
Journal of Internet Services and Applications, 2026, 17:1, doi: 10.5753/jisa.2026.5913

� This work is licensed under a Creative Commons Attribution 4.0 International License.

Safe and Protected: Combining Protection Mechanism with

Safety Verification In Autonomous Vehicles

José Luis Conradi Hoffmann�� [Federal University of Santa Catarina | hoffmann@lisha.ufsc.br]

Antônio Augusto Fröhlich� [Federal University of Santa Catarina | guto@lisha.ufsc.br]

Marcus Völp� [University of Luxembourg | marcus.voelp@uni.lu]

Paolo Milazzo� [University of Pisa | paolo.milazzo@unipi.it]

� Software/Hardware Integration Lab, Institute of Informatics and Statistics, Federal University of Santa Catarina, P.O.

Box 476, Campus Universitário, s/n, Trindade, Florianópolis, SC, 88040-900, Brazil.

Received: 14 April 2025 • Accepted: 01 October 2025 • Published: 21 January 2026

Abstract Protection mechanisms, also known as security mechanisms, in automotive systems are proactive compo-

nents that continuously monitor vehicle signals to detect early signs of potential faults. For autonomous vehicles, it

is essential that safety models, such as Responsibility-Sensitive Safety (RSS), which governs longitudinal and lateral

safety, account for these mechanisms to enable timely and effective countermeasures against imminent actuation

failures. A typical example is the proactive application of braking to increase longitudinal distance and mitigate

the risk of losing braking capability. In this paper, we present a data-centric approach for modeling protection

mechanisms using the SmartData framework, which facilitates the automatic derivation of safety properties for

real-time formal verification via a Safety Enforcement Unit (SEU). We introduce extensions to RSS proper response

strategies, enabling them to anticipate potential actuation constraints by leveraging shared internal states of pro-

tection mechanisms and a predictive time-to-trigger metric. We formally demonstrate that our approach preserves

compliance with the original RSS safety guarantees by extending its inductive proof structure. Furthermore, we

validate the feasibility of our solution through empirical evaluation, showing that the embedded formal verification

can automatically extract properties from publish-subscribe message systems and operate at runtime with minimal

overhead (less than 1% of platform processing capacity). Finally, we integrate our approach with RSS and a repre-

sentative protection mechanism within the CARLA simulator to showcase its effectiveness in a realistic autonomous

driving environment.

Keywords: Protection Mechanisms, Autonomous Vehicles, Formal Methods.

1 Introduction

Safety assurance and verification processes, such as those

incorporated in the ”V” development model exemplified in

International Organization for Standardization [2018] 26262,

are well-established and indispensable practices for ensuring

safety during the design and development of Autonomous

Vehicles (AVs) components, as demonstrated by Koopman

and Wagner [2016] and Cui et al. [2019] in their reviews of

the challenges in AV safety. However, as demonstrated by Al-

thoff and Magdici [2016] with the proposal of Responsibility-

Sensitive Safety (RSA), and Shalev-Shwartz et al. [2017],

with the proposal of Responsibility-Sensitive Safety (RSS)

the domain of autonomous vehicles, offline testing alone is

insufficient to address the inherent dynamism and complex-

ity of safety-critical applications like AVs. These Safety

frameworks for AVs have been proposed to facilitate safety

verification. These strategies incorporate online verification

mechanisms to assess the feasibility of motion planning in ac-

cordance with safety parameters. For instance, RSS evaluates

safety by ensuring minimum distances relative to surrounding

agents to enable corrective actions in response to potentially

hazardous decisions made by motion planning algorithms.

Nonetheless, these approaches are predicated on static as-

sumptions regarding vehicle actuation, characterized by fixed

minimum and maximum operational limits. They do not ac-

count for faults in perception or actuation subsystems, nor

do they consider errors from artificial intelligence compo-

nents involved in object recognition and tracking. Critical

perception anomalies—such as the failure to detect or the

misclassification of objects—can lead to dangerous scenarios

and are typically mitigated through redundancy and coop-

erative perception, as demonstrate in the works of Huang

and Tan [2016] and Lucchetti et al. [2023] in the scope of

redundancy in AV software stacks, and by Kim et al. [2015]

and de Lucena and Augusto Fröhlich [2022] in the scope of

Vehicle-to-Everything (V2X) applications. However, these

countermeasures are not exhaustive in addressing all safety

concerns for AVs. Situations may arise in which an AV loses

the capacity to brake, accelerate, or steer, due to either the

activation of protection mechanisms or component malfunc-

tions.

Failures within actuation systems may breach the prede-

fined safety boundaries, undermining the assumed operational

limits and creating a misleading perception of safety, when

in fact, the vehicle should transition to a safe operational

mode. Consequently, dynamic safety models that adapt to

fluctuating operational constraints are essential for advanc-

ing toward higher automation levels defined by International

Society of Automotive Engineers [2021], specifically Levels

https://orcid.org/0000-0002-0339-6624
mailto:hoffmann@lisha.ufsc.br
https://orcid.org/0000-0002-4063-1339
mailto:guto@lisha.ufsc.br
https://orcid.org/0000-0002-8020-4446
mailto:marcus.voelp@uni.lu
https://orcid.org/0000-0002-7309-6424
mailto:paolo.milazzo@unipi.it

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

4 and 5. Hoffmann and Fröhlich [2022] introduced an ap-

proach that integrates safety model and formal verification

with Data-Centric design principles pertaining SmartData,

also proposed by Hoffmann and Fröhlich [2025]. SmartData

is a data construct with sufficient metadata and clearly de-

fined interfaces that allows for explicitly timing and safety

constraints to be defined over the data the system produces

and consumes instead of the tasks they run. This method,

referred to as SmartData Safety, utilizes data expiration and

actuation periodicity to establish timing references. A central-

ized monitoring entity, designated as the Safety Enforcement

Unit (SEU), leverages these timing insights to formulate a

set of Signal Temporal Logic (STL) properties that detect

non-responsiveness in actuators and sensors. Concurrently,

data validity and safety compliance are verified through es-

tablished safety models.

This paper is an extension of our prior work published in the

13th Latin-American Symposium on Dependable and Secure

Computing (LADC) (see Conradi Hoffmann et al. [2024b]),

where the main contribution was the modeling of novel Smart-

Data constructs for protection mechanism aiming to enhance

the adaptability of Safety Models, specifically RSS. Figure 1

presents an overview of the proposed approach. From the pro-

tection mechanism’s specifications in SmartData, we derive a

time-to-trigger metric, which serves to dynamically adjust the

RSS parameters in anticipation of potential actuation losses.

This allows for RSS to gracefully mitigate the impact of immi-

nent actuation loss, avoiding abrupt interventions that would

otherwise degrade the AV performance.

AV Monitoring

!()

Protection Mechanisms
as SmartData

Predictors

Time-to-Triggering
Metric

Update Actuation

RSSSTL-based
Safety Verification

(Timing and Semantics)

Re-Evaluate Safety
Distances in Planning

Update RSS
Acceleration/Braking

Parameters

Safe?

Safety Model
Proper Responses

Follow Original
Montion Planning

Yes

No

Constraint

Figure 1. Overview of the proposed solution.

Therefore, the main contribution was to enhance the Smart-

Data Safety design for autonomous vehicles to support pro-

tection mechanism, and allow for monitoring and verification

through well established STL rules that are automatically de-

rived based on the Data-Centric design of the system through

SmartData. The novel actuation constraint-aware RSs was

proven to remain consistent with the legal compliance criteria

established by RSS.

This paper extension contribution is two-folded: first, we

provide a description of the Safety Enforcement Unit imple-

mentation and demonstrate how the safety property for RSS

is derived at run-time. This implementation description is

supported by experimental results of the RSS monitoring and

verification at run-time. This first contribution is essential

to describe how other can replicate the SEU implementation.

Secondly, we illustrate twoAV case-studies to corroborate the

RSS effectiveness when paired with the proposed constraint-

aware adaptability. This contribution is of relevance for prac-

tical demonstration of the proposed solution in action and

supports the claims for increasing safety of RSS by being

aware of actuation constraints.

The remainder of the paper is organized as follows: Section

2 presents the related works. Section 3 presents an overview

of the background knowledge that supports this work. Sec-

tion 4 details the SEU key design choices that allow for low-

overhead at online verification. Section 5 presents the mod-

eling of the Protection Mechanism as SmartData and the

derivation of the time-to-trigger metric. Section 6 presents

the integration of Protection Mechanisms with SEU and the

proof that the proposed approach complies with RSS. Sec-

tion 7 presents two evaluation scenarios using simulators to

corroborate the RSS effectiveness when paired with the pro-

posed extensions, specifically exploring overtake maneuvers.

Finally, Section 8 presents the final remarks of the paper.

2 Related Works

The RSS framework, introduced by Shalev-Shwartz et al.

[2017], is a formalized safety concept that interprets the legal

principle of Duty of Care through a mathematical lens. This

model defines 25 key concepts that outline the responsibilities

of drivers to maintain safe distances, covering scenarios from

straight roads to complex, unstructured environments, as well

as reactions to inappropriate behavior from nearby vehicles.

To facilitate its formal verification, the RSS framework relies

on specific parameters:

1) ρ, representing the reaction time attributed to the agent.

2) amax,accel, amax,brake, and amin,brake, which denote

the upper limits of acceleration and braking, along with the

minimum braking capability, applicable to both longitudinal

and lateral movements, and differentiated by agent type. We

recall to two lemmas derived from Definitions 1 and 6 of the

RSS model:

Lemma 1 - Safe longitudinal distance— same direction:

Let c1 be a vehicle which is behind c2 on the longitudinal

axis. Let ρ, amax,brake, amax,accel, amin,brake be as defined
above. Let v1 , v2 be the longitudinal velocities of the cars.

