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Abstract This study addresses the critical challenge of proactive anomaly detection and efficient resource man-
agement in infrastructure observability. Introducing an innovative approach to infrastructure monitoring, this work
integrates machine learning models into observability platforms to enhance real-timemonitoring precision. Employ-
ing a microservices architecture, the proposed system facilitates swift and proactive anomaly detection, addressing
the limitations of traditional monitoring methods that often fail to predict potential issues before they escalate. The
core of this system lies in its predictive models that utilize Random Forest, Gradient Boosting, and Support Vector
Machine algorithms to forecast crucial metric behaviors, such as CPU usage and memory allocation. The empiri-
cal results underscore the system’s efficacy, with the GradientBoostingRegressor model achieving an R² score of
0.86 for predicting request rates, and the RandomForestRegressor model significantly reducing the Mean Squared
Error by 2.06% for memory usage predictions compared to traditional monitoring methods. These findings not only
demonstrate the potential of machine learning in enhancing observability but also pave the way for more resilient
and adaptive infrastructure management.
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1 Introduction
In the era of digital transformation, software systems have
become fundamentally complex [dos Santos et al., 2021],
driven by distributed architectures such as microservices,
which bring with them significant challenges for monitor-
ing and ensuring quality of service [Borré et al., 2023]. Ob-
servability, unlike traditional monitoring, is conceptualized
as the ability to infer the internal state of a system from its
external data, such as logs, metrics, and traces, making it eas-
ier to diagnose problems and understand the behavior of the
system in production.
Given the complexity of modern systems and the vast

amount of data generated [Surek et al., 2023], it is crucial not
only to collect but also to analyze and interpret this data effi-
ciently. In this context, predictive approaches, supported by
machine learning techniques [Yamasaki et al., 2024], present
as a natural evolution of observability practices, enabling the
proactive identification of potential failures and performance
problems before they negatively impact end users or business
operations [Corso et al., 2023].
The main contributions of this paper are threefold:

• Integration of PredictiveModels: We introduce an inno-
vative integration of predictive models with observabil-

ity platforms, which enhances the precision of real-time
monitoring and proactive anomaly detection.

• Improved Prediction Accuracy: We demonstrate sig-
nificant improvements in prediction accuracy using ad-
vanced machine learning algorithms such as Random
Forest, Gradient Boosting, and Support Vector Ma-
chines.

• Scalable Framework: Our approach provides a novel
framework for implementing machine learning models
within microservices architectures, facilitating scalabil-
ity and modularity in infrastructure management.

These contributions distinguish our work from existing
methods by offering improved detection capabilities and
seamless integration with modern observability tools.
This paper proposes an advanced observability approach

that integrates predictive models to anticipate the future state
of monitored metrics, with the aim of detecting anomalies
early and optimizing interventions. Based on the theoreti-
cal foundations of observability and machine learning, the
research explores the effectiveness of this integration in a
case study applied to a production environment, comparing
its performance with traditional monitoring methods.
The methodology employed involves the collection and

analysis of metrics from real systems, followed by the appli-
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cation of predictive models to establish predictions about the
behavior of these metrics. The results are evaluated based on
standard performance metrics for machine learning models,
such as mean square error (MSE) and coefficient of deter-
mination (R²), providing a quantitative basis for comparing
predictive and traditional approaches [Tarek et al., 2023].
The literature surveyed indicates an improvement in the ca-

pacity for early detection of problems and in the efficiency of
operational interventions [Stefenon et al., 2023d], validating
the hypothesis that the integration of predictive techniques
into observability can make a significant contribution to the
management of complex systems. However, the importance
of additional considerations, such as the interpretability of
the models and the impact of latency in data collection, for
the practical implementation of this approach is highlighted
[Singh et al., 2023].
The paper is organized as follows: Section II discusses the

tools and technologies used, highlighting the importance of
each technological selection for the execution of the project.
Section III discusses related work, providing an overview
of existing solutions and highlighting the differences be-
tween these approaches. Section IV details the methodol-
ogy adopted to develop and integrate predictive models with
system observability, including data collection and prepara-
tion, development of Machine Learning models, and model
evaluation. Section V focuses on implementation, explain-
ing the process of data collection, preparation, data normal-
ization for modeling, model training, and the implementation
of the prediction Application Programming Interface (API).
The results obtained are presented in Section VI, where the
efficiency of the microservices architecture is analyzed and
the results of the predictive models are discussed through
the analysis of accuracy graphs. The Conclusions and fu-
ture work in Section VII summarize the contributions of the
study, the results obtained, and suggest directions for future
work.

2 Theoretical Foundations
This section presents a detailed exploration of the techno-
logical and methodological bases that support the applica-
tion. The initial section discusses the fundamental tools and
technologies that make up the application’s architecture, fol-
lowed by a description of the prediction models in two dis-
tinct layers: the first focused on predicting the future values
of the metrics and the second on determining alerts. Finally,
the methods used to evaluate the performance of the models
will be detailed.

Prediction Models and Observability Concepts Observ-
ability, in modern software systems, transcends traditional
monitoring by enabling the inference of a system’s internal
state from its external outputs [Corso et al., 2023]. It lever-
ages data such as logs, metrics, and traces to diagnose prob-
lems and understand system behaviors in production environ-
ments. Prediction models play a crucial role in enhancing
observability by analyzing historical data to forecast future
states of system metrics, thereby allowing for proactive iden-
tification and resolution of potential issues before they im-

pact end users [Stefenon et al., 2023c]. The integration of
machine learning techniques into observability frameworks
facilitates this predictive capability, making it possible to an-
ticipate anomalies and optimize system performance in real-
time [Yamasaki et al., 2024].
Theoretical justifications for this integration can be found

in control theory and time-series analysis. Control theory
provides a foundation for understanding how systems can be
monitored and controlled based on their output data [da Silva
et al., 2024]. Time-series analysis offers methods to analyze
temporal data, making it possible to predict future values
based on past observations [Ribeiro et al., 2024]. These the-
ories support the use of machine learning algorithms, which
can model complex, non-linear relationships in data, provid-
ing accurate predictions that enhance observability practices.

