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Abstract
Integrating big data and deep learning across various applications has significantly enhanced intelligence and

efficiency in our daily lives. However, it also requires extensive data sharing, raising significant communication
and privacy concerns. In this context, Federated Learning (FL) emerges as a promising solution to enable collabora-
tive model training while preserving the privacy and autonomy of participating clients. FL facilitates collaborative
model training by enabling data to be trained locally on devices, eliminating the need for individual information
sharing among clients. A client selection mechanism strategically chooses a subset of participating clients to con-
tribute to the model training in each learning round. However, an efficient selection of clients to participate in the
training process directly impacts model convergence/accuracy and the overall communication load on the network.
In addition, FL faces challenges when dealing with non-Independent and Non-Identically Distributed (non-IID)
data, where the diversity in data distribution often leads to reduced classification accuracy. Hence, designing an
efficient client selection mechanism in a scenario with non-IID data is essential, but it is still an open issue. This
article proposes a Model Efficiency through Selective Federated Learning Algorithm called MESFLA. The mech-
anism employs a Centered Kernel Alignment (CKA) algorithm to search for similar models based on data weight
or similarity between models, i.e., grouping participants with comparable data distributions or learning objectives.
Afterward, MESFLA selects the clients with more relevance in each group based on data weight and entropy. Our
comprehensive evaluation across multiple datasets, including MNIST, CIFAR-10, and CIFAR-100, demonstrates
MESFLA’s superior performance over traditional FL algorithms. Our results show an accuracy improvement and
a minor loss in each client aggregation of the new global model sent to clients with a difference of 3 rounds using
the Data Weight in comparison with the other selection methods.
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1 Introduction
Machine learning (ML) has experienced unprecedented
growth since the world is more connected and eager to use
Artificial Intelligence (AI) to improve people’s lives for a
wide range of applications, such as next-word prediction,
healthcare and entertainment [Kusano et al., 2023; Zhao
et al., 2023]. These applications mainly run on cell phones
and tablets, the primary computing devices for many peo-
ple [Smestad and Li, 2023]. According to the International
Telecommunication Union (ITU) [, ITU], there were more
than 8.58 billion mobile subscriptions worldwide in 2022.
In this context, the world is generating unprecedented data
through connected devices [Smestad and Li, 2023]. With
a wealth of available data and the fact that ML models are
voraciously hungry for data, AI has become ubiquitous and
essential among critical stakeholders, making our lives more
intelligent and efficient.
Among all these recent advances, the concerns and fears

about the impacts of AI in our lives are increasing faster, es-
pecially related to communication and privacy with the pro-
liferation of decision support systems being deployed [Gao

et al., 2023]. For instance, existing AI approaches are still
based on cloud-centric architecture where data is stored and
processed centrally. This, in turn, leads to communication
problems, such as unacceptable latency and high communi-
cation costs. Furthermore, privacy and data security emerge
as crucial concerns in future AI applications since without
serious consideration of privacy, sensitive data is suscepti-
ble to disclosures, cyberattacks, and risks. In this context, it
is believed that the future of AI and cloud computing will be
distributed at the network edge [Zhang et al., 2023], where
many AI applications must avoid sending private data to a
centralized server.

Federated Learning (FL) emerges as a crucial solution to
provide a privacy-preserving property with reduced commu-
nication cost for future ML applications [McMahan et al.,
2017]. FL provides a decentralized ML paradigm, which
leaves the training data distributed on mobile devices and
learns a shared model by aggregating locally computed up-
dates [Hu et al., 2023]. In FL operation, the client selection
mechanism deployed at the aggregation server selects a sub-
set of participating devices, also called clients, to contribute
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to the model training in each communication round [Xiong
et al., 2023]. These clients receive the global model, con-
duct training based on their local data, and then share their
model parameters instead of transmitting their raw sensing
data, keeping the raw data on the client devices [Barros et al.,
2021]. On an aggregation server, only locally computed up-
dates and analysis results are received, and aggregated for an
improved global model that benefits from distributed learn-
ing, such as achieving improved accuracy or better general-
ization [Veiga et al., 2023]. Hence, FL allows continuous
learning by adapting the MLmodel without sharing raw data
[Chen et al., 2020].
The mechanism must choose a subset of clients eligible to

participate in the upcoming learning rounds, where the mech-
anism must remove clients who do not add value to the train-
ing to improve the global model while reducing the waste of
computation resources [Smestad and Li, 2023]. In this sense,
selecting clients with valuable data samples is crucial, as it
both saves computational resources and excludes data that
no longer benefits the global model’s improvement. [Xiong
et al., 2023]. Random client selection is commonly used in
traditional FL algorithms, but client devices often have het-
erogeneous data distribution, and randomly selecting them
might lead to some bias, low-performance metrics or some
challenges to achieve ML model’s convergence. It is also
important to find techniques that reduce the number of com-
munication rounds and the size of the transmitted messages
[Li et al., 2020]. The client selection mechanism is a critical
component of the FL training process, as it ensures a diverse
and representative data sample from various clients. Hence,
client selection is not an easy task, and there are many issues
to consider for defining the best client selection.
Furthermore, the client selection mechanism faces chal-