Then, the minimal safe longitudinal distance between the

front-most point of c1 and the rear-most point of c2 is:

dmin =
[
v1ρ+ amax,accelρ

2

2 + (v1 + ρ amax,accel)2

2amin,brake

− v2
2

2amax,brake

]
+
. (1)

where [x]+ = max{0, x}.
Lemma 2 - Safe Lateral Distance: Let alatmax,accel and

alatmin,brake be road boundaries for lateral acceleration and

brake, and assume that a vehicle c1 is to the left of c2. More-

over, assume y to be the µ − lateralvelocity as in Def-

inition 5 of RSS. Define v1,ρ = v1 + ρ alatmax,accel and

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

v2,ρ = v2 − ρ alatmax,accel. The minimal safe lateral distance

between the right side of c1 and the left of c2 is:

dmin = y +
[
v1 + v1,ρ

2 ρ+
v2

1,ρ

2alatmin,brake

−
(
v2 + v2,ρ

2 ρ+
v2

2,ρ

2alatmin,brake

)]
+
. (2)

Conversely, RSA approaches, as the one proposed by Al-

thoff and Magdici [2016], evaluates safety by examining

potential intersections between predicted vehicle trajectories.

This method involves forecasting the behavior of surround-

ing traffic participants to generate occupancy sets, which are

then compared against the occupancy set of the ego vehicle’s

planned trajectory to identify possible collisions. The authors

emphasize the inherent complexity of this approach due to

the non-linear nature of vehicle dynamics modeling.

Multiple RSA-based approaches have been proposed for

online safety verification. Pek et al. [2020], for instance,

enhance the computational efficiency of predicting future be-

havior of other traffic participants by filtering out unrealistic

or illegal maneuvers from other traffic participants. They inte-

grate this filtered prediction boundary with temporal analysis

to ensure the safety of intersection maneuvers. Meanwhile,

Gruber and Althoff [2018] expands RSA to handle cases

where initial long-term trajectories appear unsafe but may

become viable as uncertainty about other vehicles’ paths re-

duces over time. Their strategy involves executing a fail-safe

motion plan, initially considering only the beginning of the

motion, aiming for the shortest safe fallback trajectory. This

trajectory is incrementally refined as computational resources

and updated situational data become available. Orzechowski

et al. [2019] combines RSA with RSS to address the limita-

tions of RSA’s worst-case scenario analysis. Specifically, for

lane-change scenarios, RSS contributes time gap estimations

(derived from safe distance calculations), and their method

checks for intersections between the ego vehicle’s intended

path and the predicted occupancy of adjacent vehicles (using

RSA) during the interval [tenter, tgap]. Ideally, this time gap

tgap would be standardized by legal regulation.

Building on RSS, Sidorenko et al. [2022] address a par-

ticular longitudinal safety issue where RSS’s standard for-

mulations fall short. This occurs when the following vehicle

possesses a higher maximum braking capability than the ve-

hicle in front. They introduce a three-step process to derive

appropriate safe distance formulas for both cases — when

the follower’s maximum braking capability is either higher

or lower than that of the lead vehicle. Their goal is to achieve

reduced safe distances relative to standard RSS by leveraging

actual maximum braking capacities rather than the conserva-

tive minimum values assumed by the original RSS model.

However, none of these approaches considers the influence

of actuator constraints during safety evaluations.

3 Background

This section presents an overview of SmartData, STL, and

the Safety Enforcement Unit concept.

3.1 SmartData

SmartData, first proposed by Fröhlich [2018], extends con-

ventional data by incorporating metadata related to timing,

location, security, and semantics, while also structuring input,

transformation, and output aspects within a data-centric de-

sign framework. The key characteristics of SmartData that are

pertinent to the methodology proposed in this work include:

1) Period: The frequency at which data is collected. This

is typically derived from the timing constraints defined by

the Critical System’s requirements.

2) Expiry: This denotes the validity duration of the data,

offering a measure of its freshness. Expiry plays a role in

both local and global scheduling decisions. Multiple Smart-

Data instances can reference the same physical transducer but

possess distinct expiry settings, making this a per-instance

property.

3) Data Semantics: Data items are annotated with a type

descriptor that indicates whether they represent an SI physical

quantity or digital data. The Unit provides semantic details

such as data size and valid value ranges, which are useful for

safety assessments. A data dictionary can further enrich this

information by describing different applications for sensors

sharing the same unit.

Dependencies in SmartData, referred to as interest relations,

indicate data production dependencies in a manner akin to the

publish-subscribe model. These dependencies are specified

using the attributes (unit, dev, period, expiry), where dev
serves as a disambiguation key from the data dictionary to dis-

tinguish between sensors of the same unit type. As described

by Fröhlich [2018], additional metadata such as security prop-

erties and geographical location can also be attached, but

these extensions are beyond the scope of this paper.

In our previous work, Hoffmann et al. [2022]; Hoffmann

and Fröhlich [2022], we have explored SmartData in the

context of Critical Systems design, where SmartData is de-

fined as an abstract setD of datum specifications, denoted by

Ω1,Ω2, . . ., with each data instance expressed as ωi = (t, v)
combining a timestamp with its value, and Ωi.P specify-

ing the sampling period. To express inter-data dependen-

cies within the system, each datum specification Ωi is asso-
ciated with a dependency set ΨΩi

, which consists of pairs

(Ωj , E) ∈ D × R. Here, (Ωj , E) ∈ ΨΩi
signifies that cre-

ating an instance of Ωi requires an instance of Ωj produced
no more than E time units earlier. Thus, E captures the rel-

ative Expiry constraint of Ωi on Ωj . Each Ωi may depend

on multiple data sources, each potentially having a unique

expiry requirement. Accordingly, we define a System S
as the tuple S = (I, T,O), with associated dependencies

ΨS = ΨΩ1 , . . . ,ΨΩn , where I ⊂ D, T ⊂ D, and O ⊂ D,

ensuring disjoint sets I ∩ T = I ∩ O = T ∩ O = ∅. Here,
I 6= ∅ represents inputs from sensor data; T encompasses

transformed data within the system; and O 6= ∅ corresponds

to outputs used for actuators.

For clarity in subsequent sections, we adopt the notation

ψΩi,Ωj
to refer to the dependency (Ωj , E) ∈ ΨΩi

, where

ψΩi,Ωj
.E designates the expiry component of this depen-

dency pair. Furthermore, the notation S.T , S.O, and S.I are
used to represent the T , O, and I components of the tuple S.

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

3.2 Signal Temporal Logic

STL, introduced by Maler and Nickovic [2004], is a formal-

ism used to specify properties over dense-time, real-valued

signals. STL supports the construction of runtime monitors

grounded in the Real-Time temporal logic framework, specif-

ically MITL[a,b]. The key STL operators relevant to our

discussion include:

(s, t) |= ϕ1U[a,b]ϕ2 ↔ ∃t′ ∈ [t+ a, t+ b] | (s, t′) |= ϕ2

and ∀t′′ ∈ [t, t′], (s, t′′) |= ϕ1

(s, t) |= ♦[a,b]ϕ1 ↔ ∃t′ ∈ [t+ a, t+ b] | (s, t′) |= ϕ1

Here, the until operator U[a,b] captures both data depen-

dency and temporal constraints, while the eventually operator

♦[a,b] expresses the bounded time interval in which a condi-

tion must hold. STL operates over Boolean signals B, requir-
ing input signals to be processed through a domain-specific

Boolean filter µ. This filter translates real-valued signals into
Boolean values, indicating whether specific system conditions

(typically expressed as inequalities) are satisfied.

4 Safety Enforcement Unit

The SEU, introduced by Hoffmann and Fröhlich [2022],

works as a centralized monitor with complete awareness of all

interest relationships and system data (details on its implemen-

tation are provided in Section 4). By integrating SmartData

with STL, the SEU enables continuous online formal veri-

fication of system behavior. For each SmartData element

Ωi ∈ S.O ∪ S.T , we define a corresponding STL-based

verification property:

ϕΩi
=

∧
ψΩi,Ωj

∈ΨΩi

(µωj
U[0,ψΩi,Ωj

.E]µ(ωi)) (3)

In this expression, µ() is the Boolean filter tailored to the
SmartData in question. Thus, for every dependency Ωi has in
the system, the SEU checks whether the expiration condition

is met—specifically, whether ωi’s generation was appropri-
ately preceded by ωj within the allowed expiry window E.
A Safety Model can be defined as a collection of rules R

that outline the operational safety conditions of the system.

Evaluating the safety model involves continuously checking

the system’s state against each rule r ∈ R. Each rule functions
similarly to a Boolean filter µ(), accepting signals as input
and outputting a Boolean status. If any rule indicates an

unsafe state, the system is expected to initiate the appropriate

countermeasures.

To integrate SafetyModels into the SEU, we represent each

rule r ∈ R as an Actuator SmartData. Given that the SEU

observes all system data, it can dynamically verify every rule

in real time. Consequently, the SEU evaluates ϕΩr
using the

available (non-expired) input data and the Boolean evaluation

of rule r. Should the condition ϕΩr be violated (i.e., µ()
evaluates to false), the corresponding Actuator SmartData

triggers the necessary safety response.

This approach enables us to manage the complexity of the

Safety Model outside of STL while still performing com-

prehensive runtime safety verification within the SEU. The

SEU’s responsibility is limited to monitoring and triggering

appropriate actions based on rule violations; it does not handle

the execution of these actions.

The SEU operates continuously, monitoring every Smart-

Data element that consumes data in the system, including

safety rules (r ∈ R), transformers (t ∈ S.T), and actuators
(o ∈ S.O). Each property is verified according to its desig-
nated period, and the corresponding actuation is triggered if a

violation occurs. Formally, each SmartData j ∈ S.T ∪ S.O
(noting that each rule r ∈ R is also modeled as an Actuator

SmartData) is monitored by the SEU as follows:

ϕSEUΩj
= ♦[Ωj .P,Ωj .P]ϕΩj (4)

This ensures that each SmartData element satisfies its safety

constraints within every sampling period. Notably, when the

SEU detects a safety violation, it may impact multiple actua-

tors, even if they operate at different frequencies. For exam-

ple, a braking system failure could necessitate responses from

both steering and throttle systems. Effective decision-making

requires considering the collective outcomes of multiple prop-

erty evaluations, which is facilitated by the persistent nature

of SEU monitoring. Furthermore, the continuous monitor-

ing capability of the SEU enhances system auditability—an

important feature for autonomous systems.