Tools and Technologies The application’s architecture
was built based on modern software development principles,
emphasizing scalability, modularity, and efficiency. The
main technologies adopted include:

• Spring Framework: Used to create a robust and flexible
base for the development of microservices, allowing the
injection of dependencies and facilitating the manage-
ment of application components [Webb et al., 2013].

• Redis: Used as a caching system to improve the per-
formance of read operations, reducing the load on the
database and speeding up the retrieval of frequently ac-
cessed data [Da Silva and Tavares, 2015].

• RabbitMQ: Adopted for communication between mi-
croservices via messages, guaranteeing reliable deliv-
ery of information and allowing processes to be decou-
pled [Dossot, 2014].

• Cython: Used to increase the performance of data pro-
cessing and prediction algorithms by compiling critical
parts of the code to C, resulting in faster executions
[Behnel et al., 2010].

• Scikit-learn (Sklearn): One of Python’s most popular
and versatile machine learning libraries, selected for its
vast collection of modeling algorithms for both regres-
sion and classification, as well as features for data pre-
processing, model selection, and evaluation. Its use
was essential for building and optimizing our predictive
models [Kramer and Kramer, 2016].

• Pandas: High-performance, easy-to-use data manipu-
lation, and analysis library, enabling efficient manipu-
lation of large data sets, cleaning, transformation, and
analysis. It was crucial for preparing and exploring the
data before applying the predictive models [McKinney,
2018].

• PostgreSQL: Robust relational database management
system with SQL support, selected for its reliability, ad-
vanced features (such as JSON support), and compati-
bility with large volumes of data. Its adoption guaran-
tees the integrity and security of the data handled by the
application [Milani, 2008].

Prediction Models The application uses two levels of pre-
diction models, each with specific objectives:



Enhancing Infrastructure Observability: Machine Learning for Proactive Monitoring and Anomaly Detection Neotzold et al, 2024

1. First Layer - Value Prediction: Uses regressive models
to predict the future values of monitored metrics. Se-
lected models include:

• RandomForestRegressor: For its ability to model
non-linear relationships without the need for ex-
tensive data pre-processing [Rodriguez-Galiano
et al., 2015].

• GradientBoostingRegressor: Because of its effec-
tiveness in reducing bias and variance by com-
bining multiple weak decision trees into a strong
model [Elango et al., 2022].

• Support Vector Regression (SVR): Because of its
robustness in dealing with high dimensions and its
efficiency in finding the optimal regression hyper-
plane [Zhang and O’Donnell, 2020].

2. Second Layer - Alert Prediction: Focuses on predicting
the need to issue alerts (is_alert) based on trends in
metrics. Classification models include:

• RandomForestClassifier: selected for its ability
to deal with unbalanced datasets and for its inter-
pretability [Liu et al., 2012].

• GradientBoostingClassifier: For its accuracy and
ability to deal with overfitting through gradient op-
timization [Chakrabarty et al., 2019].

• LogisticRegression: Due to its simplicity and ef-
fectiveness in binary classification problems, as
well as the ease with which the results can be in-
terpreted [Christodoulou et al., 2019].

To optimize the models, we used RandomizedSearchCV
and BayesSearchCV, which allow an efficient search for the
best hyperparameters. The former performs random searches
within a defined space, ideal for broad explorationwith lower
computational costs. The second adopts a more focused and
efficient Bayesian optimization approach, especially useful
when the computational cost of the models is high.
Before training the models, the data is normalized using

StandardScaler from the Scikit-learn library. This normal-
ization process standardizes the features of the data by sub-
tracting the mean and scaling to the unit variance [Aldi et al.,
2023]. This step is crucial for models that are sensitive to
the scale of the data, such as SVM, and helps improve con-
vergence during training.

Evaluation Methods The evaluation of prediction mod-
els is essential to determine their effectiveness in predicting
future values. In this sense, metrics such as MSE (Mean
Squared Error), MAE (MeanAbsolute Error), R² (R Squared)
and Explained Variance play a crucial role [Stefenon et al.,
2024]. In the current work, these metrics were applied using
the Scikit-learn library, which already has optimized imple-
mentations of all the calculations that will be presented.
The MSE is calculated using the equation:

MSE = 1
n

n∑
i=1

(ŷi − yi)2. (1)

The MSE strongly penalizes large deviations between
the model’s predictions (ŷi) and the actual values (yi).

In the context of the algorithm, the MSE is calcu-
lated using the function mean_squared_error(y_test,
predictions), providing a measure of the dispersion of the
squared errors of the predictions [Ribeiro et al., 2024].
The MAE, in turn, is obtained from the formula:

MAE = 1
n

n∑
i=1

|ŷi − yi|, (2)

representing the average of the absolute differ-
ences between the predictions and the actual val-
ues. In the algorithm, the MAE is calculated using
mean_absolute_error(y_test, predictions), pro-
viding a more direct measure of the average error of the
predictions, which is less sensitive to extreme values.
The R², or coefficient of determination, is expressed by the

formula:

R2 = 1 −
∑n

i=1(ŷi − yi)2∑n
i=1(yi − ȳ)2 , (3)

where ȳ denotes the mean of the actual values [da Silva
et al., 2024]. This metric indicates the proportion of the
variance in the data that is explained by the model. In the
algorithm, we use r2_score(y_test, predictions) to
calculate the R², providing a measure of how well the model
fits the observed data.
Finally, the Explained Variance, determined by the for-

mula:

Explained Variance = 1 − Var(y − ŷ)
Var(y)

, (4)

where Var(y − ŷ) represents the variance of the residual er-
rors, measuring the proportion of the variance of the data cap-
tured by the model. In the algorithm, the Explained Variance
is calculated with explained_variance_score(y_test,
predictions), providing insights into how the model cap-
tures the variations in the data.
To summarize the difference between the metrics, recog-

nize good results, and understand what each accuracy evalu-
ates, you can look at Figure 1, which explains these points.
These metrics are used to evaluate the performance of pre-
diction models, allowing the performance of models to be
compared and the selection of the one that offers the best
predictions for real-time monitoring of system metrics.

Metric Description Best
Value

Worst
Value

MSE Penalizes deviations between
predictions and actual values. 0 ∞

MAE Provides a direct measure
of the average prediction error. 0 ∞

R² Proportion of variance in
the data explained by the model. 1 −∞

Explained
Variance

Proportion of variance in
the data captured by the model. 1 −∞

Table 1. Evaluation of prediction metrics.