lenges when dealing with non-independent and non-
identically distributed (non-IID) data scenarios, as datasets
may have statistical heterogeneity. This diversity in data dis-
tribution often leads to reduced classification accuracy. One
approach to mitigating the impact of non-IID data on model
gradients involves assessing the similarity between trained
model representations. In this way, clustering algorithms are
an essential tool to group participants with comparable data
distributions or learning objectives, creating clusters with
similar models. Hence, it is possible to select clients with
more relevance in each group, i.e., clients that contribute to
the model training in each learning round, improving the ac-
curacy and convergence.
In this article, we propose a cluster-based client selection

mechanism for FL applications that considersmodel and data
size information, called MESFLA. The mechanism consid-
ers the clusterization and client selection steps. At the clus-
terization step, the mechanism considers a clusterization al-
gorithm to group clients based on the weight data of each
client. Afterward, at the client selection step, the mechanism
selects the clients with more relevance in each group. In ad-
dition, the aggregation server evaluates the rate of change
in accuracy to decide when to return the new aggregated
Model to all clients, saving network resources while main-
taining the global Model during many rounds. Evaluation re-
sults demonstrate that MESFLA achieves model efficiency
by using significantly fewer communication rounds between

clients and aggregation servers and exhibiting a faster recov-
ery system than other approaches. The main research contri-
butions of this article can be summarized as follows:

1. Cluster-based client selection mechanism for FL appli-
cations that considers Model and data size information.

2. A detailed performance evaluation where we demon-
strate that our approach can maintain the fast conver-
gence and also contribute to reducing the number of
rounds between clients and the aggregation server.

The remainder of this article is structured as follows. Sec-
tion 2 presents an overview of works that explore similar pro-
posals related to client selection and clustering in an FL ap-
proach. Section 3 describes our methodology for extracting
the client model, clustering, and selecting them for the train-
ing step. Section 4 explores the simulation model and the
results of our method comparison. Section 5 analyzes the
obtained results and explains them. Section 6 presents the
concluding remarks and future works.

2 Related Works

Random client selection, the standard method, yields sub-
optimal results. Several client selection mechanisms have
been proposed recently, each of them applied to some spe-
cific scenarios, architecture, or application. For instance, Qu
et al. [2022] proposed the Context-aware Online Client Se-
lection (COCS), which allows clients to use their computa-
tional information, bandwidth, and distance to select a sub-
set of clients to maximize the training utilities. Qiao et al.
[2022] also proposed a context-aware approach, where the
central server evaluates the significance of clients based on
both the content of their local updates and communication
channel states.
Ami et al. [2023] introduced the Multi-Armed Bandit

(MAB) for client selection, which formulates the trade-off be-
tween the training latency and the model’s generalization. of
the model. MAB reduces the training process time while in-
creasing the model’s generalization ability by avoiding over-
fitting. The authors proposed selecting clients based on a
time-varying reward influenced by the history of previous
selections. Sousa et al. [2023] introduced an entropy-based
client selection for vehicular FL environments to address is-
sues arising from non-IID data distributions. The proposed
method is compared to a random selection mechanism in
both IID and non-IID scenarios, and scenarios with random
client drops.
Ouyang et al. [2021] introduced a cluster indicator ma-

trix indicating the similarity of users called ClusterFL. In
this work, the aggregation server drops stragglers which con-
verge slower and clients which are less related to others in
each cluster. This work aims to reduce the overall com-
munication overhead while maintaining the overall accuracy
performance. Sattler et al. [2020] presented a Clustered FL
(CFL) that combines privacy constraints by applying an en-
cryption mechanism with clustering. This work uses the ge-
ometric structures of a surface to calculate the positioning
and grouping of some clients. This method helps to achieve
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Table 1. Summary of related works and comparison with our MESFLA mechanism

Papers Cluster Approach Selection Method Communication Cost Miti-
gation

[Qu et al., 2022] X Computational and client-
ES pairs transmission infor-
mation

Hierarchical FL reduces
communication to the cloud
server, using nearby edge
servers instead

[Qiao et al., 2022] X Client Local Updates and
Communication Channel

Selects the client subset
based on both the wireless
channel states and the
content of model updates

[Ami et al., 2023] X Time-varying reward influ-
enced by the history of pre-
vious selections

Developed a time-varying
reward function that cap-
tures the client latency

[Sousa et al., 2023] X Entropy-based for Vehicular
FL environments

Focused only in the chal-
lenges posed by non-IID
data in vehicular networks

[Ouyang et al., 2021] ✓ Similarity of users and drop
stragglers

Reduces overall commu-
nication overhead through
cluster-wise straggler
dropout and correlation-
based node selection

