allocation by distance
Figure 13. Memory consumption 1000 requests.

scenarios with higher demand, the resource allocation mech-
anism proposed in this work is essential to guarantee a more
balanced distribution of resources and avoid overloading spe-
cific nodes.
Proper management of memory consumption is crucial to

ensure a stable and reliable operation of an edge computing
system. Overloaded resources can lead to failures and un-
availability of services. The approach proposed in this work
proved beneficial in managing memory consumption and
contributed to a more balanced infrastructure performance
in this environment.
Similarly to the analysis of CPU consumption, we applied

the Student’s t-test statistical methodology to Experiments D
and E, obtaining similar conclusions. In both cases, we could
reject the null hypothesis.
Therefore, the findings converge to the existence of sta-

tistical evidence supporting a substantial difference. This
medium applies to whether or not to adopt the approach pre-
sented in this study.

7.6 Experiment F- Failure Mechanism
Experiment F (Figure 14) used scenario III of Experiment E
with six edge nodes and 1000 requests. In this experiment,
we randomly selected two fog nodes (nodes 3 and 5) to sim-
ulate a failure.
First, we selected Node 3 to shut down abruptly, simulat-

ing a shutdown due to a lack of resources or a device fail-
ure. We observed a drop in Node 3’s consumption until it
reached 0, showing that, due to the ”failure”, no resources
are being consumed by this node. In addition, we observed
that after the shutdown (at t = 7.0s), the other nodes started
to consumemore resources because the requests that were on
Node 3 were reallocated to other nodes, which have enough
resources to handle these requests. For example, Node 4
gradually increased its consumption.
This situation arises because all requests allocated to edge

node 3 are in a state of pending preservation, awaiting resolu-
tion. A Thread works like a checkpoint because, in this case,
as a node crashed (Node 3), all requests being processedwere

lost. However, this checkpoint mechanism reallocates these
requests to other available nodes that can process them. This
process occurs due to continuous monitoring of the resources
used.
After the requests are reallocated, the consumption of the

nodes that receive them tends to increase until everything sta-
bilizes again temporarily. This process represents balancing
the use of nodes previously connected to the disconnected
node. This ability to redistribute requests confirms the sys-
tem’s ability to recover from failures once the network failure
has been identified and other nodes have absorbed the lost re-
quests. This process is repeated once more at t = 13s when
Node 5 shuts down. We can see that there is a gradual drop
in consumption by Node 5 and that there is an increase in
consumption by the other nodes, proving that the fault mech-
anism works.
It is essential to highlight that we randomly select the dis-

connected nodes since it is impossible to predict which node
will fail. This format showcases the system’s adaptive capa-
bility to handle failures by reassigning tasks to the available
nodes, thereby ensuring an uninterrupted service.
The failuremechanism under analysis operates in the same

way regardless of the monitored resource. This indicates that
the results obtained from CPU consumption analysis can be
applied to the consumption of other resources., such as RAM.
By focusing on CPU consumption, we could validate the
functioning of the failure mechanism itself by observing how
nodes behave during its execution. This approach allowed us
to accurately identify the impacts of the mechanism on the
overall system performance. As this is an initial concept val-
idation, it is evaluated only with the use of the CPU resource.

7.6.1 Discussions

By comparing the results obtained in the two environments
(with the proposed mechanism and allocation by distance),
it is possible to determine whether the allocation with the
proposed mechanism effectively improves CPU and Mem-
ory utilization and, subsequently, the overall system perfor-
mance. This analysis is essential to verify and evaluate the

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

Figure 14. Behavior of nodes with the failure mechanism with 1000 requests.