Tensor Processing Unit The Tensor Processing Unit
(TPU) is an ASIC (Application-Specific Integrated Circuit)
developed by Google specifically to speed up tasks related
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to machine learning [Junior et al., 2022]. It is designed to
handle multidimensional matrix operations, which are com-
mon in neural network algorithms and other deep learning
models [Jouppi et al., 2018]. However, in this study, TPUs
were used primarily as part of the Google Colab infrastruc-
ture to facilitate faster data processing and model training.
Given that the models employed (Random Forest, Gradient
Boosting, and Support Vector Machines) are not deep learn-
ing models, the impact of using TPUs was minimal. The
computational efficiency required for these algorithms did
not necessitate the advanced capabilities of TPUs, and the
primary performance improvements were achieved through
algorithmic optimizations and the microservices architecture
implemented.

3 Related Work
The observability of systems and applications is a crucial
field for maintaining the reliability, availability, and perfor-
mance of digital services [Stefenon et al., 2023a]. Tools such
as Zabbix, Dynatrace, Prometheus, Grafana, and Nagios rep-
resent fundamental monitoring solutions, offering real-time
insights into the state of systems and enabling rapid detection
and resolution of problems.
Zabbix is valued for its ability to monitor thousands of

metrics collected from servers, network devices, and applica-
tions, as well as providing alerts and detailed visualizations
[Zabbix, 2024]. Dynatrace employs artificial intelligence to
provide complete observability of applications, services, and
infrastructures, excelling in the automatic analysis of anoma-
lies [Ahola, 2022; Dynatrace, 2024]. Prometheus is recog-
nized for its robust ability to monitor distributed systems,
with a multidimensional data model and a powerful query en-
gine [Turnbull, 2018]. Grafana offers advanced visualization
and analysis, allowing the creation of dynamic dashboards
frommultiple sources [Chakraborty, 2021]. Nagiosmonitors
the health of the IT infrastructure, alerting you to potential
problems before they affect critical processes [Barth, 2008].
Despite the strengths of each of these tools, they have lim-

itations, especially in their ability to predict and proactively
prevent incidents, as can be seen in Table 2. Current research
seeks to complement these existing capabilities by introduc-
ing advanced prediction mechanisms that analyze historical
trends to predict future states of monitored metrics, aimed
not only at detecting existing problems but also at predict-
ing possible incidents. The proposed project in this article
includes all the functionalities listed in the table.
Recent studies have further explored the integration of ma-

chine learning techniques with observability to enhance the
predictive capabilities of monitoring tools. Hao et al. [2022]
conducted a nonlinear observability analysis of multi-robot
cooperative localization, showcasing advanced methods in
the observability domain.Vos et al. [2023] provided a system-
atic literature review on generalizable machine learningmod-
els for stress monitoring from wearable devices, highlight-
ing the challenges and opportunities in this field. Min et al.
[2021] developed a stochastic machine learning approach to
enhance observability in automated smart grids, focusing on
the positioning of micro-synchrophasor units.

These recent works illustrate the growing interest and
progress in combining machine learning with observability
practices. However, there remains a significant gap in the
literature regarding the practical application of these tech-
niques in real-world environments and their integration into
existing monitoring tools. Most existing studies are either
theoretical or conducted in simulated environments, lacking
implementation in actual production systems. Moreover, the
specific integration of these machine learning models with
established monitoring tools like Zabbix or Prometheus is
not extensively covered.
The structure based on microservices, the use of technolo-

gies such as Spring, Redis for caching, and RabbitMQ for
messaging, contributes to the scalability, modularity, and ef-
ficiency of the proposed solution. Integrating this predic-
tive capability into existing monitoring tools, such as a plu-
gin or embedded component, offers a valuable extension to
their functionality, reinforcing the importance of prediction
and prevention in proactive systems management [De Souza
et al., 2020; Leithardt et al., 2020].
Unlike traditional monitoring solutions, which focus on

detecting and warning of conditions that have already mani-
fested, this research emphasizes prediction and prevention as
key strategies for proactive system management, taking the
practice of observability to a new level of effectiveness.

4 Methodology
The methodology applied covers the collection and prepara-
tion of data, the training of predictive models via algorithms
obtained from the Scikit Learn library, and the evaluation of
these models using metrics such as MSE and R², culminating
in their integration into monitoring systems via a microser-
vices architecture. This process is supported by key technolo-
gies, including Spring Framework, Redis, RabbitMQ, and
the use of TPUs for training acceleration, aimed at optimiz-
ing observability in IT infrastructures.

4.1 Planning

The design of the application and the selection of the tech-
nologies incorporated were based on a planning scheme
structured in several stages. First, there was the data ac-
quisition phase, followed by the pre-processing stage, in
which the data was cleaned and prepared for analysis. Sub-
sequently, machine learning algorithms were trained using
data sets to model complex patterns. This stage was followed
by evaluating the performance of the models and applying
statistical and computational metrics to ensure accuracy and
predictive effectiveness. Finally, the integration phase con-
solidated the predictive models developed with the existing
monitoring platforms. More details of each stage are pre-
sented below.

Data Collection The data collection phase involves acquir-
ing system and application metrics through instrumentation
and monitoring [Moreno et al., 2024]. Standard metrics such
as CPU usage, memory, disk space, request response time,
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Feature [Olups, 2016] [Ahola, 2022] [Chakraborty,
2021]

[Barth, 2008] [Turnbull, 2018] [Hao et al., 2022] [Vos et al., 2023]

Metric
Monitoring Yes Yes Yes Yes Yes Yes Yes

Anomaly
Analysis No Yes No No No Yes Yes

Value
Prediction No No No No No No Yes

Alert
Forecasting No No No No No No No

ML
Integration No Yes No No No Yes Yes

Scalability Yes Yes Yes Yes Yes Yes Yes
Modularity Yes Yes Yes Yes Yes Yes Yes

Table 2. Comparison between monitoring tools and the proposed project.

and error rate are continuously collected and stored in a Post-
greSQL database for future analysis. The datasets used in
this study are composed of metrics collected from real-world
production environments. The sources include server logs,
application performance monitoring tools, and infrastructure
monitoring systems. The data spans a period of six months,
capturing a wide range of operational conditions and perfor-
mance states. The dataset consists of approximately 10 mil-
lion records, each containing multiple features relevant to
system performance and health.