[Sattler et al., 2020] ✓ Similarity with client
weights after the conver-
gence

Focused only on properties
of the FL loss surface to
group the client population
into clusters

[Nguyen et al., 2020] ✓ Re-weighting mechanism of
updated parameter

Communication and hetero-
geneity is improved with the
re-weighting mechanism of
updated parameters

[Ghosh et al., 2020] ✓ Similarity based on weight
sharing technique

Focused only on conver-
gence of Iterative Feder-
ated Clustering Algorithm
(IFCA)

[Albaseer et al., 2021] ✓ Cosine similarity between
the weight-updates

Schedule the clients based
on their round latency and
exploits the bandwidth reuse

[Huang et al., 2023] ✓ Least confidence, margin,
entropy, vote entropy, and
loss

Reduces communication
overhead requiring less
client participation in the
learning process

[Li et al., 2022] ✓ Soft clustering with overlap-
ping clusters

Focused only on combining
the strengths of soft cluster-
ing and IFCA

MESFLA ✓ Data weight and similar-
ity(entropy) cluster with
convergence rate monitor

Combines clusterization and
metrics evaluation to reduce
communication between ag-
gregation server and clients

improved performance due to greater equality between the
trained client weights and their modes.

Nguyen et al. [2020] proposed a fast convergent FL algo-
rithm called FOLB, which performs intelligent sampling of
devices in each round to improve the expected convergence

speed. The clients are sampled based on the re-weighting
mechanism of updated parameters received from participat-
ing devices in every round. FOLB is capable of handling the
heterogeneity of device communication and computation by
using their model to create groups with the ability to achieve
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faster convergence. This work also evaluates the hetero-
geneity of devices by only assigning random images from a
fixed number of different digits to each device with MNIST
Dataset. The authors compared the number of rounds neces-
sary to reach a certain accuracy level to indicate its commu-
nication network reduction cost.
Ghosh et al. [2020] proposed an Iterative Federated Clus-

tering Algorithm (IFCA), which considers user cluster iden-
tity estimation and gradient descent-based model parame-
ter optimization. In this way, IFCA distributes and clusters
users, where diverse groups pursue individual learning tasks
collaboratively. The clusters may represent groups of users
interested in different categories of news. The authors used
data augmentation to simulate an environment where the data
on different worker machines are generated from different
probabilistic distributions.
Albaseer et al. [2021] introduced Clustered Federated

Multitask Learning (CFL) as an efficient method for devel-
oping reliable specialized models in non-IID scenarios. The
cluster is designed using the cosine similarity between the
weight updates of diverse clients. All clients have an equal
probability of participating in the training phase, even if they
have wrong channels or low computational capabilities to ob-
tain unbiased models. The client’s expected latency is the pa-
rameter used to schedule the model uploading, which can be
the bottleneck of this approach. Huang et al. [2023] propose
an active client selection for clustered federated Learning
(CFL) to address data heterogeneity by customizing models
for different client groups. This work combines many CFL
client selection strategies, including calculating the least con-
fidence, margin, entropy, vote entropy, and loss to find the
most informative and helpful clients.
Fraboni et al. [2021] introduced a clustered sampling for

client selection, demonstrating better client representativity
and reduced variance in aggregation weights. They intro-
duced two clustering approaches based on sample size and
model similarity. The approach seamlessly integrates into
FL implementations without client-side operations, remain-
ing compatible with privacy and communication reduction
technologies. Li et al. [2022] proposed a soft clustering
method with the clients being partitioned into overlapping
clusters, and the information of each participating client is
used by multiple clusters simultaneously during each round.
Client selection contributes to improving the model’s results
and even indirectly contributes to reducing communication
since only a portion of the clients participate in the process.
Table 1 summarizes the main characteristics of reviewed

studies regarding the challenge of select clients and summa-
rizes the existing works regarding the Clustering approach,
Clients Selection Method, and Communication Cost Mitiga-
tion. Based on the state-of-the-art analysis, we argue that
it is important to group users based on the statistical fea-
tures of their datasets to discover the relationshipswithin user
datasets, mitigating the impact of non-IID data. In this con-
text, clustering algorithms are an important tool for group-
ing participants with comparable data distributions or learn-
ing objectives, creating clusters with similar models. In ad-
dition, we could select significant or relevant users in each
group, which could be achieved by considering data weight
and similarity between trained model representations to miti-

gate the effects of non-IID data. This approach helps to select
themost relevant clients for each training round, reducing the
amount of data transmitted and improving overall communi-
cation efficiency. In addition, a large number of devices may
participate in FL over unreliable networks, leading to signif-
icant communication costs and performance bottlenecks. In
this way, it is important to only send the new model when
accuracy reduces its improvement rate. To the best of our
knowledge, only MESFLA considers every critical charac-
teristic previously mentioned not provided by the existing
client selection mechanism.