4.1 SEU Implementation

The SEU is implemented as a network sniffer within the

SmartData Network, enforcing rules for timing verification

and safety model validation. The core design of the SEU lies

in its integration with SmartData via the Verifiable Smart-

Data Interface and the use of Boolean Filters that implement

both timing and safety model rules. The SEU manages trace

data using the System State sample concept, controlling the

triggering of verification processes and any associated actua-

tion overrides. Figure 2 provides a detailed overview of the

SEU’s implementation. The SEU background is the Smart-

Data Framework implementation described by Conradi Hoff-

mann et al. [2024c], based on the original SmartData API

proposed by Fröhlich [2018]. Following the Data-Centric De-

sign proposed by Hoffmann and Fröhlich [2025], each sensor,

data transformation, and actuation is modeled as a SmartData

Service that encapsulates the respective low-level interactions

with transducers and transforming functions. A SmartData

network implementing a publish-subscribe communication

protocol that comprises the messages for Interest definition

(similar to a subscribe message using SmartData metadata),

Response (a sensed or transformed data being published in

the network), and Control (a command for proper-responses

or actuation override).

The class diagram in Figure 3 details the SEU components

depicted in Figure 2. Similar to the SmartData API, the SEU

components follow the Concurrent Observer design pattern

proposed by Ludwich and Frohlich [2015]. The SEU class

acts as an Observer of the SmartData Network through

implementations of the SmartData Services and SmartData

Network, as described by Conradi Hoffmann et al. [2024c].

The SEU reacts to InterestMessages via the update()method

while ignoring Response Messages. Moreover, it observes

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

SmartData Services

Data-Driven
Critical System

Sensor Data

- Response
- Interest
- Control

Actuation

SmartData Network

Safety Enforcement Unit

Snapshots

t, l, r t, l, r t, l, r... t, l, r

Boolean_Filter: μ

SD1SD1 ...SD1SD2 SD1SDn

t, bool

unsatisfied?

Sends proper responses
a1 a2 an...

updates

updates

trigger:
- (periodic) max(P,E)
- (event-driven) on data update

remove where t < P or E

inputs

SmartData Response

SmartData Interest

evaluates inputs

SmartData_Verifier: φ

1 2 n

run φ over snapshots Safety Enforcement
notifies

SmartData Control
Messages

Message?

creates
or revokes

l: μ result of left element of φ
r: μ result of right element of φ
P: period E: expiry
a: actuation t: timestamp

 SmartData
Middleware

Figure 2. Overview of the components of the Safety Enforcement Unit integrated into the SmartData Framework for online verification and safety enforcement.

each SmartData Verifier, an implementation covering

the verification of eq. (3).

The implementation considers a slightly adapted version

of Until operator from STL. We only verify if exists a ωj that
precedes the production of ωi with no more than E units of

time, and that exists a ωi being produced at least once every
E units of time. Algorithm 1 presents the pseudo-algorithm

used for each individual interest relationship.

Algorithm 1 Until.evaluate()

Given a trace τ covering at least ψΩi,Ωj .E units of time,

returns if the property 3 is satisfied for an individual

interest relationship ψΩi,Ωj
.

Require: τψΩi,Ωj
.E

1: left = False
2: right = False
3: while τE 6= ∅ do
4: ST = τψΩi,Ωj

.E
.remove_head()

5: left = left ∨ (µ(Ωj)[ST.ts])
6: right = right ∨ (µ(Ωi)[ST.ts])
7: if right = True ∧ left = False then
8: right = False

9: return right = True ∧ left = True

The SEU itself is responsible for handling the traces and

combining the result for the verification of all data dependen-

cies when verifying eq. (4) at every period. These properties

check for the timing correctness of data production of all

inputs of the system, which in this paper, also includes the

internal state of the protection mechanisms PM , modeled

inside SmartData for this specific purpose, and using µ(pm)
(eq. (8)) for each specific condition check for the inputs and

outputs of the protection mechanism.

The SEU comprises a collection of SmartData_Verifier
and Boolean Filters. During SEU initialization, system

designers provide a list of pseudo-interests, Ψ, for the sys-

tem, each representing a tuple of two SmartData::Type,

corresponding to the expected interests, but without tim-

ing information. By default, SmartData are assigned a µ

Boolean_Filter that simply returns true whenever a data ar-

rives, registering this value in the trace. When an InterestMes-

sage is sent within the SmartData Network, the SEU creates

a Verifiable_SmartData instance for both the SmartData

and interested SmartData. These Verifiable_SmartData
are specializations of remote SmartData that updates upon re-

ceiving a corresponding Response Message (i.e., Ωi.Type =
(UNIT, dev)).

A SmartData_Verifier is then instantiated using the

default µ for the SmartData issuing the Interest Message con-

sidering the designated period P . The SmartData of inter-

est is registered within the SmartData_Verifier through

register_boolean_filter_interested with the speci-

fied expiry E. If a SmartData_Verifier already exists for

that interest, only the registration of the new SmartData of

interest is done.

Each Boolean_Filter acts as an Observer of

Verifiable_SmartData. It holds a list of _interests,
represented by SmartData::Type, forming its _inputs. Ad-
ditionally, an attribute _sd specifies the SmartData::Type
for filters that do not use _inputs (i.e., non Safety Models).

These attributes are exclusive, where µ uses only _sd, regis-
tered via register_smartdata. For any Boolean_Filter
added to the SEU through add_boolean_filter, a corre-
sponding SmartData_Verifier is created with the new

Boolean_Filter as interest and its _period attribute as

period. Whenever a new Verifiable_SmartData is cre-

ated by the SEU, the SEU also verifies if the SmartData::Type

matches a SmartData::Type in the _interests list or _sd of
every Boolean _Filter in SEU’s _bfs list. If it matches

(i.e., add_input() is invoked and returned True), the

SmartData::Type is removed from _interests list of the

Boolean_Filter and the Verifiable_ SmartData is

registered in the SmartData_Verifier using µarrival
and the _period of the Boolean_Filter as expiry, every
safety model and other models integrated to the SmartData is

assumed to have expiry = period).

Each Boolean_Filter specialization must imple-

ment evaluate() and proper_response(). The

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

<<Concurrent_Observer<Network>>>::Observer
<<Concurrent_Observer<SmartData_Verifier>>>::Observer

SEU

- _bfs : Linked_List<Boolean_Filter>
- _verifiers : Linked_List<SmartData_Verifier>
- _PSI : Linked_List<Linked_List<SmartData::Type>,SmartData::Type>

+ SEU(PSI : Linked_List<Linked_List<SmartData::Type>,SmartData::Type>)
+ add_boolean_filter(bf : Boolean_Filter)
- update(Network::Observed obs)
- update(SmartData_Verifier::Observed obs)

<<Concurrent_Observer<SmartData_Verifier>>>::Observed
<<Concurrent_Observer<Boolean_Filter>>>::Observer

SmartData_Verifier

- _period : Time
- _verifier : Verifier
- _thread : Periodic_Thread
- _interest : Boolean Filter
- _interested :Linked_List<Boolean Filter>

+SmartData_Verifier(period : Time, interest : Boolean_Filter)
- update(Boolean_Filter::Observed obs)
+ result() : bool
+ add_boolean_filter_interested (interested : Boolean_Filter, expiry
: Time)

<<Concurrent_Observer<Boolean_Filter>>>::Observed
<<Concurrent_Observer<Verifiable_SmartData>>>::Observer

Boolean_Filter

- _t : Time
- _interests : Linked_List<SmartData::Type>
- _period : Time
- _type : SmartData::Type
- _sd : Verifiable_SmartData
- _inputs : Boolean Filter

+ Boolean_Filter(interests : Linked_List<SmartData::Type>, sd :
SmartData::Type, period : Time)
- update(Verifiable_SmartData::Observed obs)
+ result() : bool
+ register_smartdata (sd : Verifiable_SmartData)
+ add_input(sd : Verifiable_SmartData) : bool
+ type() : SmartData::Type
+ proper_response() : Linked_List<SmartData::Response>
+ evaluate()

0..* 0..*

2..*

Figure 3. Class diagram of the SEU, Boolean Filter, and SmartData Verifier.

evaluate() method performs the µ function itself.

The Verifiable_SmartData update() triggers a

notify() that will call the respective update() of ev-

ery Boolean_Filter that register to observe it through

the method attach() (i.e., invoked by add_input of

the Boolean_Filter class). Whenever all inputs for a

Boolean_Filter are available (updated via update()),
evaluate() is invoked. Completion of evaluate()
prompts the Boolean_Filter to notify any observing

SmartData_Verifier.
Each safety model’s actuation override plan is a list of

SmartData Response Messages that the SEU will issue en-

capsulated as Control Messages to trigger configurations or

controls in the SmartData Services when the verification

conditions dictate.

Each SmartData_Verifier includes a Verifier
implementation, depicted in Figure 4. If the

SmartData_Verifier has a non-zero _period, it ini-

tiates a periodic thread to execute the evaluate() method at

intervals of _period. If _period is zero, the verifier operates
in an event-driven manner, evaluating on data arrival.

A Verifier maintains an array of expiries, sized to the

interests list of the interested Boolean_Filter. The

realization of the property monitors is given by calling

add_input_time of the Verifier implementation. Based

on the expiry and to be registered in the _expiries array at
the given position, and the _period, the Verifier will imple-

ment verification in accordance with the Algorithm 1.

To enable efficient trace handling, each Verifier embeds

a list of Snapshots, which can be seen as the slice of the

system trace that is of interest to the property at hand, repre-

sented by the tuple (t, l[inputs], r), where t is the timestamp

the SmartData instance was produced, and l[inputs] and r
are the result of the Boolean Filter applied to the respective

element of the formula, with l being the array of SmartData

of interest, and r being the SmartData interested.

Trace handling inside a Verifier occurs via

add_sample() or upon evaluate() invocation. During

add_sample(), the the new snapshot is inserted at the tail of

the Snapshot list. Since the update() of a Boolean Filter

will trigger the update() of a single element (given by pos or
right parameter), the components that were not updated are

taken as False (e.g.,t, [False, . . . , µ, . . . , False], False or
t, [False, . . . , False], µ). This operation does not influences
the Verifier result as we disregard the continuity required

by the original Until operator. Finally, the head of the list

(i.e., oldest element) is removed if it is too old for all the

properties, i.e., t < ct − max(_period,max(_expiries)),
where ct is the current time. This operation is repeated until

the list head has t ≥ ct−max(_period,max(_expiries)).
The same trace update occurs at the triggering of the periodic

evaluation by the periodic thread. This procedure works only

as an optimization to improve the performance of algorithm 1,

i.e., avoid high-memory consumption and low performance

due to never discarding already verified information in the

system trace.