• Sources: Server logs, Application performance mon-
itoring tools (e.g., Java Monitor Control, Java Flight
Recorder) and Infrastructure monitoring systems (e.g.,
Prometheus, Grafana);

• Size: Approximately 10 million records;
• Features: CPU usage (%), Memory usage (MB), Disk
space usage (GB), Request response time (ms), Error
rate (%), Network throughput (Mbps), Database query
times (ms) and Application-specific metrics (e.g., num-
ber of active users, transaction counts);

• Labels: Anomaly detection (binary label indicating
normal or anomalous state) and Predicted metric values
(continuous values for future state prediction).

Data Preparation The collected data goes through a prepa-
ration process before modeling, which includes several steps
to ensure the quality and suitability of the data for machine
learning models:

• Data Cleaning: Removing outliers, handling missing
values through imputation techniques (e.g., mean substi-
tution), and filtering out irrelevant data points to ensure
data integrity.

• Normalization: Using StandardScaler from the Scikit-
learn library to standardize features by subtracting the
mean and scaling to unit variance, optimizing the per-
formance of machine learning models [Stefenon et al.,
2023b].

• Feature Engineering: Transforming the time series
data into a format suitable for predictive modeling. This
includes creating additional features from existing data,
such as rolling averages, lagged variables, and interac-
tion terms, to enhance model performance.

• Data Splitting: Dividing the dataset into training, val-
idation, and test sets to ensure robust model evaluation

and prevent overfitting.

Development of Machine Learning Models Two sets of
Machine Learning models are developed: the first to pre-
dict the future values of the metrics (first layer) and the sec-
ond to predict the occurrence of alerts (second layer). Mod-
els such as RandomForestRegressor, GradientBoostingRe-
gressor and SVR are used in the first layer, while Random-
ForestClassifier, GradientBoostingClassifier, and Logisti-
cRegression are employed in the second layer. Hyperparam-
eter search techniques, including RandomizedSearchCV
for random exploration of the hyperparameter space and
BayesSearchCV for a more targeted and efficient search, are
applied to model selection and optimization.

Model evaluation Models are evaluated using standard
performance metrics, including Mean Squared Error (MSE),
Mean Absolute Error (MAE), R² (coefficient of determina-
tion) and Explained Variance for regressor models. This
phase allows the selection of the most accurate and robust
models for implementation in the application [Klaar et al.,
2023].

Integration and Deployment The selected models are in-
tegrated with an API and an interface for testing that is struc-
tured as a set of microservices. The application is able to
process metrics in real-time, apply the predictive models and
generate predictive alerts, accessible via a user interface or
sendable to existing monitoring systems via API or plugins
developed for this purpose.

4.2 Implementation
To develop the architecture and the application itself, it was
modularized, making it easier for third parties to maintain
and understand. The ”Data Collection and Preparation” sec-
tion discusses how data is acquired and prepared for analy-
sis. Next, in ”SolutionArchitecture”, the configuration ofmi-
croservices, the use of Spring Boot in the API Gateway, and
caching and messaging technologies are detailed. ”Normal-
ization and Preparation of Data for Modelling” examines the
transformation of data for training models. The subsections
”Training the First Layer of Models” and ”Training the Sec-
ond Layer of Models” describe, respectively, the process of
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training the regression and classificationmodels, focusing on
the selection and optimization of hyperparameters. The ”Im-
plementation of the Prediction API” section illustrates how
the trained models are applied to make real-time predictions.
Finally, the ”User Interface” reveals how the React applica-
tion allows you to interact with the system, offering visual-
ization of the metrics and access to the predictive models.
The project was implemented on a home server equipped

with 1 TB of SSD, 16 GB of DDR4 RAM and an Intel Core
i3 6100 processor. The hardware supports an Ubuntu Server
environment, enabling the deployment and execution of the
necessary tests.

4.2.1 Architecture Overview

The architecture diagram, as shown in Figure 1, illustrates the
comprehensive design and interactions between various com-
ponents of the monitoring application. Each module within
this architecture has a defined role and communicates with
other modules to ensure the smooth functioning of the sys-
tem.

External API

• Role: The API being monitored.
• Communication: TheAPIGateway continuouslymon-
itors the External API, collecting current metrics to pre-
dict next values and determine if these values will trig-
ger alerts.

API Collector

• Role: Collects metrics from the External API.
• Communication: Sends the collected metrics to the
PostgreSQL Database (Metrics Storage).

PostgreSQL Database (Metrics Storage)

• Role: Stores the collected metrics from the API Collec-
tor.

• Communication:
– Receives metrics from the API Collector.
– Provides datasets to the Python scripts for training
the first and second layers of models.

Python Scripts

• First Layer Script:
– Role: Trains the first layer of models using
datasets from the PostgreSQL Database.

– Execution: Runs nightly to update the models
with recent data.

– Communication:

* Fetches datasets from the PostgreSQL
Database.

* Saves trained models to a folder on the Linux
server.

* Sends accuracy metrics to the API Gateway.
• Second Layer Script:

– Role: Trains the second layer of models using
datasets from the PostgreSQL Database.

– Execution: Runs nightly to update the models
with recent data.

– Communication:

* Fetches datasets from the PostgreSQL
Database.

* Saves trained models to a folder on the Linux
server.

* Sends accuracy metrics to the API Gateway.

Linux Server Folder

• Role: Stores the trained models.
• Communication: The Python API retrieves the trained
models from this folder for prediction and alert detec-
tion.

Python API

• Role: Provides endpoints for the API Gateway to send
current metrics of the External API.

• Function: Uses the trained models from the Linux
Server Folder to predict the next values and determine
if these values will trigger alerts.

• Communication:
– Receives current metrics from the API Gateway.
– Retrieves trained models from the Linux Server
Folder.

– Sends predictions and alert statuses back to the
API Gateway.

API Gateway

• Role: Acts as a central hub for external queries and in-
teractions.

• Functions:
– Monitors the External API for real-time metrics.
– Sends current metrics to the Python API for pre-
diction and alert evaluation.