effectiveness of the resource allocation mechanism proposed
in this work. It provides essential information about its use-
fulness in edge computing environments, from priority defi-
nition to request execution. Understanding these results can
contribute to making informed decisions about resource man-
agement in edge systems to achieve a better balance between
performance, computational cost, and resource consumption.
We compared the architecture presented in this work with

other priority definition methods covered in the work Bui
et al. [2021], and it is observed that the authors use differ-
ent criteria to define priorities. They employ a more com-
plex strategy, considering six factors to classify resource re-
quests, which requires a more elaborate analysis of the re-
quests and, consequently, can increase the total processing
time. The results of this work demonstrate that the authors
could define their request priorities; however, we noticed
excessive consumption of resources, and they highlighted a
weakness in the approach we identified in the priority distri-
bution. Although the resource utilization is lower compared
to other priority-setting algorithms used by them, the utiliza-
tion reaches close to 100% and reduces only after a certain
period.
In the architecture proposed in this work, in addition to

considering several factors when defining priority, as in Bui
et al. [2021], there was concern about controlling the use of
resources on edge nodes. It would be efficient to have a good
priority classification for requests with adequate control over
the use of resources to resolve these requests, as this could
lead to node unavailability. Resource utilization is an essen-
tial aspect of efficient resource management. In the results
obtained in this work, we observed that in no case tested,
there was an excessive overload in the use of edge resources,
even with fewer available nodes and increased requests.
Another essential factor to be compared is that the authors

in Bui et al. [2021] establish using a preemption factor in
the algorithm to handle emergencies. This medium can be
a valid strategy but can cause network bottlenecks if not ap-
propriately managed. This circumstance arises because re-
sources have already been allocated, and halting this task
would lead to the forfeiture of those resources. If a task is
running, it is because it has been classified as a priority over
the others. Therefore, it is essential to carefully consider the
impact of preemption on network operations.
One of the main criteria differentiating the proposed work

from others is its failure control mechanism, which plays a
crucial role due to the constant exposure of edge nodes to pos-
sible failures, such as connection errors, unstable operability,
and unavailability. This characteristic is essential, as edge
nodes play a fundamental role in processing and forwarding
data and requests. This mechanism is a way to control and
manage resources at the edge.

8 Conclusion
Resource management is an essential technique in edge com-
puting systems due to the limitations of available resources.
This work presents a mechanism to allocate resources effi-
ciently in edge computing environments, prioritizing tasks
based on their urgency, necessary resources, and real-time
availability on the computing nodes at the edge.
To achieve this objective, we developed a priority classi-

fier for requests based on machine learning techniques. The
classifier is trained on historical data and relevant task charac-
teristics such as criticality, latency, connection type, location,
elapsed time, and required resource load. Using these data,
the priority classification model and runtime resource mon-
itoring provide a priority distribution for requests from IoT

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

devices, enabling efficient resource allocation and reducing
unnecessary consumption.
Our evaluations show that the KNN classifier is the most

efficient, with an accuracy of 92%, surpassing the SVM and
Logistic Regression models. We obtained a precision of 0.90.
Therefore, KNN was used in the request allocation and re-
source control experiments.
In the resource allocation mechanism, the distribution of

available resources on edge nodes was optimized, consider-
ing the priority assigned to tasks and the quantity and avail-
ability of necessary resources. This mechanism results in an
efficient allocation of resources, reducing their consumption.
For instance, CPU usage has become more stable, varying
on average between 75% to 80% for three edge nodes and
40% for six edge nodes compared to the random allocation
approach, avoiding consumption peaks that could lead to ser-
vice unavailability.
The mechanism also demonstrated efficiency in reducing

memory consumption and keeping it stable, with an average
consumption below the consumption of the approachwithout
the proposed mechanism, especially in scenarios with more
requests and fewer edge nodes. These results indicate that the
proposed mechanism can adequately handle a more signifi-
cant load of requests, ensuring a more efficient allocation of
memory resources and avoiding overloads on specific nodes.
Furthermore, the proposed failure control mechanism

proved efficient in detecting edge node errors and reallocat-
ing tasks to guarantee the fulfillment of all requests. This
way, it is ensured that the service continues to function even
in failure situations.

8.1 Future work

There are some possibilities for improving the proposal pre-
sented:

• We plan to perform simulations with a larger number of
nodes, in search of more comprehensive results and a
more realistic representation of the scenarios.