4.2 RSS Safety Property

RSS relies on the dynamics of vehicles represented by lon-

gitudinal and lateral speeds and location. Thus, with the

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

Verifier

- _expiries : Time[inputs]
- _period : Time
- _states : Linked_List<Snapshot>
- _last_result : bool

+ SmartData_Verifier(period : Time,
inputs : int)
+ evaluate()
+ add_sample(t : time, mu : bool, pos
: int, right : bool)
+ add_input_time(expiry : Time,
position)
+ out() : bool

Snapshot

- _t : Time
- _l : bool[inputs]
- _r : bool

+ Snapshot(t : Time, _l :bool, _r :
bool)

0..*

Figure 4. Class diagram of the Verifier implementing algorithm 1.

dynamics for the EGO vehicles1 and for nearby objects (i.e.,

other vehicles, pedestrian, and static obstacles), the anal-

ysis of longitudinal safety is done by calculating the dis-

tance between objects and estimating the minimum safe dis-

tance according to the longitudinal speed and road parame-

ters for maximum brake, maximum acceleration, and mini-

mum brake. Whenever the calculated distance is bigger than

the minimum distance for all objects, the EGO vehicle is

in a safe state. Otherwise, the EGO vehicle must apply the

minimum brake. Therefore, to model RSS’s rule for Lon-

gitudinal Minimum Distance RSSlon, we need to define

Dynamicsnearby objects and DynamicsEGO, two Smart-

Data composing the necessary information of dynamics to

compute RSS longitudinal safety. We assume a response time

RSS.ρ = 100ms = RSSlon.E = RSSlon.P , leading to

RSSlon being interested in both SmartData above with P =
100 = E. The Boolean Filter for RSSlon is defined using

inputs = {dynamicsnearby objects, dynamicsEGO}, the
instances of Dynamicsnearby objects and DynamicsEGO,
respectively, as:

µRSSlon
(inputs) = (5)∧

o∈dynamicsnearby objects

d(o, dynamicsEGO) ≥

dmin(o, dynamicsEGO)

where d(o, dynamicsEGO) is the function that estimates

the distance between the EGO and the object, and

dmin(o, dynamicsEGO is given by RSS Lemma 1 through

eq. (2).

Finally, the safety property for RSS’s Longitudinal Mini-

mum Distance rule RSSlon is automatically derived as:

ϕRSSlon
= (µarrival(Dynamicsnearby objects) (6)

U[0,100]µRSSlon
(inputs))∧

(µ(DynamicsEGO)U[0,100]µRSSlon
(inputs))

The property for RSSlat is analogous to the process pre-
sented above, using Lemma 2 and eq. (2) instead.

1An EGO vehicle is the vehicle of primary interest in the scenario (i.e.,

the vehicle being verified with RSS).

5 Protection Mechanisms Integration

into SmartData Design

The actuation set of an AV encompasses a wide range of

functionalities, from elementary tasks such as activating in-

dicator lights to more complex control actions including

acceleration, braking, and steering. In this work, we nar-

row our focus to the subset of actuators directly relevant to

the RSS, specifically Steering (Steering), Braking (Brake),
and Throttle (Throttle). Collectively, these are denoted as
A = Steering,Brake, Throttle.

Safety mechanisms—often referred to as protection mech-

anisms—are designed not solely as reactive interventions but

as proactive safeguards. These systems continuously monitor

operational signals to detect patterns indicative of potential

faults, enabling them to intervene preemptively, prior to fault

manifestation. However, such interventions frequently result

in the deactivation of vehicle components that are critical

for maintaining mobility. Consequently, these protective

actions may inadvertently conflict with the assumptions un-

derlying safety models and verification frameworks, such as

RSS, which typically rely on static assumptions regarding the

availability of actuation capabilities (e.g., defined maximum

and minimum thresholds for braking, steering, and throttle

control).

Sivakumar andMohanty [2020] defines a set of concrete ex-

amples of protection mechanism for vehicles, such as Brake

System Plausibility Device (BSPD), Battery Management

System (BMS), and Insulation Monitoring Device (IMD).

BSPD is tasked with disabling the vehicle’s power system if

simultaneous motor power application and aggressive brak-

ing are sustained for longer than 0.5 seconds. BMS monitors

the thermal and electrical characteristics of battery cells in

electric vehicles, including parameters such as cell tempera-

ture and voltage. Upon detecting anomalies—such as over-

voltage, under-voltage, over-temperature, under-temperature,

or communication failures—the BMS responds by isolating

the powertrain to prevent hazardous conditions. IMD is an-

other critical protection mechanism, responsible for tracking

the insulation resistance between high-voltage components

and the low-voltage electrical system; should insulation re-

sistance fall below a predefined threshold, the IMD triggers

a full system shutdown. Additional protective functions in-

clude the surveillance of charging and discharging circuits,

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

as well as mechanisms like the brake-over-travel switch.

Beyond hardware-triggered interventions, safety mecha-

nisms can also be informed by automated fault detection

algorithms. For instance, Sangha et al. [2005] proposes an

Artificial Neural Network (ANN) model capable of diagnos-

ing faults related to exhaust gas recirculation and air leakage

in the intake manifold pressure system. Likewise, Kong et al.

[2019] introduces a hybrid-signal-based diagnostic method

for detecting overheating within the vehicle’s wiring harness.

In such scenarios, protective responses might entail moderat-

ing the vehicle’s acceleration, braking intensity, or steering

actions to prevent escalation of the fault and mitigate potential

damage to critical components.

5.1 Protection Mechanisms as SmartData

In the context of SmartData system design, protection mech-

anisms are formalized as Safety Models, denoted by PM ,

which are instantiated as Actuator SmartData. The role of

PM is tomonitor the instancesωi of each relevant data stream
involved in its interest relationships ψPM,Ωi

∈ ΨPM , evalu-

ating specific conditions θΩi , where θΩi : ωi → B represents

a predicate function yielding a Boolean outcome. The set of

all conditions monitored by PM is denoted as Θ.

When triggered, the protection mechanism selectively dis-

ables elements within the actuation set A. This behavior is
captured by definingΓPM = (γα1 , . . . , γαn

), wheren = |A|.
Each component γαi is a Boolean indicating whether actua-

tion channel αi is inhibited by PM , for all i ∈ [0, . . . , n].
Protection mechanisms can generally be classified into

two categories: i) mechanisms that react immediately upon

detection of a hazardous condition, and ii) mechanisms that

respond only if the hazardous condition persists for a duration

of d time units. Accordingly, a protection mechanism can be

defined as a tuple:

PM = (Ψ,Θ,Γ, d)

where d ∈ R≥0 specifies the required persistence of the mon-

itored condition prior to actuation. When d = 0, the mecha-

nism belongs to the first class (immediate action); otherwise,

it is categorized as delayed-action.

For immediate-action mechanisms, the activation condition

is defined as:

If

 ∧
ψP M,Ωi

∈ΨP M

θΩi

 = True, then trigger PM

An illustrative example of this class is the IMD, which can

be formalized as:

PMIMD = (Ψ,Θ,Γ, 0)

where Ψ = {ψIMD,IR}, Θ = {θIR} with θIR = (ir.v <
minimum_insulation), and Γ = (True, True, True).
Here, IR represents the insulation resistance sensor, and ir
refers to its latest sampled value.

For delayed-action mechanisms, activation occurs accord-

ing to the following logic:

If

 ∧
ψP M,Ωi

∈ΨP M

θΩi

 = True,

and persists for d time units, then trigger PM .

A representative example is the BSPD, which can be de-

fined as:

PMBSPD = (Ψ,Θ,Γ, 0.5s)

whereΨ = {ψBSPD,MP , ψBSPD,B},Θ = {θMP , θB}with
θMP = (mp.v > 0), θB = (b.v > hard_threshold), and
Γ = (True, True, True). In this context,MP refers to the

motor powering sensor, B corresponds to the latest braking

command issued, andmp and b denote their respective most

recent values.

5.2 Estimating Time-to-Triggering

Several protection mechanisms operate by disabling the en-

gine or electrical subsystems once their monitored conditions

are violated (e.g., BSPD, IMD, and BMS). To maintain sys-

tem safety, it is crucial to anticipate and compensate for the

potential loss of actuation capability before it becomes crit-

ical. Specifically, protection mechanisms belonging to the

same category as BSPD provide an explicit time-to-failure or

time-to-triggering parameter, denoted as d, which allows for
corrective actions to be taken at least d units of time prior to

actuator deactivation. However, in scenarios where d = 0,
no such temporal margin for reaction is available.

Most protection mechanisms are inherently tied to the phys-

ical characteristics of the system and thus monitor variables

that exhibit temporal evolution—either progressive degra-

dation or escalation—until a safety threshold is exceeded.

Examples include increasing temperatures, rising brake pres-

sure, or decreasing tire pressure.

It is fair to assume protection mechanism to share their

internal state with safety-related controllers in automotive sys-

tem, such as Adaptive Cruise Control (ACC) and Advanced

Driver Assistance Systems (ADAS). Disabling the execution

of complex maneuvers, including overtake, whenever the

temperature and voltage of battery system of a BMS, is a

suitable and expected behavior for safety controllers. There-

fore, having mechanisms to translate protection system state

transitions into reaction time (e.g., the time it will take to

evolve the current state into one that will disable actuation)

is crucial for planning modules to properly regulate certain

maneuvers or even promote evasive ones, thus, guaranteeing

passengers safety and vehicle integrity. Thus, a lookup table

mechanism, for instance, built by system engineers at design

time, will provide a dynamic measure of time-to-triggering d
expected by our solution.

If such mechanism is not available for a protection mecha-

nism, such as black box system to which only the inputs are

known, there is no solution other than employing predictors

to promote a view of progressive degradation or escalation

until a safety threshold is exceeded. By employing predictive

models for these variables, it becomes feasible to estimate a

time-to-trigger metric, even for mechanisms that traditionally

lack a built-in delay parameter.