– Stores accuracy metrics and prediction results
in another PostgreSQL Database (Accuracy Stor-
age).

– Exposes endpoints for external queries and inte-
grates with different monitoring applications.

• Communication:
– Continuously communicates with the External
API for metrics.

– Interacts with the Python API for predictions.
– Sends accuracy and prediction results to the Post-
greSQL Database (Accuracy Storage).

– Provides endpoints for the Front-end for user feed-
back and testing.

PostgreSQL Database (Accuracy Storage)

• Role: Stores accuracy metrics and prediction results.
• Communication: Receives data from the API Gate-
way.
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External API

API Collector

PostgreSQL Database PostgreSQL Database - Accuracy

Linux Server Folder

Python Script - First Layer Python Script - Second Layer

Python API

API Gateway

Front-​End

Fetching Datasets

Fetching Models

Saving Metrics

Sending Metrics
Saving Models

Sending Accuracy

Fetching Datasets

Saving Models

Saving Accuracy

Using Trained Models

Monitoring and Testing Values

Queries and Feedback

Sending Results and Predictions

Figure 1. Architecture Diagram of the Monitoring Application

Front-end

• Role: Provides a user interface for testing and feedback.
• Communication: Interacts with the API Gateway to
display alerts and prediction results, providing user
feedback.

This architecture ensures a robust and scalable solution
for real-time monitoring, predictive analysis, and anomaly
detection, leveraging the power of machine learning models
integrated into a microservices framework. The application
was created to analyze single-applications on single-servers.
To add more applications, it would be necessary to dupli-
cate the application (another Docker container for example).
This is because models are trained specifically for an appli-
cation, which may have behaviors that differ from other ap-
plications.

Data Collection Module Implemented in Spring Boot,
this module captures metrics such as CPU consumption,
memory, disk space and HTTP request response time. The
data is stored in PostgreSQL and a stored procedure is used
to update the is_alert flag based on thresholds to detect
abnormal conditions (see Listing 1). This procedure begins
by resetting the is_alert flag for all records in the measure-
ment table, ensuring that only metrics that exceed the de-
fined thresholds are marked as alerts. Next, a loop is ex-
ecuted for each metric stored, where the average (avg_val)
and standard deviation (stddev_val) of the values collected
are calculated. Based on these values, a dynamic threshold
is defined for each metric (var_threshold := var_avg_val +
var_stddev_val;), which serves as the criterion for updating
the is_alert flag.
This stored procedure optimizes database update opera-

tions, making the process faster and independent of the ap-
plication’s logic. By adjusting the thresholds based on the
historical behavior of the metrics, the application adapts to
changes in the usage pattern of the monitored applications,
ensuring relevant alerts and reducing false positives. Inte-
grating this strategy into the database improves efficiency

and allows for more precise resource management, reinforc-
ing the system’s ability to offer real-time insights.

Listing 1: Stored procedure to update the is_alert flag.
CREATE OR REPLACE PROCEDURE update_alert_flag()
LANGUAGE plpgsql
AS $$
DECLARE

var_name TEXT;
var_avg_val DOUBLE PRECISION;
var_stddev_val DOUBLE PRECISION;
var_threshold DOUBLE PRECISION;

BEGIN
-- Reset all alerts
UPDATE measurement m
SET is_alert = FALSE;

-- Loop through each metric to calculate
↪→ threshold and update alert flags

FOR var_name , var_avg_val , var_stddev_val IN
SELECT

mr.name,
AVG(m.value) AS avg_val ,
STDDEV(m.value) AS stddev_val

FROM measurement m
JOIN metric_response mr ON m.

↪→ metric_response_id = mr.id
GROUP BY mr.name

LOOP
var_threshold := var_avg_val +

↪→ var_stddev_val; -- Define the
↪→ threshold

-- Update the is_alert flag where the
↪→ measurement value exceeds the
↪→ threshold

UPDATE measurement m
SET is_alert = TRUE
FROM metric_response mr
WHERE m.metric_response_id = mr.id
AND mr.name = var_name
AND m.value > var_threshold;

END LOOP;
END;
$$;
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Data Preparation and Normalization Module Data
preparation and normalization is carried out using the Cython
script on Listing 2, which makes use of the NumPy li-
brary to manipulate numerical arrays, and Scikit-learn’s
StandardScaler to normalize the data, ensuring that it has
a zero mean and unit variance. This step is crucial to prevent
variations in the scale of the data from negatively influencing
the performance of Machine Learning models.

Listing 2: Cython script for data preparation and normaliza-
tion
cimport numpy as cnp

def prepare_data(cnp.ndarray[cnp.float64_t , ndim
↪→ =1] series, int n=10):
cdef int i
cdef list X = []
cdef list y = []
if series.shape[0] > n:

for i in range(series.shape[0] - n):
X.append(series[i:i+n])
y.append(series[i+n])

return np.array(X, dtype=np.float64), np.
↪→ array(y, dtype=np.float64)

def process_metric(filename):
if filename.endswith(".csv"):

metric_name = filename[:-4]
df = pd.read_csv(os.path.join(input_dir ,

↪→ filename), usecols=['
↪→ measurement_value']).dropna()

if not df.empty:
X, y = prepare_data(df['

↪→ measurement_value'].values.
↪→ astype(np.float64), n=10)

X_train , X_test, y_train , y_test =
↪→ train_test_split(X, y,
↪→ test_size=0.2, random_state
↪→ =42)

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform

↪→ (X_train)
X_test_scaled = scaler.transform(

↪→ X_test)

args_list = [(metric_name ,
↪→ X_train_scaled , X_test_scaled ,
↪→ y_train , y_test, model_name ,
↪→ mp) for model_name , mp in
↪→ models_params.items()]

Hyperparameter Fitting Module The models are fine-
tuned using RandomizedSearchCV and BayesSearchCV
from the Scikit-learn and Scikit-optimize libraries, respec-
tively. RandomizedSearchCV allows the hyperparameters
to be explored randomly within a predefined space, while
BayesSearchCV uses Gaussian processes to model the hy-
perparameter space and optimize the models. These tech-
niques are used here to find the best combination of hyperpa-
rameters that maximizes the accuracy of predictive models.