• Compare our proposal with other approaches that ex-
plicitly deal with faults in addition to a comparison with
state-of-the-art solutions. This will allow us to assess
the ability of our proposal to maintain system perfor-
mance and reliability in scenarios with faults in network
nodes.

• Mobility: Choose a node independent of the node’s po-
sition, aiming for mobility, since dealing with the geo-
graphical position of nodes can be a complex task. Al-
ternatively, Received Signal Strength Indication (RSSI)
can be introduced, which is a type of metric that ana-
lyzes the quality and power of the connection signal re-
ceived by a given device. We can use this method to
determine the requests from the nearest end devices.

• Adjusting classifier hyperparameters: To enhance the
generalization capacity of priority classifiers, it is ad-
visable to fine-tune their hyperparameters. This process
aids the model in avoiding issues like overfitting or un-
derfitting, enabling it to discern pertinent patterns in the
data and generalize effectively to diverse real-life situa-

tions. Additionally, cross-validation should be investi-
gated to validate the selected models.

• To enrich the task prioritization analysis, we will ap-
ply other techniques, such as Batch Scheduling, Round
Robin Scheduling, and Preemptive Scheduling, and
then compare them with the currently employed ap-
proach.

Acknowledgements
This work was supported by the Ceará Foundation for Scientific and
Technological Development (FUNCAP) through the process MLC-
0191-00164.01.00/22.

Competing interests

The authors declare that they have the following competing inter-
ests.

Availability of data and materials

The datasets generated and/or analyzed during the current study are
available.

References
Aqib, M., Kumar, D., and Tripathi, S. (2022). Classi-
fication of edge applications using decision tree, k-nn,
svm classifier. In 2022 IEEE Students Conference on
Engineering and Systems (SCES), pages 01–06. DOI:
10.1109/SCES55490.2022.9887690.

Araújo, G., Bezerra, S., and Rocha, A. (2023). Um clas-
sificador de prioridade de requisições para alocação de
recursos na computação em borda. In Anais do XV
Simpósio Brasileiro de Computação Ubíqua e Pervasiva,
pages 131–140, Porto Alegre, RS, Brasil. SBC. DOI:
10.5753/sbcup.2023.230787.

Arena, F. and Pau, G. (2020). When edge computing meets
iot systems: Analysis of case studies. China Communica-
tions, 17(10):50–63. DOI: 10.23919/JCC.2020.10.004.

Arowolo, M., Ogundokun, R., Misra, S., Jonathan, O.,
and Kadri, A. (2022). K-Nearest Neighbour Algorithm
for Classification of IoT-Based Edge Computing Device,
pages 161–179. DOI: 10.1007/978-3-030-80821-18.

Bayılmış, C., Ebleme, M. A., Ünal Çavuşoğlu, Küçük, K.,
and Sevin, A. (2022). A survey on communication pro-
tocols and performance evaluations for internet of things.
Digital Communications and Networks, 8(6):1094–1104.
DOI: 10.1016/j.dcan.2022.03.013.

Bhushan, S. and Mat, M. (2021). Priority-queue based dy-
namic scaling for efficient resource allocation in fog com-
puting. In 2021 IEEE International Conference on Service
Operations and Logistics, and Informatics (SOLI), pages
1–6. DOI: 10.1109/SOLI54607.2021.9672442.

Bui, T. B., Sakr, A., Castrillón, J., and Schuster, R.
(2021). Six-factors score-based match-making based
on priority and preemption for resource allocation in

https://doi.org/10.1109/SCES55490.2022.9887690
https://doi.org/10.5753/sbcup.2023.230787
https://doi.org/10.23919/JCC.2020.10.004
https://doi.org/10.1007/978-3-030-80821-1_8
https://doi.org/10.1016/j.dcan.2022.03.013
https://doi.org/10.1109/SOLI54607.2021.9672442

Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing Araújo et al. 2024

edge computing. In 2021 IEEE International Confer-
ence on Edge Computing (EDGE), pages 44–50. DOI:
10.1109/EDGE53862.2021.00016.