3 Model Efficiency through Selec-
tive Federated Learning Algorithm
(MESFLA)

This section introduces a cluster-based client selection mech-
anism for FL applications that considers model and data size
information called MESFLA. The proposed mechanism con-
sists of two steps, namely, clusterization and client selec-
tion. At the clusterization step, the mechanism considers a
clusterization algorithm to group clients based on the weight
data of each client. Afterwards, at the client selection step,
the mechanism selects the clients with more relevance in the
each group. In the following, we introduce the systemmodel
and MESFLA operations.

3.1 Scenario Overview for Clustering
We considered the traditional FL architecture, where at each
communication round, a set of Client k is selected to receive
the global model, perform the training based on its Dataset
Dn. The clients improve the Model Mn by training with its
specific data. Afterward, the model updates, i.e., learned
parameters or gradients, are sent periodically to the central
server [Song et al., 2022]. The aggregation server applies
a given aggregation policy, such as The Federated Learning
Average (FedAVG). For instance, FedAVG computes an av-
erage of the shared local models at edge servers to produce
an accurate global model. Finally, the updated global model
is distributed to the selected clients [Lobato et al., 2022].
The client selection mechanism must select a subset of

clients to participate in the upcoming learning rounds. The
mechanism must select a given client k with valuable sam-
ples to reduce the waste of computation resources, and it
must remove the clients whose data are no longer critical for
the model training. In addition, FL is subject to data that
are not independent or have different statistical distributions,
i.e., non-IID data scenarios. This statistical heterogeneity of
Dataset Dn results in lower classification accuracy, where
non-IID data over model contributions can be addressed by
measuring the similarity between trained model representa-
tions. In this context, clustering algorithms play a vital role
in FL by grouping participants with similar data distributions
or learning objectives, enabling to group similar models.
Figure 1 shows the MESFLA operation, where each de-

vice has its own collected data (D), i.e., the usual preferences
and data pattern recorded tipically in that device due to per-
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Figure 1. MESFLA operational overview

sonal usage patterns. Each device uses its own collected data
D to train a local modelM associated with that device. Then
each device sends the trained model together with the dataset
size to the central server. In this way, MESFLA collects all
local modelM from all the available devices, and the central
server aggregates each model based on a given aggregation
policy, such as FedAVG, providing a global model. In addi-
tion, the central server clusters that received model M were
into similar groups/clusters. Afterward,MESFLA selects the
clients with more relevance in each group, which is the client
with the large dataset. Table 2 summarizes the list of main
symbols used to introduce the MESFLA mechanism.

3.2 MESFLA Operation
MESFLA Operation is divided into Clusterization and
Client Selection steps. In the Clusterization step, we con-
sider Centered Kernel Alignment (CKA) implementation on
the models to determine which group each user belongs to,
i.e., the set of clients k converges into groups based on the
model similarity after their training [Kornblith et al., 2019].
In its operation, a given client k sends its client weight Wk
to the server, which clusters C these parameters with the
aim of grouping the set of k clients based on model simi-
larity. For instance, clients have a correlation based on the
values of model gradients, which is used to search for the
most similar internal representations between models (i.e.,
clients) [Ouyang et al., 2021]. In this way, CKA provides in-
sights into how well models capture similar patterns of client
weight Wk and structures in the data, even when trained in-
dependently or on different tasks. Algorithm 1 illustrates the
Clusterization step performed by the MESFLA mechanism
operations.
The CKA uses different methods to measure the similarity

Table 2. List of Symnols

Acronyms Description

Dn Dataset
Gm Global Model
Mn Model
Wfl FL model
Wk Client weight within the clus-

ter
Wi Cluster weight
Wj Client weight
C Set of clients
k Client
P(k) Probability of k
Sn The sum result in the total data

from all samples.
Sk Number of data from that sam-

ple
t Threshold
w Set of w rounds

between the matrices. In this way, we use the Dot Product-
based Similarity, which relies on the Eq. 1 of the relative
dots products of the samples where H is the centering matrix.
The Eq. 1 presents the empirical estimator for the Hilbert-
Schmidt Independence Criterion (HSIC), a non-parametric
measure of the dependency between two sets of variables,
i.e., X and Y , represented within kernel matrices K and L.
The elements Kij = k(Xi, Xj) and Lij = l(Yi, Yj) are de-
rived from kernel functions k and l. That means mapping
pairs of data points into a high-dimensional feature space,
capturing their similarities. The matrix H is a centering ma-
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trix that adjusts the kernels to have a zero mean. The trace
operation, tr(KHLH), in the numerator, captures the align-
ment of the transformed data points. Divided by the square of
the number of observations minus one, (n−1)2, this formula
normalizes the value to account for sample size, providing a
scaled estimate of dependence robust to the number of data
points in the sample.
Quantifying the similarity between features involves cal-

culating the sum of squared dot products across all pairs. Oth-
erwise, CKA involves calculating the alignment between the
centered representations of two models by comparing their
kernel matrices. The kernel matrix represents the pairwise
similarity between data points in the high-dimensional space.