Figure 5 illustrates a generalized predictor P and the con-

ceptual framework for deriving a time-to-trigger estimate.

Here, h denotes the prediction horizon of P , representing
the temporal extent over which the predictor provides reli-

able forecasts. The variable t0 corresponds to the current

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

time

v
a
lu

e

prediction

t0 tf

reading

safe threshold

h

Δ
Figure 5. Example of a predictor for protection mechanism and the variables

used when calculating constraints. Safe threshold is system engineer defined

value for a specific protectionmechanism input. t0 is the current timestamp. h

is the prediction horizon (e.g., howmany time-steps in the future the predictor

is able to predict). tf is the timestamp of the first prediction that crosses the

threshold, and is used alongside t0 to calculate the remaining time before

the predicted safety breach represented as ∆. Note that the choice for red

dots for prediction is just a style decision. Furthermore, having predictions

after the threshold breach in this illustration is solely to demonstrate that

the prediction horizon can be bigger than the remaining time for the safety

breach.

time, while tf indicates the future time at which the mon-

itored variable is predicted to cross its safety threshold (as

defined by the condition θΩi
). The time-to-trigger for the

input ψPM,Ωi
∈ ΨPM is then given by:

∆Ωi
= tf − t0

If the predictor does not anticipate any threshold violation

within its horizon, we define tf = inf , resulting in ∆Ωi
=

inf .

5.3 Calculating Compensation of Actuation

Constraint

For a protection mechanism PM characterized by dPM > 0,
the precise assessment of proximity to its potential trigger-

ing event is determined by the time at which the condition(∧
ψP M,Ωi

∈ΨP M

θΩi

)
evaluates to true, incremented by the

specified verification duration dPM . Let us denote this initial

evaluation time as tstart. Consequently, the estimated trig-

gering time of the protection mechanism can be expressed

as:

PM.tf = tstart + dPM

To prevent system thrashing due to the transient nature of(∧
ψP M,Ωi

∈ΨP M

θΩi

)
potentially reverting to false prior to

PM.tf , we define a compensation constraint inversely pro-

portional to the remaining time until the expected triggering

of PM . This remaining time is given by:

PM.ttt = PM.tf − t

where t denotes the current evaluation timestamp. Accord-

ingly, the compensation constraint is defined as:

PM.C = dPM
PM.ttt

For protection mechanisms with an immediate response,

i.e., dPM = 0, and assuming the availability of a predictor

of the form2:

PΩi

(
[ωt−ki .v, . . . , ωti .v]

)
=
[
ωt+1
i .v, . . . , ωt+P.hi .v

]
2Multi-dimensional predictors can also be employed, in which case

the input vector [ωt−k
i .v, . . . , ωt

i .v] is replaced by a vector of multiple,

correlated variables.

where k represents the number of historical samples utilized

by P to forecast the subsequent P.h samples of Ωi, we define
∆Ωi

as the time-to-trigger estimate derived from the predic-

tion. The corresponding compensation constraint for Ωi is
then computed as:

PΩi
.h

∆Ωi

Since the triggering condition for PM is modeled as: ∧
ψ∈ΨP M

θΩi

 = True

the remaining time to triggering is determined as:

PM.ttt = max (∆Ωi | ∀ψPM,Ωi ∈ ΨPM)

while the global compensation constraint for PM is given

by:

PM.C = max
(
PΩi

.h

∆Ωi

| ∀ψPM,Ωi ∈ ΨPM

)
Thus, at each decision point, the compensation constraint

for PM over the set of actuators A in the AV system can be

dynamically updated as follows:

∀i ∈ [0, . . . , |A|] :

PM.Cαi
=

PM.C, if γαi
∧

(∧
ψ∈ΨP M

θψ

)
0, otherwise

(7)

6 Constraint-Aware RSS Triggered by

SEU

As protection mechanisms are represented as Actuator Smart-

Data, they are subject to verification properties within the

SEU, as defined in eq. (4), which periodically evaluates their

satisfiability. A system is considered safe with respect to

a given protection mechanism if none of its associated con-

ditions θ ∈ Θ hold in the current system state. Thus, the

Boolean filter µ() for a protection mechanism PM can be

expressed as:

µ(pm) = ¬

 ∧
ψP M,Ωi

∈ΨP M

θΩi

 (8)

As outlined in Section 3.2, the primary objective of the

SEU is to serve as a runtime verifier of system safety, trig-

gering appropriate responses according to which verification

property fails. This design choice intentionally excludes the

complexity of embedded safety models from STL formula-

tions. We now formalize the steps to be undertaken whenever

the SEU detects a satisfiability violation caused by a protec-

tion mechanism PM , specifically when:∧
ψP M,Ωi

∈ΨP M

θψP M,Ωi
= True

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

In summary, this process involves updating RSS parame-

ters, re-evaluating the RSS conditions, and executing suitable

proper responses. Furthermore, we propose an enhanced set

of proper responses that address anticipated brake constraints,

enabling compensation for potential brake loss in the near

future.

To effectively integrate this framework with RSS, we must

dynamically adjust the parameters used in the RSS formula-

tion according to the current status of each protection mech-

anism PM in the system. To facilitate this, we extend the

SmartData system definition to include a set of protection

mechanism specifications, denoted by PMS. Whenever an

input of any PM ∈ S.PMS is updated, the system triggers

an evaluation of the respective PM , potentially resulting in

updated compensation constraints for each actuator relevant

to RSS. These constraints are defined as follows:

Steering.C = max (PM.CSteering | ∀PM ∈ S.PMS)
(9)

Throttle.C = max (PM.CThrottle | ∀PM ∈ S.PMS)
(10)

Brake.ttt = min (PM.ttt | ∀PM ∈ S.PMS) (11)

Rather than constraining the brake actuator via Brake.C,
we leverage the time-to-trigger metricBrake.ttt to refine the
proper response for longitudinal braking. This approach is

advantageous as it enables the extension of RSS definitions

for proper longitudinal responses to include braking forces ex-

ceeding alonmin,brake, thereby compensating for the anticipated

unavailability of braking (see Definition 2 and Definition 3

in the subsequent subsections). Such compensations would

not be feasible under the original RSS formulation, which

assumes fixed thresholds for safe longitudinal distance. No-

tably, steering does not require this form of compensation,

as RSS assumes instantaneous steering adjustments; thus, it

suffices to apply constraints during minimum lateral distance

calculations. Although throttle is not directly referenced in

RSS proper responses, its constraint must still be updated to

ensure motion planning feasibility, as discussed in Definition

1 of the following subsection.

Following the update of these constraints, the correspond-

ing RSS parameters must also be recalibrated. From this point

onward, we denote by adefault the static braking/acceleration
values assumed in RSS, and by areal the adjusted values that
incorporate dynamic constraints. The updates are formalized

as:

areal,latmax,accel = adefault,latmax,accel × Steering.C (12)

areal,latmin,brake = adefault,latmin,brake × Steering.C (13)

areal,lonmax,accel = adefault,lonmax,accel × Throttle.C (14)

It is important to note that these updates apply solely to the

ego vehicle’s parameters. Constraints applicable to surround-

ing vehicles are beyond the scope of RSS and, by extension,

this paper. This area remains open for future research, partic-

ularly in the context of V2X communication.

The following procedure is applied whenever a PM ∈
S.PMS is updated:

1. Update the constraints and time-to-trigger metrics ac-

cording to eq. (9), (10), and (11);

2. Recalculate the ego vehicle parameters within RSS using

eq. (12), (13), and (14);

3. Re-evaluate the current vehicle state against RSS crite-

ria;

4. If the current state is unsafe but recoverable through RSS

proper responses, execute the appropriate response;

5. If there is a potential constraint on braking (Brake.ttt >
0), apply the response defined in Definition 2 if the ve-

hicle is already in an unsafe state, or in Definition 3

otherwise;

6. Re-execute the motion planning algorithm, incorporat-

ing the updated constraints on steering and throttle, and

accounting for brake availability only until Brake.ttt;
7. Perform RSS verification on the revised motion plan as

described in Definition 1;

8. If the updated plan still contains unsafe elements or

any actuator becomes fully constrained, upon comple-

tion of the proper response, re-execute motion plan-

ning with the goal of reaching the nearest safe stopping

area—provided that actuation capabilities permit. If not,

set Brake.ttt to the corresponding time-to-trigger for

full constraint and initiate preemptive braking.

6.1 Constraints into Steer and Throttle

In the scenario depicted in Figure 6, we analyze a case in

which RSS is employed to validate a motion planning out-

put corresponding to an overtaking maneuver. In this sit-

uation, considering the full acceleration capabilities of the

vehicle (adefaultmax,accel, both lateral and longitudinal), the maneu-

ver can be executed without compromising safety. However,

if we incorporate knowledge about the vehicle’s actual condi-

tion—specifically, constraints on its acceleration capability,

whether longitudinal or lateral—the maneuver could result

in an unsafe state. For example, the vehicle may become

unable to return to its original lane in time to avoid a collision,

either with oncoming traffic or with the vehicle initially being

overtaken, depending on the specific nature of the constraint.

Planning with Regular Actuation

Planning with Constrained Throtle

Planning with Constrained Steer

Figure 6. Example of modifying RSS to account for constraints on maximum

acceleration.

We assume the maneuver is defined over a time interval

[t0, tf], representing the initial and final planned times. Mod-

eling this situation as a safety verification procedure, and

following the RSS framework along with its naive predic-

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

tion approach for surrounding vehicle behavior (as defined in

Definition 11 of RSS)3, we can formally express the safety

verification of the motion plan as follows:

Definition 1 (Protection-aware RSS safety verification of

Motion Plan): Given a planned vehicle maneuver defined

over the interval [t0, tf], and assuming naive prediction mod-

els mlon and mlat for the future state of nearby agents set

NA (providing discrete-time trajectories of position, velocity,

and acceleration), the maneuver is considered safe if:

∃ {alat} ≤ areal,latmax,accel ∧ {alon} ≤ areal,lonmax,accel |
∀c ∈ NA, ∀t ∈ [t0, tf] :

distlon
(
e.mlon(t), c.mlon(t)

)
> distlonmin(e, c) ∧

distlat
(
e.mlat(t), c.mlat(t)

)
> distlatmin(e, c)

where distmin denotes the minimum safe longitudinal and

lateral distances as per RSS. Note that the prediction models

mlon andmlat can either follow the naive prediction approach

of RSS or more advanced models such as RSA-based pre-

dictions, similar to the work of Orzechowski et al. [2019] in

which RSS and RSA are combined. Violation of this rule

would lead to scenarios similar to that illustrated in Figure 6.