Cheng, Z., Li, P., Wang, J., and Guo, S. (2015). Just-in-time
code offloading for wearable computing. IEEE Transac-
tions on Emerging Topics in Computing, 3(1):74–83. DOI:
10.1109/TETC.2014.2387688.

Costa, A., Rocha, A., Delicato, F., and Souza, J. (2020). Bal-
anceamento de carga na borda da rede usando blockchain
das coisas. In Anais do XII Simpósio Brasileiro de Com-
putação Ubíqua e Pervasiva, pages 91–100, Porto Alegre,
RS, Brasil. SBC. DOI: 10.5753/sbcup.2020.11215.

Dlamini, S. and Ventura, N. (2019). Resource manage-
ment in fog computing: Review. In 2019 International
Conference on Advances in Big Data, Computing and
Data Communication Systems (icABCD), pages 1–7. DOI:
10.1109/ICABCD.2019.8851016.

Hong, C.-H. andVarghese, B. (2019). Resourcemanagement
in fog/edge computing: A survey on architectures, infras-
tructure, and algorithms. ACMComput. Surv., 52(5). DOI:
10.1145/3326066.

Hussain, F., Hassan, S. A., Hussain, R., and Hossain,
E. (2020). Machine learning for resource manage-
ment in cellular and iot networks: Potentials, cur-
rent solutions, and open challenges. IEEE Commu-
nications Surveys Tutorials, 22(2):1251–1275. DOI:
10.1109/COMST.2020.2964534.

Liu, X., Yu, J., Wang, J., and Gao, Y. (2020). Resource
allocation with edge computing in iot networks via ma-
chine learning. IEEE internet of things journal, 7(4):3415
– 3426. DOI: 10.1109/JIOT.2020.2970110.

Madej, A., Wang, N., Athanasopoulos, N., Ranjan, R., and
Varghese, B. (2020). Priority-based fair scheduling in edge
computing. In 2020 IEEE 4th International Conference
on Fog and Edge Computing (ICFEC), pages 39–48. DOI:
10.1109/ICFEC50348.2020.00012.

Martinez, I., Hafid, A. S., and Jarray, A. (2021). Design,
resource management, and evaluation of fog computing
systems: A survey. IEEE Internet of Things Journal,
8(4):2494–2516. DOI: 10.1109/JIOT.2020.3022699.

Rejeb, A., Rejeb, K., Simske, S., Treiblmaier, H., and Za-
ilani, S. (2022). The big picture on the internet of things
and the smart city: a review of what we know and what
we need to know. Internet of Things, 19:100565. DOI:
10.1016/j.iot.2022.100565.

Rusman, J., Tahir, Z., and Salam, A. E. U. (2019). Fog
computing concept implementation in work error de-
tection system of the industrial machine using support
vector machine (svm). In 2019 International Semi-
nar on Research of Information Technology and Intelli-
gent Systems (ISRITI), pages 160–164. DOI: 10.1109/IS-
RITI48646.2019.9034597.

Sasaki, Y. and Yokotani, T. (2019). Performance evaluation
of mqtt as a communication protocol for iot and proto-
typing. 4:21–29. Available at: https://core.ac.uk/
download/pdf/228834689.pdf.

Scikit-Learn (2023). scikit-learn, machine learning in
python. Available at: https://scikit-learn.org/
stable/.

Sharif, Z., Jung, L. T., and Ayaz, M. (2022). Priority-based
resource allocation scheme for mobile edge computing.
In 2022 2nd International Conference on Computing and
Information Technology (ICCIT), pages 138–143. DOI:
10.1109/ICCIT52419.2022.9711641.

Sharif, Z., Jung, L. T., Razzak, I., and Alazab, M. (2023).
Adaptive and priority-based resource allocation for ef-
ficient resources utilization in mobile-edge computing.
IEEE Internet of Things Journal, 10(4):3079–3093. DOI:
10.1109/JIOT.2021.3111838.