HSIC(K, L) = 1
(n− 1)2 tr(KHLH), (1)

The alignment is then normalized to provide a similarity
score between 0 and 1 based on Eq. 2, where 1 indicates
perfect alignment. The Eq. 2 uses the HSIC to compare the
similarity of K and L matrices. That matrix typically repre-
sent features in MLmodels, by normalizing HSIC’s measure
of dependency between the two sets of variables. The CKA
offers a scale-invariant index, ensuring that the similarity as-
sessment is not affected by the magnitude of the data. This
normalization, defined as

√
HSIC(K, K)HSIC(L, L), al-

lows for a direct and equitable comparison of feature rep-
resentations across different models or data transformations
that provices for CKA a valuable tool in the analysis and in-
terpretation of complex machine learning systems.

CKA(K, L) = HSIC(K, L)√
HSIC(K, K)HSIC(L, L)

(2)

Algorithm 1: Clusterization step
1 foreach client do
2 Get user weights for the client;
3 Wfl←Wc.append, Client.name;

// Cluster all clients' weights
4 Call clusterUsers();
5 return Clustered clients weights;
6 Function clusterUsers():

// Perform operations on user weights
for a specific client if needed

7 foreachWi in Wfl do
8 listWi← +

∑W
k=n Wi;

9 foreachWk in Wfl do
10 listWj ← +

∑W
k=n Wj;

11 if Wi ≥ listWi - listWk and Wi ≤ listWi +
listWk then

12 Clusterlist← client.name;

In the client selection step, the edge server considers the
data size as the metric to select a given client k that is more
relevant to each group. For this purpose, the server receives
the model Mn for each client and assigns a client weight

within the C weight Wi. Afterward, we use the probability
of each client entering the training based on its greater rel-
evance than others in the same C cluster. In this way, we
can use the probability P(k) computed based on Eq. 3 we
ensure that the best candidates are more likely to participate
in the training to prevent overfitting. The Sk means the total
number of times this k has priority, and Sn denotes the sum
of times each k appears on this array sum to the Sk. This
method helps to balance the influence of each client, ensur-
ing that even those with smaller datasets have a fair chance
of being selected. This mitigates the risk of overfitting the
model to the characteristics of larger datasets alone by bal-
ancing the weights with this probability P(k).

P (k) = Sk

N∑
n=0

Sn

(3)

Once the model is trained, it is evaluated on a test dataset
to determine its performance, where model aggregation in-
creases the accuracy results on each round evaluation be-
cause the round behaves like epochs. MESFLA considers
a window (i.e., a set of w rounds) to evaluate the variation of
the accuracy value, which can be compared with the perfor-
mance of the model trained in the previous window [Sousa
et al., 2023]. Specifically, after w rounds, the aggregation
server evaluates if the model accuracy changed less than a
given threshold t. If so, the server sends a new model for
the clients, reducing the amount of data required to transfer
for model transmission. In this way, the MESFLA relies on
a convergence point as a way to reduce the bandwidth con-
sumption to transfer a new model at each round. It is im-
portant to mention that MESFLA requires a threshold t and
a window w, where these values may need to be adjusted
based on the specific characteristics of the dataset and the
network environment.

4 Evaluation
This section describes the scenario, including the framework,
database, and simulation details. We also discuss the ob-
tained results in terms of computational effort, loss, and the
global model’s accuracy.

4.1 Simulation Description
We conducted simulations using the Personalized Federated
Learning Platform, a framework available on GitHub of Ts-
ingZ01. We chose this framework due to its flexibility and
the various aggregation models that were implemented. In
this way, we use such a platform to support our scenario run-
ning a server with the following specifications: 13th Gen In-
tel i9-13900K (32) @ 5.500GHz, eight cores, 128GB RAM.
We considered the MNIST dataset for classification in FL,
which is a widely used dataset to train and test for model
validation, particularly for tasks related to image classifica-
tion. Specifically, the MNIST dataset is a widely used col-
lection of 28x28 pixel grayscale images of handwritten dig-

1TsingZ0/PFL-Non-IID: Personalized federated learning simulation
platform (https://github.com/TsingZ0/PFL-Non-IID)
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its (0 through 9). MNIST Comprises a training set of 60,000
images and a test set of 10,000 images, which serves as a
benchmark for testing and validating ML algorithms. We
consider a ML model with two convolutional layers with fil-
ter sizes of 5x5. A 2x2 max-pooling operation succeeds each
convolutional layer. Table 3 summarizes the main evaluation
parameters.
We consider that data exhibit non-IID characteristics due