Model Training - First Layer Scikit-learn regres-
sion models are used to predict the future values of
the metrics: RandomForestRegressor, to capture
complex non-linear relationships between variables;

GradientBoostingRegressor, which builds models addi-
tively using boosting algorithms; and SVR, a model based on
support vector machines for regression, which is effective in
high-dimensional spaces. Each metric is modeled separately,
resulting in a total of 78 different models. The models are
serialized and saved in .pkl files using the joblib library
for future use. The hyperparameters were adjusted based on
detailed empirical tests to optimize the performance of the
models, as presented in Table 3 [Noetzold, 2024a]. Finally,
all the models were tested again using the Scikit-learn
library, which contains the implementations of the metrics
presented earlier.

Model n
estimator

max
depth

min
samples
split

min
samples
leaf

learning
rate

/ C / gamma
Random
Forest

Regressor
100-200 5-10 2-5 1-4 -

Gradient
Boosting
Regressor

100-200 3-6 - - 0.01-0.05

SVR - - - - C: 1-100,
gamma: scale

Table 3. Tuned hyperparameters for regression models

Initially, the tests were carried out on the aforementioned
home server hardware. However, there was a need to im-
prove the training of the regression models on a more robust
infrastructure. For this reason, the training of the first layer
was transferred to Google Colab Pro, which offers a more
powerful cloud infrastructure for machine learning. In this
new environment, Google’s TPU V2 architecture was used
[Noetzold, 2024b].

Model Training - Second Layer The second
layer focuses on classifying metric values as nor-
mal or abnormal (is_alert). Classifiers are used
such as RandomForestClassifier, which of-
fers good performance and generalization capacity;
GradientBoostingClassifier, applying boosting to
build strong predictive models; and LogisticRegression,
a simple but effective model for binary classification prob-
lems. Similar to the first layer, models are trained for each
of the 26 metrics, resulting in 78 classifier models. Data
normalization and hyperparameter adjustment follow the
same process described above, but now with the parameters
defined in Table 4. Finally, the models are subjected to the
same tests as in the first layer.

Model n estimators max
depth

learning
rate / C

RandomForest
Classifier 200-300 15, 20 -

GradientBoosting
Classifier 200-300 - 0.1-0.2

LogisticRegression - - 10, 100, 1000

Table 4. Adjusted hyperparameters for the classification models
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API Python for Querying Models A Python API, devel-
oped with the Flask framework, provides two main end-
points: one for predicting the future values of the metrics
(using the models in the first layer) and another for classify-
ing the values as alerts (second layer). The API is designed
to be lightweight and easy to integrate, providing a RESTful
interface for consulting the trained models.

API Gateway The API Gateway, built in Spring Boot,
serves as the entry point for requests, directing them to the
Python API or directly handling CRUD operations related to
model metrics and accuracy. Redis is used for caching, re-
ducing response times for frequently accessed data, and Rab-
bitMQ for decoupling components, facilitating the applica-
tion’s scalability and resilience.

User Interface The user interface is developed in React,
creating a SPA (Single Page Application) that consumes the
API Gateway endpoints. This interface allows users to view
the metrics in real time, test the prediction and classification
models, and view the accuracy of the models, offering an
interactive and user-friendly experience.

5 Results
The preliminary results obtained, which are detailed in this
section, present the feasibility of the application in accor-
dance with the objectives proposed previously. An analysis
is made of the four main metrics selected for this study and
the efficiency of the proposed architecture in relation to the
maintenance of active functionalities is discussed. In addi-
tion, the results obtained in the Machine Learning models
are detailed, based on the graphs generated by the R² and
MSE scores (the Explained Variance and MAE scores were
similar, which is why they will not be detailed in this paper).

5.1 Selection of metrics for analysis
Of the 26 metrics evaluated, four main ones
were selected for in-depth study in this paper:
http_server_requests_active, jvm_memory_used,
jvm_threads_started and system_cpu_usage. These
metrics were selected because they represent critical aspects
of the performance and health of the monitored applications,
and are fundamental for understanding and analyzing their
behavior under different operating conditions. The other
metrics were not added to this paper simply due to lack of
space and so that it does not become repetitive. Therefore,
for a detailed examination of the results relative to the
other metrics, we direct the reader to the project’s GitHub
repository [Noetzold, 2024a].

5.2 Microservice Architecture Performance
The chosen microservice architecture demonstrated signifi-
cant positive outcomes during the testing phase, confirming
its suitability for the monitoring application. Throughout the
tests, none of the APIs—API Gateway, API Collector, and
the Python API utilizing the trained models—showed any

signs of bottlenecks or performance issues. All components
maintained a consistent and efficient response to requests.
Specifically, the architecture’s performance metrics were

impressive:

• CPU Usage: All APIs maintained CPU usage below
13% during peak loads.

• Memory Usage: Memory consumption was kept be-
low 19%, ensuring there were no memory-related per-
formance issues.

These results highlight the robustness of the microser-
vice architecture, emphasizing its capacity to handle concur-
rent requests efficiently without compromising performance.
This architectural approach has been supported by previous
studies, demonstrating that it maintains functionality and per-
formance even under varying demand conditions. The in-
herent modularity of this architecture facilitates timely in-
terventions and maintenance, reducing service interruptions
and ensuring continuous operation. Additionally, the scala-
bility of microservices, as detailed in Noetzold et al. [2023],
enables the system to effectively manage load fluctuations,
which is crucial for the ongoing collection and analysis of
data required in this research.

5.3 User Interface Results
The front-end interface of the monitoring application pro-
vides users with comprehensive access to the system’s func-
tionalities, allowing them to interact with the data and mod-
els effectively. Below are the key screens of the application,
along with their functionalities:

Model Accuracy The ”Model Accuracy” screen displays
the current accuracy of each machine learning model used
in the system. It provides details about the model name,
the type of accuracy metric used (e.g., MAE, MSE), the
specific metric being monitored (e.g., http_server_requests,
jvm_memory_committed), the accuracy value, the training
date, and actions to edit or delete the model. This screen
allows users to download the accuracy data as a CSV file
for further analysis. Figure 2 shows the ”Model Accuracy”
screen.