According to Definition 8 of RSS (Lateral Proper Re-

sponse), in a dangerous lateral scenario, the vehicle on the

left must apply a deceleration of at most −adefault,latmin,brake , while

the vehicle on the right must apply at least adefault,latmin,brake un-

til their relative lateral velocity (µ-lateral-velocity) reaches
zero—meaning no further lateral convergence.

Assuming the ego vehicle anticipates constraints in its steer-

ing actuator, we first consider the µ-lateral-velocity definition
from RSS, which incorporates a distance tolerance to avoid

oscillations in lateral positioning. If vehicles are not closing

the lateral gap (i.e., µ-lateral-velocity = 0), imposing a con-

straint on areal,latmin,brake will not affect the safe distance mainte-

nance. If the situation is already classified as dangerous, both

vehicles are expected to be applying the appropriate proper

responses, ensuring convergence toward µ-lateral-velocity
= 0, as prescribed by Definition 8 of RSS.

However, if µ-lateral-velocity > 0 and the situation was

previously safe, constraining areal,latmin,brake may compromise

the ability to maintain a safe lateral distance. In such cases,

the revised minimum distance could precipitate a dangerous

situation, prompting the ego vehicle to engage its proper

response protocol as defined by RSS, thus aiming to reduce

the lateral velocity to zero. Once µ-lateral-velocity = 0 is

achieved, the continuation of any hazardous condition (µ-
lateral-velocity > 0) would depend solely on the actions of
the other vehicle, given that the ego vehicle will have fulfilled

its required response obligations (i.e., lateral velocity has been

neutralized).

3Definition 11 in RSS specifies: ”The longitudinal or lateral state of a

road agent is defined by its position, velocity, and acceleration, denoted by

p0, v0, a0. The future state, assuming a naive prediction, is as follows. Let

τ = −v0/a0 if v0 and a0 have opposite signs, or τ = inf otherwise. The
acceleration at time t is a0 for t ∈ [0, τ] and zero thereafter. The velocity at
time t is v0 plus the integral of acceleration, and the position is p0 plus the

integral of velocity.”

6.2 Constraints into Brake

The RSS framework assumes that the minimum safe distance

is defined such that the rear vehicle can brake at adefault,lonmin,brake

and still avoid collision, even if the front vehicle decelerates

at adefault,lonmax,brake . According to Definition 4 of RSS (Longitudi-

nal Proper Response), in a dangerous longitudinal scenario

where both vehicles are traveling in the same direction, the

rear vehicle is required to apply at least −adefault,lonmin,brake until

the situation is resolved. In the case of vehicles moving in

opposite directions, the vehicle traveling in the correct direc-

tion must decelerate by at most −adefault,lonmin,brake,correct, while

the one traveling in the wrong direction should accelerate at

least adefault,lonmin,brake (note: acceleration is considered negative

and braking positive since the vehicle is traveling in the incor-

rect direction). Therefore, only braking constraints influence

the proper response in dangerous longitudinal situations.

The approach proposed herein is built for adaptability, con-

sistently assuming a worst-case scenario: the vehicle is ex-

pected to lose its braking capability after Brake.ttt units
of time. Consequently, whenever Brake.ttt < tfs, where
tfs = v/adefault,lonmin,brake represents the time required to reach

a complete stop, actuation becomes infeasible under the as-

sumption that the protection mechanism will trigger after

Brake.ttt time units. Therefore, upon detecting the potential

activation of a protection mechanism, the vehicle must adjust

its current acceleration to align with the available braking

window, Brake.ttt.
It is important to note that simply applying adefault,lonmax,brake

constitutes a feasible and legally acceptable proper response

under RSS, assuming all vehicles comply with RSS principles.

This follows from the RSS assumption that any vehicle be-

hind the ego vehicle maintains a safe distance and is capable

of braking, even if the ego vehicle applies adefault,lonmax,brake . How-

ever, as this situation is predictive in nature, and the actual

triggering of the protection mechanism may not occur exactly

after Brake.ttt time units, persistently applying adefault,lonmax,brake

could be overly conservative and detrimental to system per-

formance. As a solution, we propose two strategies: one for

scenarios where the ego vehicle is already executing a proper

response (Definition 2), and another for situations where the

vehicle is presently in a safe state (Definition 3).

Definition 2 (Protection-aware Proper Response for Lon-

gitudinal Braking): Let c1 represent the ego vehicle, follow-

ing another vehicle c2. Let dmin denote the minimum safe

distance as per Definition 1. Assuming the current distance

between c1 and c2 is d ≥ dmin, consider the worst case where
c2 brakes at −adefault,lonmax,brake until a full stop, and d = dmin.
The standard RSS proper response remains feasible if:

tfs = v1
adefault,lonmin,brake

≤ Brake.ttt

Otherwise, the braking must be intensified to at least:

acorrect,lonbrake = − v1
Brake.ttt

If acorrect,lonbrake > adefault,lonmax,brake , the correction is infeasible,

necessitating an evasive legal maneuver as per RSSDefinition

12. This reasoning applies equally to vehicles traveling in

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

opposite directions, adjusting braking signals according to

vehicle orientation.

Definition 12 of RSS outlines two conditions for a maneu-

ver to be deemed legal:

• At the initiation of the maneuver, the ego vehicle’s longi-

tudinal and lateral accelerations must comply with the

basic proper response constraints (see Definition 10)

relative to all other road users.

• Throughout the maneuver, the lateral acceleration (ac-

cording to mlat) must not exceed adefault,latmax,accel , and the

longitudinal acceleration (according tomlon) must re-

main within [−adefault,lonmax,brake , a
default,lon
max,accel].

Definition 10 of RSS specifies the Basic Proper Response

to Dangerous Situations, which mandates the execution of

either a lateral or longitudinal proper response whenever an

unsafe situation is detected (e.g., d < dmin, with dmin as

defined by Lemmas 1 and 2 in Section 2).

Remark 1. Under normal circumstances, vehicle c1 would

apply −adefault,lonmin,brake until a complete stop is achieved. The

time required for this maneuver is tfs = v1/adefault,lonmin,brake .

Since we are already at the decision-making stage, we disre-

gard ρ (the system response time). Therefore, ifBrake.ttt >
0 and Brake.ttt ≥ tfs, the standard proper response re-

mains feasible. Conversely, if Brake.ttt < tfs, braking be-

comes infeasible beyond Brake.ttt. To address this, the ego

vehicle must intensify its braking to achieve tfs ≤ Brake.ttt.
This adjusted braking force is calculated as acorrect,lonbrake =
v1/Brake.ttt. If this exceeds adefault,lonmax,brake , the correction

becomes infeasible, necessitating an evasive maneuver in line

with RSS Definition 12.

Definition 3 (Protection-aware Correction for Future

Proper Response Longitudinal Braking): Assume the same

initial conditions as in Definition 2, but vehicle c2 is not

braking at the present time, and both vehicles are traveling

in the same direction. In the worst-case scenario, at time t,
d = dmin. Now, suppose that at t+ ρ, c2 initiates braking at

−adefault,lonmax,brake , and during the interval [t, t+ρ], c1 accelerates
at adefault,lonmax,accel . At t+ ρ, the velocity of c1 becomes:

v1′ = v1 + adefault,lonmax,accel · ρ

According to Definition 2, the proper response at t + ρ is

feasible if:

Brake.ttt ≥ tfs′ = v1′

adefault,lonmin,brake

The acceleration correction required at time t is then:

a = v1/(Brake.ttt− ρ) (15)

acorrect,lonbrake =



a1 ≤ adefault,lonmax,accel , ifBrake.ttt− ρ

≥ tfs′
max

0 , if a = adefault,lonmax,accel
(Brake.ttt−p)∗adefault,lon

max,brake
−v1

p ,

Otherwise

(16)

Remark 2. RSS Definition 4 assumes the ego vehicle (c1)
can accelerate by adefault,lonmax,accel over [t, t+ ρ] and still remain

safe, perceiving the need to act only after ρ time units. Thus,
at t+ ρ, v1′ is given by v1′ = v1 + adefault,lonmax,accel · ρ. Should
c2 brake with −adefault,lonmax,brake from t + ρ and the predicted

triggering condition hold, feasibility requires Brake.ttt ≥
tfs′. The actuation at t + ρ remains valid if acorrect,lonbrake ≤
adefault,lonmax,brake . To anticipate this at time t, we deduct ρ from

Brake.ttt, leading to Brake.ttt− ρ ≥ tfs′.

To avoid unnecessary braking at time t, if Brake.ttt −
ρ ≥ tfs′

max (where tfs′
max = v1′/adefault,lonmax,brake), the ego

vehicle may accelerate freely up to adefault,lonmax,accel . If a =
v1/(Brake.ttt − ρ) = adefault,lonmax,accel , no positive accelera-

tion is feasible, but braking is not yet required. Otherwise,

if a = v1/(Brake.ttt− ρ) > adefault,lonmax,accel , preemptive brak-

ing is necessary to ensure feasibility of the future proper

response.

Considering braking over p time units, with initial velocity

v1, the velocity at t+ p becomes:

vf = p · a1 + v1 (17)

The braking must satisfy:

∃adefault,lonmin,brake ≤ a2 ≤ adefault,lonmax,brake | a2 = vf

Brake.ttt− p
(18)

Substituting eq. (17) into eq. (18) and assuming minimization

of braking (i.e., a2 = adefault,lonmax,brake), we derive:

Brake.ttt− p = p · a1 + v1
adefault,lonmax,brake

(19)

Rearranging:

a1 =
(Brake.ttt− p) · adefault,lonmax,brake − v1

p
(20)

Thus, whenever a ≤ adefault,lonmax,brake , the future proper re-

sponse at t + p remains feasible.4 Otherwise, an evasive

maneuver is required, per RSS Definition 12.