to data heterogeneity across various FL applications. In
this sense, numerous distributed ML training approaches en-
counter substantial degradation of accuracy due to the data
quantity and category distribution disparities within non-IID
data. In the non-IID context, we use label distribution skew
to characterize the local data distribution among clients, re-
sulting in varying label proportions [Ma et al., 2022]. Specif-
ically, we sample a proportion pk,i ∼ Dir(β) that repre-
sents the instances of class k to the client, where Dir(β)
is a Dirichlet distribution with a concentration parameter
β = 0.2 [Li et al., 2021].
In our evaluation, we analyze the impact of different aggre-

gation policies by comparing their behavior of using a clus-
ter approach with different client selection methods. Specif-
ically, we consider FedAVG and Model-Contrastive Feder-
ated Learning (MOON) [Li et al., 2021] as the aggregation
policies. The FedAVGuses the client’s averages to aggregate
their parameters to the newest global model in the FL system,
providing fair processing of the weights for all clients who
do the training step. For this purpose, we compare the behav-
ior of this strategy with our clustering method. On the other
hand, MOON uses the local dataset, such as the weights of
each client relevant in the aggregation step, providing effi-
ciency when using the parameter in the update step. Then,
they send extra clients’ weights relevant to the system data.
In other words, each client has different relevant data when
their parameters are aggregated in the newest global model
Gm. Therefore, the primary approach of the MOON is to
declare a disparity of each client’s contribution to the global
Gm model for better use.
In addition, we evaluate the cluster approach based on

CKA with different client selection methods, namely MES-
FLADefault, MESFLADataWeight, andMESFLAEntropy
Weight. Specifically, MESFLA Default means a random
client selection for each group, which serves as a baseline
method that simply selects a random subset of clients to par-
ticipate in each round of training. On the other hand, MES-
FLA Entropy selects the set of clients based on the number
of labels as input to compute the entropy for each user, such
as introduced by Sousa et al. [2023]. Finally, MESFLA Data
Weight means the client selection introduced in Section 3.2.

We compare these algorithms with commonly used met-
rics for FL classification, namely, processing level of the de-
vice, accuracy, and loss. TheAccuracymetric is obtained by
the number of hits (positive) divided by the total number of
examples, which is used on data with the examples for each
class and when they miss.
In the case of disproportionate classes, it gives a false

impression of good performance, delivering a flawed result.
The Loss metric compares the target and predicted output
values, which helps see how the neural network models the
training data. The computational effort metric is computed

Table 3. Simulation Parameters

Characteristics Values

Cluster Method CKA
Total Number of Clients 100
Selection methods Random Selection, Entropy,

and Data size
Number of selection clients 20% clients each round
Server strategies FedAVG
Dataset MNIST
Rounds 100 rounds
Local Training 1 epoch
Number of labels 10 labels/classes

based on the average time of each round and the maximum
TeraFlops that an RTX 4090 has.

4.2 Simulation Results
We start our evaluation by analyzing the behavior of different
aggregation strategies, where the ideal result is searching for
a clustering method that can work with high accuracy and
low loss values, allowing us to understand how good it is
in our estimated recovery time. Figure 2 demonstrates each
computer processing time in terms of Teraflops for differ-
ent evaluated categories. The main goal is to achieve the
model efficiency performance of the clients by considering
time and calculations. By analyzing the results, we can ob-
serve that FedAVG costs less in computation processing than
MOON, regardless of the client selection approach. For in-
stance, MOON shows more time to process and analyze the
new model of FL in each round, which has higher process-
ing. This result shows the best strategy for our approach,
leading to a strategy that uses the power of clients’ datasets
as a relevant argument to evaluate them with more process-
ing recurses. We can also do it on devices with low pro-
cessing when we know these values are necessary to train
them in a high-level cloud. In this way, we need to see how
the strategies are forming in the accuracy of these strategies
when choosing them.
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Figure 2. Processing results

It is essential to highlight that the aggregation server eval-
uates if the model accuracy changed less than a given thresh-
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old t. If so the server sends a newmodel for the clients, which
might impact the amount of data transferede for model trans-
mission. Figure 3 shows the accuracy evaluation of different
client selection approaches with FedAVG as an aggregation
policy in the simulation with a threshold t of 1% convergence
in the last five rounds. This result shows howMESFLAData
Weight improves the results with a convergence variety.
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Figure 3. Accuracy results with FedAVG as aggregation policy with 1% of
convergence

shows the evaluation of different client selection ap-
proaches with FedAVG as an aggregation policy and a thresh-
old of 5% in the last five rounds.
Figure 4 shows the evaluation of different client selection

approaches with FedAVG as an aggregation policy and a
threshold t of 5% in the last five rounds. It is noticed that ac-
curacy falls each time that the global model Gm is sent to de-
vices for each one of our categories. Our approach evaluates
the accuracy of every round and as soon as the convergence
reaches five rounds without more than 5% of progression, it
sends the global model Gm to the clients. By comparing the
results of Figures 3 with 4, we could see that threshold t of
1% proves to have a longer time to convergence than using
5%, as well as the model updates are sent more frequently,
as evidenced by the more oscillatory nature of the accuracy
lines across rounds. This leads to a higher network cost due
to increased transmissions required to achieve this stringent
convergence level. On the other hand, Figure 4 considers a
threshold t of 5%, leading to a smoother trajectory for ac-
curacy improvements. Hence, this indicates that the model
under a 5% threshold t requires fewer updates to maintain or
improve accuracy, thereby reducing network expenditures.
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Figure 4. Accuracy results with FedAVG as aggregation policy with 5% of
convergence