Model Metrics The ”Model Metrics” screen lists all the
metrics currently being monitored by the system. Each met-
ric is displayed with its name and value type (e.g., Double).
This screen provides an overview of the various performance
indicators being tracked to assess the health and efficiency of
the monitored applications. Figure 3 shows the ”Model Met-
rics” screen.

Records The ”Records” screen displays the latest predic-
tion records made by the system. It shows the metric names
and their predicted values. Users can add new prediction
records using the ”Add New Record” button. This screen
allows users to quickly view and manage the most recent pre-
dictions, ensuring they can keep track of important metrics
in real-time. Figure 4 shows the ”Records” screen.
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Figure 2. Model Accuracy Screen

5.4 Results of the main metrics

This subsection provides a detailed analysis of the key per-
formance metrics used to evaluate the models in this study.
By focusing on the R² Score andMean Squared Error (MSE),
we can gain a comprehensive understanding of each model’s
predictive accuracy and reliability.

5.4.1 R² Score

The results presented in Figure 5 provide
a detailed analysis of the R² Score for
the models GradientBoostingRegressor,
RandomForestRegressor and SVR, applied to the metrics
http_server_requests_active, jvm_memory_used,
jvm_threads_started and system_cpu_usage. At Y it
is the models that have been trained. There are 3 models for
each metric, so they are repeated 4 times in the graph (as
there are four metrics). The metrics are in the columns.
The distribution of R² Scores is heterogeneous, varying

significantly with the model and metric considered. The
GradientBoostingRegressormodel shows superiority in
the http_server_requests_active metric, with a score
close to unity, indicating a remarkable ability to explain the
variation in the data. This finding reinforces its effectiveness
in capturing the dynamics intrinsic to the data, making it suit-
able for scenarios that demand high predictive accuracy.
The standard deviations of the R² Score values are illus-

trated in Figure 6, showing minimal variation and indicat-
ing consistent performance across different models and met-
rics. Specifically, the GradientBoostingRegressor exhibited
the smallest standard deviation, emphasizing its reliability.
In contrast, the SVR model shows inferior performance,

particularly in the jvm_threads_started metric, suggest-
ing a suboptimal adaptation to this specific metric compared
to the other models analyzed. These insights are fundamen-
tal for directing methodological selections in future research,
promoting improvements in predictive models within the do-
main of system observability.
This trend analysis is vital for the evolution of monitoring

and quality assurance practices in complex IT infrastructures,

offering a significant contribution to the field of system ob-
servability. The results corroborate the central hypothesis
of this study, reaffirming the potential of applying machine
learning techniques to improve observability and proactive
systems management.

5.4.2 Mean Squared Error (MSE)

By evaluating the Mean Square Error (MSE) values il-
lustrated in Figure 7, we can see a detailed overview of
the models’ performance in relation to the metrics un-
der study. The jvm_memory_used metric, in particular,
shows a notable variation in MSE between the models, with
RandomForestRegressor showing a considerably lower
value when compared to SVR. This result indicates that
RandomForestRegressor is more effective at capturing the
essence of the data, offering more accurate predictions that
are closer to reality, making it the most suitable selection for
this specific metric. On the other hand, SVR has a high MSE
for the same metric, pointing to lower prediction accuracy.
This contrast emphasizes the importance of careful model
selection, which must be congruent with the intrinsic char-
acteristics of each type of data in order to achieve the best
predictive effectiveness.
The standard deviations of the Mean Squared Error values

are illustrated in Figure 8, where the RandomForestRegres-
sor displayed lower variance compared to other models, par-
ticularly for the jvm_memory_used metric, highlighting its
accuracy and robustness in prediction.

5.5 Summary of average results

This section provides a comprehensive overview of the per-
formance metrics for both regression and classification mod-
els used in the study. By summarizing these metrics, it is
possible to gain valuable insights into the predictive capabil-
ities and effectiveness of eachmodel, allowing for a thorough
assessment of their strengths and weaknesses in different sce-
narios.
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Figure 3. Model Metrics Screen

Figure 4. Records Screen

5.5.1 Regression Models - First Layer

The performance metrics of the regression models, including
the Random Forest Regressor, Gradient Boosting Regressor
and SVR, are summarized in Table 5. Each metric provides
valuable insights into the predictive capabilities of the mod-
els, allowing for a comprehensive assessment of their effec-
tiveness.
Starting with the MSE, the Gradient Boosting Regressor

outperforms both the Random Forest Regressor and the SVR,
achieving the lowestMSE of 6.98. RandomForest Regressor
follows closely with anMSE of 8.26, while SVR displays the
highest MSE of 22.76. In the case of MAE, similar to MSE,
Gradient Boosting Regressor shows the lowest MAE of 3.19,
indicating superior performance in minimizing prediction er-
rors. The Random Forest Regressor also does well, with an
MAE of 3.26, while the SVR shows a higher MAE of 9.98.
Moving on to the coefficient of determination (R2), the

Random Forest Regressor achieves the highest R2 score of
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Figure 6. Standard Deviation in Accuracy of models according to R² Score

0.9, followed by the Gradient Boosting Regressor with 0.86.
The SVR demonstrates a comparatively lower R2 score of
0.68. Finally, in Explained Variance accuracy, the Random
Forest Regressor exhibits the highest Explained Variance of
0.87, followed by the Gradient Boosting Regressor with 0.78.
The SVR demonstrates the lowest Explained Variance of
0.61, indicating that it captures a smaller proportion of the
variance in the data compared to the other models.
Analysis of performance metrics highlights the strengths

and weaknesses of each regression model. Although Ran-
dom Forest Regressor and Gradient Boosting Regressor gen-
erally outperform SVR on several metrics.