Tran-Dang, H. and Kim, D.-S. (2018). An information
framework for internet of things services in physical in-
ternet. IEEE Access, 6:43967–43977. DOI: 10.1109/AC-
CESS.2018.2864310.

Tran-Dang, H. and Kim, D.-S. (2021). Task priority-based
resource allocation algorithm for task offloading in fog-
enabled iot systems. In 2021 International Conference on
Information Networking (ICOIN), pages 674–679. DOI:
10.1109/ICOIN50884.2021.9333992.

Wang, K., Tan, Y., Shao, Z., Ci, S., and Yang, Y. (2019).
Learning-based task offloading for delay-sensitive ap-
plications in dynamic fog networks. IEEE Transac-
tions on Vehicular Technology, 68(11):11399–11403. DOI:
10.1109/TVT.2019.2943647.

Wang, Z., Lv, T., and Chang, Z. (2022). Computa-
tion offloading and resource allocation based on dis-
tributed deep learning and software defined mobile edge
computing. Computer Networks, 205:108732. DOI:
10.1016/j.comnet.2021.108732.

Yin, C., Li, T., Qu, X., and Yuan, S. (2020). An opti-
mization method for resource allocation in fog comput-
ing. In 2020 International Conferences on Internet of
Things (iThings) and IEEEGreen Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and So-
cial Computing (CPSCom) and IEEE Smart Data (Smart-
Data) and IEEE Congress on Cybermatics (Cybermat-
ics), pages 821–828. DOI: 10.1109/iThings-GreenCom-
CPSCom-SmartData-Cybermatics50389.2020.00139.

https://doi.org/10.1109/EDGE53862.2021.00016
https://doi.org/10.1109/TETC.2014.2387688
https://doi.org/10.5753/sbcup.2020.11215
https://doi.org/10.1109/ICABCD.2019.8851016
https://doi.org/10.1145/3326066
https://doi.org/10.1109/COMST.2020.2964534
https://doi.org/10.1109/JIOT.2020.2970110
https://doi.org/10.1109/ICFEC50348.2020.00012
https://doi.org/10.1109/JIOT.2020.3022699
https://doi.org/10.1016/j.iot.2022.100565
https://doi.org/10.1109/ISRITI48646.2019.9034597
https://doi.org/10.1109/ISRITI48646.2019.9034597
https://core.ac.uk/download/pdf/228834689.pdf
https://core.ac.uk/download/pdf/228834689.pdf
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://doi.org/10.1109/ICCIT52419.2022.9711641
https://doi.org/10.1109/JIOT.2021.3111838
https://doi.org/10.1109/ACCESS.2018.2864310
https://doi.org/10.1109/ACCESS.2018.2864310
https://doi.org/10.1109/ICOIN50884.2021.9333992
https://doi.org/10.1109/TVT.2019.2943647
https://doi.org/10.1016/j.comnet.2021.108732
http://dx.doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00139
http://dx.doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00139

	Introduction
	Related Work
	Resource Management Based on Task Priorities and Edge Node Resource Consumption
	Requests
	Classifier
	Resource Management with Allocation

	Failure Control Mechanism
	Methodology
	Implementation of the Proposed Mechanism

	Experiments
	Experimental Design

	Results and discussions
	Experiment A
	Confusion Matrices
	SVM - Support Vector Machine
	Logistic Regression
	kNN - K-Nearest Neighbors

	Experiment B - (CPU)
	Scenario I and II
	Scenario III and IV

	Experiment C - (CPU)
	Scenario I and II
	Scenario III and IV

	Experiment D - (Memory)
	Scenario I and II
	Scenario III and IV

	Experiment E - (Memory)
	Experiment E - Scenario I and II
	Experiment E - Scenario III and IV

	Experiment F- Failure Mechanism
	Discussions

	Conclusion
	Future work