Figure 5 shows a Loss results with different client selec-
tion approacheswith FedAVGas aggregation policy for a sce-
nario with convergence threshold t of 5%. There is a round at

the beginning of trainingwith a loss value above 0.75 for data
weight, followed by other approaches. However, the evalua-
tion goes up again in sequence because the clients receive the
global models Gm. In the following rounds, the impact of
local model re-training is lower. Figure 5 demonstrates the
selection with Data Weight having the best evaluation with
less round of training to reach an efficient global model Gm.
In addition, the entropymethodwas close to this value during
a few more rounds in means of 3 or 4 rounds more to reach
the same evaluation, an improvement of 20% of our FedAVG
Default. That could easily rearrange itself after increasing
values. In this way, we maintain the random selection (De-
fault) in a random approach to calculate new parameters for
the scenario, meaning our baseline to validate the selection
improvement.
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Figure 5. Loss results with FedAVG as aggregation policy with 1% of con-
vergence

Figure 6 shows accuracy results with different client se-
lection approaches with MOON as aggregation policy for a
scenario with convergence threshold t of 5%. By analyz-
ing the results, we can observe that the first threshold oc-
curs around 78% in means in each code run, which means
an almost 5% improvement compared to FedAVG approach.
However, the selection shows another behavior of using this
strategy with our approach of selection by Datat weights the
data of most of the cases the global modelGm does not reach
the threshold t in the middle rounds, becoming a more stable
system with around 80 to 90 accuracy during rounds 50 and
80. Moreover, in another way, this strategy also sends the
global model Gm to the clients a few times.
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Figure 6. Accuracy results with MOON as aggregation policy with 5% of
convergence

Figure 7 shows loss results with different client selection
approaches with MOON as aggregation policy for a scenario
with convergence threshold t of 5%. By analyzing the re-
sults, we can observe that the results of the default method
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are similar to those of others in the initial rounds. However,
the MOON Data Weight gets more useful results after some
rounds, having a peak of almost 2 of Loss after the first time
they reach the threshold t. However, data weight and entropy
evaluation demonstrate less time or a slight loss and, in a few
rounds, a total recovery to improve these metrics, reaching
the exact evaluation of the last threshold t in only around
seven rounds. Further, the result shows an improvement to
MESFLA using this strategy and an excellent approach when
treating discalceate data in clients.

20 40 60 80 100
Rounds

0.5

1.0

1.5

2.0

Lo
ss

MESFLA MOON Default
MESFLA MOON Data Weight
MESFLA MOON Entropy Weight

Figure 7. Loss results with MOON as aggregation policy with 5% of con-
vergence

Table 4 summarizes the number of rounds required to con-
verge the model with different client selection approaches
and FedAVG and MOON as aggregation policy. By analyz-
ing the results, we can see that the FedAVG requires more
convergence rounds than MOON training. This is because
the MOON update weight, which is not necessarily needed
in all upgrades, transforms into a problem to reach our con-
vergence of 5 rounds of improving by 5 %. It is important
to mention that there is a variance in the results, as we can
see in Figure 6, which compares the rounds around 40 and
60. We observe an occasional worsening in the evaluation,
primarily when novel data for the global model Gm is not
used. This complication arises when the best fit for training
is not employed.

After these results, we must compare the primary purpose
of MESFLA and the maintenance of the results using fewer
sendings of the global model Gm to the client side. We
search for a “good” evaluation as we have a low convergence
time. . However, we can see that the FedAVG has more con-
vergence steps during the MOON training. That was caused
by his update weight, which is not necessarily needed in all
upgrades, transforming into a problem to reach our conver-
gence of 5 rounds of improving by 5 %.

Table 4. Simulation Results of Convergence sending.
Category Rounds to Convergence