5.5.2 Classification Models - Second Layer

Table 6 shows the performance metrics of the classification
models, including the Random Forest Classifier, Gradient
Boosting Classifier and Logistic Regression. Each metric
evaluates the ability of each model to correctly classify the
data, taking into account the calculations presented above.
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Figure 8. Standard Deviation in Model accuracy according to Mean
Squared Error (MSE)

The MSE shows that the Gradient Boosting Classifier has
the best metric, with a value of 1.02, followed by Logistic Re-
gression with anMSE of 2.87. The Random Forest Classifier
has an intermediate MSE of 2.9. TheMAE results follow the
same pattern, with the Gradient Boosting Classifier showing
the lowest MAE of 0.002, followed by the Random Forest
Classifier with an MAE of 0.82. Logistic Regression shows
the highest MAE of 1.09.
As for the coefficient of determination (R2), the Random

Forest Classifier has the highest R2 of 0.93, followed by Lo-
gistic Regression with 0.92 and Gradient Boosting Classifier
with 0.89. The Explained Variance has similar results, with
the Random Forest Classifier showing the highest Explained
Variance of 0.95, followed by the Gradient Boosting Classi-
fier with 0.93 and the Logistic Regression with 0.92.
In summary, the analysis of the performance metrics of the

classification models highlights that the Gradient Boosting
Classifier and the Random Forest Classifier generally out-
perform the Logistic Regression in several metrics.

5.6 Model results on different hyperparame-
ters

Figure 9 shows the influence of hyperparameters on the
R² metric in different regression models: RandomForestRe-

Metric
Random
Forest

Regressor

Gradient
Boosting
Regressor

SVR

MSE 8.26 6.98 22.76
MAE 3.26 3.19 9.98
R2 0.9 0.86 0.68
Explained Variance 0.87 0.78 0.61

Table 5. Regressor Models Performance Metrics

Metric
Random
Forest

Classifier

Gradient
Boosting
Classifier

Logistic
Regression

MSE 2.9 1.02 2.87
MAE 0.82 0.002 1.09
R2 0.93 0.89 0.92
Explained
Variance 0.95 0.93 0.92

Table 6. Classifier Models Performance Metrics

gressor, GradientBoostingRegressor and SVR. Lower values
of hyperparameters (n_estimators: 50-100, max_depth: 1-
2, min_samples_split: 1-3, min_samples_leaf: 1-2, learn-
ing_rate: 1-25) represent a limitation in the complexity
of the model and may result in a tendency to underfit-
ting. On the other hand, higher values (n_estimators: 500-
1000, max_depth: 100-200, min_samples_split: 10-30,
min_samples_leaf: 10-20, learning_rate: 1-1000) increase
the risk of overfitting, characterized by high variance and
poor generalization. This point of overfitting ends up gener-
ating biased models, which are only optimal for the training
data.
The optimal hyperparameter ranges (n_estimators:

100-200, max_depth: 5-10, min_samples_split: 2-5,
min_samples_leaf: 1-4, learning_rate: 1-100) show a
balance between the model’s ability to capture patterns in
the data without overparameterization. These configurations
achieve the highest R² scores, corroborating the predictive
robustness and generalization capacity of the models.
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Figure 9. Comparison of hyperparameters in regression models

Figure 10 details the variation of the R² metric as a func-
tion of the hyperparameters for the RandomForestClassifier,
GradientBoostingClassifier, and LogisticRegression classifi-
cation models. For the lower magnitude hyperparameters
(n_estimators: 100-200, max_depth: 5-10, learning_rate:
0.1-0.2, C: 0.1, 0.2, 0.3), there is an adequacy of the mod-
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els that suggest a capacity for generalization, although pos-
sibly with room for improvement in terms of adjustment to
the training data. In contrast, the higher magnitude hyperpa-
rameters (n_estimators: 400-600, max_depth: 30-40, learn-
ing_rate: 1, C: 20, 200, 2000) reflect a potential for overfit-
ting, where the models may have a high variance and, conse-
quently, a reduced capacity for generalization.
The ideal values (n_estimators: 200-300, max_depth: 15-

20, learning_rate: 0.1-0.2, C: 10, 100, 1000) indicate an op-
timized configuration of the hyperparameters, providing bal-
ancedmodels capable of capturing the complexity of the data
while maintaining good generalization. This is evidenced
by the higher R² scores, implying greater classification ac-
curacy.
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Figure 10. Comparison of hyperparameters in classification models

5.7 Scenarios for application
The proposed method excels in scenarios where early de-
tection of performance degradation is crucial. For instance,
in a high-frequency trading platform, predicting CPU usage
spikes and memory leaks before they occur can prevent po-
tential system crashes, ensuring uninterrupted trading oper-
ations. Similarly, in healthcare applications, predicting re-
sponse times and system load can ensure that critical medical
data processing is not delayed, which is vital for patient care.
The ability to forecast anomalies and resource usage in ad-
vance allows for proactive resource allocation and incident
management, significantly enhancing system reliability and
performance.
In environments with dynamic workloads, such as e-

commerce platforms during peak sales periods, the method’s
predictive capabilities enable automatic scaling of resources
to meet increased demand, ensuring optimal performance
and user experience. By integrating machine learning mod-
els with observability tools, this approach provides a com-
prehensive solution for proactive system management, mak-
ing it invaluable for maintaining high availability and perfor-
mance in complex, data-intensive environments.

6 Conclusions and Future Work
This study has consolidated the application of machine learn-
ing predictive models as a valuable tool for improving ob-
servability in complex IT systems. The microservices-based

architecture proved to be the right selection, with significant
benefits in terms of scalability and maintenance. The Gradi-
entBoostingRegressor and RandomForestRegressor models
proved to be particularly efficient, with the former achieving
an R² Score of 0.86 when predicting HTTP request rates and
the latter reducing the Mean Squared Error (MSE) by 2.06%
for memory usage predictions when compared to traditional
monitoring methods.
These advances highlight the models’ ability to identify

crucial patterns and anticipate anomalies with considerable
accuracy, enabling more agile and informed interventions.
However, challenges such as the need for fine-tuning models
and improving training performance still persist. The com-
plexity and computational cost of machine learning models
demand special attention, indicating the need for ongoing re-
search into optimization and efficiency.
Future work will explore strategies that can speed up the

training process without compromising the accuracy of the
models. This could include the application of more effi-
cient algorithms, the use of specialized hardware, and data
dimensionality reduction techniques. In addition, emphasis
will be placed on implementing auto-tuning mechanisms that
can simplify the selection of hyperparameters, making pre-
dictive models not only more agile but also accessible for
wider adoption in IT production environments. Furthermore,
modifying the application to be able to run more than one ap-
plication on different servers is also mapped out future work.
These future guidelines aim to strengthen the proposition

that integrating machine learning into observability is a tech-
nical enhancement that can take IT systems management to
a new level of proactivity and resilience.
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