Update RSS Parameters

Brake.ttt - p < tfsmax ?

Brake.ttt

Start early brake with brake
to make Braek.ttt - p ≥ tfsmax

tfsmax + p

Updates on Protection
Mechanims Internal State

Updates PM.ttt

Figure 7. Example of modifying RSS to include constraints on minimum

braking capability.

Figure 7 illustrates an application ofDefinition 3. In scenar-

ios where the brake constraint triggers such that Brake.ttt−
4This formulation assumes adefault,lon

max,brake
is achievable unless con-

strained. If so, this value should be updated accordingly.

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

ρ < tfsmax, the systemmay face a future unsafe state if early

braking is not executed. In these cases, the proper response

prescribed by Definition 3 must be applied.

For non-dangerous scenarios involving c1 and c2 travel-

ing in opposite directions, evaluation of the future need for

correction should consider constraints imposed on steering

or throttle actuation, as covered by Definition 1.

6.3 Handling Overtake Maneuvers

To avoid performance trashing during complex maneuvers,

such as overtaking, due to early braking, we base on our pre-

vious work (Conradi Hoffmann et al. [2024a]) to set proper

responses using both braking and steering to attempt recover-

ing from such situations without impairing performance. Note

that even without these maneuver specific proper responses,

if all vehicles follow RSS, byDefinition 1, the verified motion

plan alongsideDefinition 2 andDefinition 3 already guarantee

braking without crashing whenever feasible. Thus, this is just

an attempt to avoid impairing the performance even further.

The execution of an overtake maneuver is affected by steer-

ing and acceleration. Nevertheless, the proper response may

require braking if steering or acceleration are constrained.

This paper addresses steering and braking constraints. No

optimization is done using positive longitudinal acceleration,

and it is left for future work. The possible conditions are split

into scenarios with and without opposite traffic concerning

the safety of each action. Then, overtake is analyzed based

on its current stage, namely, leaving/outside the original lane

(lateral velocity V lego ≥ 0) and returning to the original lane
(V lego < 0). Furthermore, critical steering constraints and

critical braking constraints are also considered. In terms of

overtake safety, we define the safe distance to return to the

lane (SDRL) as:

SDRL = Lego +Dminego,over (21)

whereLego is the length of the ego vehicle, andDminego,over
is the longitudinal safe distance between ego and the over-

taken vehicle, given by RSS. The notion of safe distance from

RSS (given by Dmin) assumes the front-most point of the

vehicle behind and the back-most point of the vehicle in front.

Therefore, the length of the vehicle must be considered as if

the vehicle was already in the original lane.

Definition 4 (Proper responses without opposite traffic):

1. If Steering.C = 1, the only possible outcome is to

apply areal,lonmin,brake until reaching a full stop.

2. If Steering.C < 1 and Brake.ttt > tfs proceed as

follows:

2.a) If V lego ≥ 0, create enough space to return to the
original lane until D(ego, over) ≥ SDRL, which can

be achieved by applying areal,lonmin,brake to a
real,lon
max,brake based

on V lego/Brake.ttt. Moreover, simultaneously apply

areal,latmin,brake until V lego = 0. Then, go to step 4.2.c.
2.b) If V lego < 0, go to step 4.2.c.
2.c) Apply areal,latmin,brake until the vehicle returns to the cen-

ter of the original lane. Finish the maneuver by applying

areal,latmin,accel until S = 0.
3. After executing the proper response, re-run the motion

planning module, setting the new goal to the closest

stopping area if possible. Otherwise, apply areal,lonmin,brake

until a full stop is achieved.

Suppose another vehicle is in the original lane behind the

vehicle being overtaken during the execution of proper re-

sponse 4.2.a, this vehicle is expected to follow the principle

of common sense rule 5 envisioned by RSS (”If you can

avoid an accident without causing another one, you must do

it.”) and comply with the action by creating enough space

for the ego vehicle to get back to the original lane, applying

adefault,lonmin,brake . The evaluation of feasibility of 4.2.a considers
the time necessary to complete it versus the time the vehicle

in the opposite direction would crash into the ego vehicle.

These times are calculated as follows:

First, estimate the time needed to create the necessary dis-

tance from the overtaken vehicle using egoa = adefault,lonmin,brake

if the overtaken vehicle applies positive acceleration, or

egoa = 0 otherwise. Assuming the vehicle being overtaken,

at the worst case, would be braking with adefault,lonmin,brake , td, the
time to create distance ≥ SDRL is given by solving the

following equation:

(−adefault,lonmin,brake)
2 ∗ t2 + (Vego − Vover) ∗ t− SDRL = 0

(22)

Where Vego and Vover are the speed of the ego vehicle and
the vehicle on the right, respectively. On the other hand, if,

in the worst case, the vehicle being overtaken is applying

aovertaken = 0, the time to create distance ≥ SDRL (td)
assuming the ego vehicle is braking using areal,lonmin,brake is given

by solving the following equation:

(−areal,lonmin,brake)
2 ∗ t2 + (Vego − Vover) ∗ t− SDRL = 0

(23)

Finally, the time needed to leave the current lane and return

to the original lane (tld) is a function of the current lateral

velocity V lego and the maximum steering angle possible to

be obtained with areal,latmin,brake. As disclosed by RSS, lateral

acceleration is assumed to change instantaneously with a turn

in the steering wheel. Therefore, in the proper response pro-

posed here, the constraint into the steering wheel will result in

a constant acceleration of areal,latmin,brake in lateral velocity dur-

ing its execution. (D(ego, lc)) is the length of the line traced
from the center of the original lane, the current position of the

vehicle, using the fixed steering angle. The time required to

travel this distance is given by solving the following equation:

(areal,latmin,brake)
2 ∗ t2 + (Vego) ∗ t− (D(ego, lc)) = 0 (24)

Thus, given the sum of td and dld as t4.2.a, the operation

is feasible only when the vehicle in the opposite direction

can brake sufficiently to avoid crashing into the ego vehicle

while they are still in the same lane. The time tbc needed
for the vehicle in the opposite direction to brake assuming

adefault,lonmin,brake is given by solving:

(−adefault,lonmin,brake) + aego,lon ∗ t2

2 + (25)

(VOP + Vego) ∗ t− (D(ego, op)) = 0

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

During the execution of proper response 4.2.b, the distance
between the ego and the vehicle being overtaken is expected

to be at least SDRL. Otherwise, ego should not be allowed
to return to the original lane (e.g., already be heading to orig-

inal lane5). Therefore, the time required to complete 4.2.b
is t4.2.b = tld. The analysis of feasibility of the proper re-

sponses given in Definition 4 is defined as:

Definition 5 (Feasibility of proper responses in the pres-

ence of Opposite Traffic):

1. If Brake.ttt ≥ tfs, proper response 4.1 is safe.
2. If Brake.ttt < tfs, proper response 4.1 is safe when-

ever D(ego, op) >= Dmin(ego, op) considering the

updated parameter (e.g., brake with maximum brake un-

til Brake.ttt and slow down by simply not accelerating

is sufficient to full stop before crashing).

3. Let t4.2.a be the time required to complete step 4.2.a
given by equations (22 or 23) and equation (24). Let

tbc be the minimum time remaining before crashing

into another vehicle in the opposite direction, assuming

that it applies a proper response according to RSS (e.g.,

adefault,lonmin,brake), given by equation (25). Proper response

4.2.a is safe whenever t4.2.a < tbc < Brake.ttt.
4. Let t4.2.b be the time required to complete step 4.2.b

given by equation (24). Let tbc be as defined above.

Proper response 4.2.b is safe whenever t4.2.b < tbc <
Brake.ttt.

5. Whenever 4.2.a or 4.2.b are unsafe, abort the proper

responses and follow the original RSS proper response

for unsafe longitudinal distance with opposite traffic,

applying brake according to Brake.ttt. This is safe

whenever D(ego, op) >= Dmin(ego, op) considering
the updated parameter.

The aforementioned procedure can be applied to get vehi-

cles back into a safe state during an overtake with and without

opposite traffic, with partial and critical steering constraints

and partial braking constraints. Moreover, critical brake con-

straint is supported in 4.2.b whenever t4.2.b < tbc, and in

4.1.a, whenever t4.2.a < tbc. Other proper responses may be

proposed if there is a valid road to the left of the ego vehicle

during an overtake. This condition is out of the scope of this

paper and is left for future work.

6.4 Proving Compliance with RSS

We will now prove that the actions proposed in Definition 1,

Definition 2, and Definition 3 are compliant with Definition

12 of RSS. Note that inDefinition 1, we are only assuming the

possibility of constrained actuation on areal,latmax,brake, a
real,lat
max,accel,

and areal,lonmax,accel to the point they will only decrease up to 0

(e.g., the actuation is fully constrained). On the other hand,

for Definitions 2 and 3, we never assume accelerations out-

side the range [−adefault,lonmax,brake , a
default,lon
max,accel]. Thus, the second

condition of Definition 12 of RSS will never be broken.

Definition 10 of RSS points to the proper responses for

longitudinal and lateral movement, regulated by Definitions

4 and 8 of RSS, respectively. Definition 1 in itself, aims at

5This assumption holds as overtakes are expected to follow traffic rules,

and therefore, perform overtake while in curves or areas with no visibility.

verifying Definition 10 of RSS throughout discrete steps into

a motion plan. Moreover, in Section 6.1, we demonstrate

that the notion of constrained areal,latmax,brake and a
real,lat
max,accel will

promote an early actuation based on Definitions 8 of RSS to

enforce safety previous to the loss of steering movement. In

this way, maneuvers that would be impacted by a potential

triggering of a protection mechanism during its execution

(e.g., changing lanes or performing an overtake, similar to

the examples presented in Figure 6), will be rejected during

planning phase based on the formulation proposed in Defi-

nition 1 of this paper. Thus, the motion planning algorithm

should create new planning considering the constraints.