MESFLA FedAVG 12.6
MESFLA FedAVG Data Weight 14.6

Fed
AVG

MESFLA FedAVG Entropy Weight 12.6
MESFLA MOON 8.3

MESFLA MOON Data Weight 11.0
MOO

N
MESFLA MOON Entropy Weight 9.4

5 Discussion
The threshold t of 1% as a criterionwithin the last five rounds
can enhance model precision, as shown in Figures 4 and 3.
However, this approach requires additional communication
rounds, potentially leading to increased communication costs
and processing consumption. In contrast, the threshold t of
5% achieves quicker model stability, but possibly at the cost
of model accuracy. These findings have significant implica-
tions for FL deployment, where devices with varying capac-
ities and network conditions can be highly dynamic.
Setting the convergence threshold to 1% typically causes

the model to interact and refine its parameters with each
round until it achieves a precise level of accuracy. This rig-
orous standard can enhance model precision by allowing the
model to learn and adjust from a greater volume of aggre-
gated updates. However, this meticulous process requires
frequent client and server communication to exchangemodel
updates. The Communication cost consideration is crucial
in areas where network traffic may be congested, potentially
leading to delays and increased operational costs.
The model achieves an acceptable accuracy level with

fewer communication rounds with a threshold t of 5%, ac-
celerating model stabilization. This is because the model re-
quires fewer communication rounds to reach an acceptable
level of accuracy, allowing for faster deployment of the up-
dated global model. This experience is advantageous in dy-
namic settings where faster response times might be neces-
sary. It may come at the expense of the model’s overall ac-
curacy. Such a trade-off might be acceptable in applications
where speed is critical and absolute precision is less vital. In
summary, a lower convergence threshold could strain the net-
work and the devices, leading to processing use and potential
network bottlenecks. Conversely, a higher threshold could
save resources but compromise the quality of the service.
Furthermore, the loss patterns observed in Figures 5 and

7 highlight client selection methods’ significant impact on
both convergence speed and model generalization across di-
verse data distributions. Data Weight and Entropy-based se-
lections achieve a reduction in training rounds and loss val-
ues, accelerating the stabilization of the model. The reduc-
tion in loss under the Data Weight strategy suggests that this
method is particularly effective in scenarios where data dis-
tributions are heterogeneous. By assigning weights to clients
based on the relevance of their data, the aggregation process
becomes more representative of the overall data landscape,
enhancing the model’s generalization capabilities. Limiting
the convergence threshold to 5% prevents the models from
overfitting, as they do not continue to learn once an accept-
able loss is reached.
The FedAVG approach demonstrates a more consistent de-

cline in loss values when Data Weight is applied, indicating
a smoother and potentially more stable path to convergence.
This behavior has benefits scenarios with heterogeneously
distributed data, where the learning process favors a grad-
ual and steady approach. The more uniform decline in loss
values across rounds suggests that FedAVG, combined with
Data Weight optimization, may be more suitable for envi-
ronments where predictable and reliable model performance
is critical. Therefore, the choice between the two strategies
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should be based on the application’s specific needs. That is
when the priority is stability and reliability with FedAVG or
faster adaptability with MOON.
The convergence data offers direct conclusions about the

communication cost in FL algorithms. For FedAVG, apply-
ingDataWeight increases the communication rounds needed,
potentially leading to higher network usage and potentially
more significant costs. The Entropy Weight method, how-
ever, does not impact the frequency of communication com-
pared to the baseline, suggesting it might be a more efficient
choice within the FedAVG framework when communication
overhead is a concern. In contrast, MOON’s mean conver-
gence figures are consistently lower, reflecting its commu-
nication efficiency. The MOON is a preferable algorithm
for scenarios with limited bandwidth or where minimizing
communication is crucial. The results invite a focused dis-
cussion on choosing FL strategies that align with specific
network efficiency needs. TheMOON highlights its Entropy
Weight variant, potentially more suitable for communication-
constrained environments.

6 Conclusion and Future Works
In this article, we introduced a Model Efficiency through Se-
lective FL Algorithm called MESFLA. It aims to better se-
lect clients to improve the model, while reducing the number
of rounds of communication between clients and the central
server. The initial step creates clusters that consider the data
weight or similarity between models. The client model is
transmitted to the server, where the model is retained to pre-
vent decay, facilitating faster convergence. This approach
allows for a more accurate and efficient comparison of accu-
racy and loss metrics, as the global model sends only when
it reaches a 5% convergence point, eliminating the need for
frequent model updates in each round. Afterward, the mech-
anism selects the clients with more relevance in each group.
The obtained results show that our method called MESFLA
improved its values according to the rounds with a cluster-
ing method to select the better clients to train in each train-
ing round. However, using MESFLA to select and to retain
the global model with the client users and with the server ag-
gregation without sending his global model demonstrates a
valid strategy for fast convergence.
In future works, we aim to improve the client selection

by searching for aways to focus on new metrics of the de-
fault FL. For instance, the bias of the client selection shows
an approach that can be improved to select clients with more
data and a better entropy simultaneously. This means that en-
tropy is not only directly to his value but also to his size. In
this way, we must improve the selection by using a weight-
ing scheme to calculate the most relevant client to provide
better results. Furthermore, it is essential to train the MES-
FLA under a scenario with client failure or malicious clients
to analyze the resiliency of the client selection mechanism.
Finally, the local update is also one possible future work, as
the FL needs to add on a training step. This needs to facil-
itate clients’ faster training in a global model, as FEDALA
shows his approach by using weights to determine howmuch
training each client will initially do in the first round.
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