Nevertheless, the other vehicles may put themselves in

the opposite direction of the road, and vehicles in front may

start braking at adefault,lonmax,brake , as they are unaware of the con-

straints of the ego vehicle. In both scenarios, this is the exact

point where our approach affects RSS, guaranteeing the safety

condition assumed by Definitions 4 of RSS (i.e., ”until the

situation is non-dangerous again”) even when considering a

worst-case scenario of a full stop while considering a possible

fault in the near future. Definitions 3, focuses on guaranteeing

safety by anticipating a braking procedure in the presence of

a potential triggering of a protection mechanism. Definitions

2 focuses on adapting the braking up to adefault,lonmax,brake based on

the distance in time to the possible fault.

In this way, we not only comply with the first and second

conditions of Definition 12 of RSS but make the first one

robust to the triggering of protection mechanisms. We may

now write: ”The longitudinal and lateral accelerations of the

ego vehicle at the initial time of the maneuver satisfy the

proper response constraints applied to him, considering all

agents and the protection mechanisms that could be triggered

during the maneuver execution.”

Wewill now prove this conclusion using an inductive proof,

making a simple addition to cover our adjustments in the

inductive proof presented in Lemma 5 of RSS:

RSS’s Lemma 5 Consider a multi-lane road where all

lanes share the same geometry. Suppose that at any time

t > 0, whenever a prediction of the triggering of a protection

mechanism results in a time-triggering metric > 0, the ego
vehicle will update RSS parameters accordingly. Moreover,

suppose that at all times, all cars on the road comply with

the basic proper response as given in Definition 10 of RSS.

Then, there will be no collisions, even in the presence of a

protection mechanism triggering.

Proof. We will prove that for any pair of cars, c1, c2, there
is a sequence of increasing times, 0 = t0 ≤ t1 < t2 < t3 <
..., such that for every time ti, i ≥ 1, there is no collision

between c1 and c2 in the time interval [ti−1, ti], and at time ti
the situation between c1 and c2 is not dangerous. The basis of
the induction is the earliest time, t1, in which one of the cars
is starting to drive. By the definition of proper response, and

considering that possible triggers for protection mechanisms

have been predicted and RSS parameters have been adjusted,

t1 is not a dangerous situation, and it is clear that there cannot
be an accident from t0 to t1. Suppose the inductive assump-

tion holds for t1 < ... < ti. So, at time ti, the situation is

non-dangerous. Let tb be the earliest time after ti for which
the situation becomes dangerous. If no such tb exists, then
there will be no accidents in the time interval [ti,∞) (because,

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

before an accident occurs, the situation must be dangerous),

hence we are done. Otherwise, suppose that tb exists due to
one of the cars being affected by steering constraints. Thus,

tb is perceived only by this car. In this scenario, the car under
constraints initiates a proper response according to Definition

10 of RSS. Then there is a time tc ≥ tb for which either the
situation becomes non-dangerous, and we are done. Suppose

the situation is also considered dangerous for both cars since

the constrained car already started its proper response and

compensated for its steer constraint before triggering the pro-

tection mechanisms. In that case, the situation falls under

the regular RSS proper response. There is a time td ≥ tc for
which the situation becomes non-dangerous, or the relative

longitudinal velocity of the two cars is non-positive, or the

relative lateral velocity of the two cars is non-positive. In

the former case, we set ti+1 = td. Note that, for the first
case, if the situation becomes non-dangerous at tc, we have
td = tc. In the latter cases, we set ti+1 to be the earliest

time after td in which the cars are again not in a dangerous
situation, and if no such time exists, it must mean that the cars

would never collide in the time interval [td,∞). In all cases,
by the definitions of proper response and safe distance, and

Definitions 2 and 3 proposed here, there will be no accident in

the time interval [tb, td]. Moreover, there can be no accidents

in the time intervals [ti, tb] and [td, ti+1]. Hence, our induc-
tive argument is concluded. Finally, it is crucial to note that

the definitions of proper response imply no contradictions

between the proper response of c1 relative to ci and relative
to cj , for any other two cars ci, cj .
Therefore, assuming all cars in the scenario are RSS-

compliant, reacting to faults, whether predicted or pointed

by Protection Mechanisms would not generate unsafe situa-

tions as all vehicles respect safe distances according to road

parameters for acceleration and braking.

We note that having big ∆Ωi will imply small braking

compensations as the early deceleration is modeled to be

the minimum sufficient to allow full stop before reaching

Brake.ttt of 0. Thus, if at the next prediction there is no

more signs of triggering the protection mechanism in the near

future, the false positive impact is minimum to the system per-

formance. Nonetheless, if such operation is done, for instance,

during an overtake with traffic in the opposite direction and

the completion of the maneuver is unfeasible (via Definition

1), the proposed overtake maneuver will be engaged to either

return to the original lane or engaged a full stop before crash-

ing in the current lane, the latter being feasible whenever all

vehicles follows RSS constraints as assumed in Lemma 56.

Thus, even if a predictor presents false positives, early

deceleration might impair traffic performance but will not

reduce safety.

6.5 Overtake Proper Responses Compliance

with Legal Evasive Maneuvers

The following paragraphs demonstrate compliance of the pro-

posed overtake-specific proper responses with legal evasive

6Safe once Definition 1 handles unsafe situations that would be foresight

before engaging a motion plan, and, if the motion plan is allowed to take

place, the distances before loosing an actuator are always safe if all cars react

according to RSS constraints.

maneuvers defined by RSS.

First, constraining an actuation to its limit will re-

duce the original minimum and maximum to 0. Further-

more, the scenarios presented here are always handled

considering the constrained actuation, therefore, ∀alat ∈
proper_responsesalat < adefault,latmax,accel and ∀alon ∈
proper_responses− adefault,lonmax,brake < alon < adefault,lonmax,accel .

The second requirement for an evasive maneuver to be

considered legal by RSS is that the longitudinal and lateral

accelerations of the ego vehicle should satisfy the baseline

proper response constraints applied to him with respect to all

other agents. Since this paper considers the possibility of actu-

ation to be impaired by faults, some constraints may naturally

disrespect RSS proper responses, for instance, braking with at

least adefault,lonmin,brake whenever facing a dangerous longitudinal

situation will never be achieved if areal,lonmin,brake < adefault,lonmin,brake .

To this end, the initial steps described in the start of Section

6 consist of updating RSS parameters and re-evaluating the

situation to overcome this issue.

Our proper responses still assume respecting other nearby

vehicles considering the feasibility analysis of the proper re-

sponses through the time boundaries established byDefinition

5, and therefore, covering vehicles in the opposite direction.

Vehicles behind the ego are expected to cope with RSS proper

responses and respond to its braking by keeping a safe longi-

tudinal distance. This assumption does not disrupt RSS safety

analysis since braking is bounded within the default minimum

and maximum. Furthermore, safe distances to vehicles on the

left of the ego vehicles will never be broken as long as the ego

is not applying positive lateral acceleration. An exception to

this scenario is a possible steering constraint when leaving

the original lane, where the vehicle applies a positive lateral

acceleration. Nevertheless, the proposed proper responses act

on the limit of available steering and braking (if not critical)

to avoid crashes whenever feasible. This scenario is covered

in Definition 4.2.a, where the V lego ≥ 0, and the first action
is to brake longitudinally until D(ego, over) ≥ SDRL and

V lego = 0. Note that if steering constraint is critical, the first
condition 4.1 will rely on braking. Moreover, the crash is

unavoidable if the brake is critical to the point where it cannot

stop the vehicle before crashing into another vehicle or the

road boundaries. Thus, the proper responses are characterized

as legal maneuvers and cope with the original RSS.

7 Constraint-Aware RSS in CARLA

To demonstrate the new proper responses in action, we inte-

grate the Safety Enforcement Unit, and RSS, with CARLA.

Car Learning to Act (CARLA), proposed by Dosovitskiy et al.

[2017], is a simulator that has grown in popularity over the

last few years. CARLA promotes detailed scenarios for sim-

ulating AVs. Moreover, in recent versions, CARLA supports

integrating with other simulation tools, including SUMO.

CARLA provides tools for converting maps, trajectories, and

vehicle blueprints to integrate with SUMO. Finally, the simu-

lation synchronization is done periodically via a Client Ap-

plication Programming Interface (API) of CARLA, enabling

reproducibility of results.

In our implementation, the RSS module is integrated with

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

Figure 8. Glance at CARLA simulated scenario.

CARLA at the control interface level, specifically before

the planning module transmits the future waypoints to the

PID controller. At this stage, the RSS module overrides the

next-step target speed and steering angle according to the com-

puted proper responses for detected unsafe conditions—that

is, whenever the actual distance falls below the minimum safe

distances calculated by RSS. Consequently, this integration

requires, at a minimum, the real-time dynamics of the ego

vehicle (position and velocity) as well as those of surrounding

objects.

The decision-making module is designed under the assump-

tion that protection mechanisms continuously share their in-

ternal states and that predictive models are available to RSS.

With this information, the Constraint-Aware RSS is capa-

ble of dynamically updating both actuation constraints and

time-to-trigger metrics at runtime. Based on these updates,

the module selects the appropriate response strategy: it ap-

plies either Definition 2 or Definition 3 whenever Brake.ttt is

greater than zero, or otherwise relies on Definition 1. When

anticipating full constraint of an actuation channel, it adjusts

braking behavior accordingly with respect to Brake.ttt.

During simulation, we use an electric vehicle as the EGO,

and induce a battery cell over-voltage fault to evaluate the

system’s performance. Assuming that the BMS shares its

internal state with the RSS module inside the SEU, and that

either a look-up-table or a predictor P is used for actively

monitoring system health, the fault is anticipated to cross the

safety threshold within a 1-second horizon. At this point in

the simulation, the ego vehicle is positioned immediately prior

to initiating an overtaking maneuver, replicating the scenario

illustrated in Figure 6, and corresponding to the exact frame

shown in Figure 8.

7.1 Safe Distance Keeping Experimental Re-

sults

Figure 9 illustrates the evolution of the inter-vehicle distance

during simulation, alongside the minimum safe distance as

defined by both the original RSS and the proposed Constraint-

Aware RSS. Correspondingly, Figure 10 depicts the vehicle

speeds for the same scenario, comparing the behaviors under

both frameworks. In this scenario, the standard RSS fails

to respond promptly and continues along its initial trajec-

tory, crossing into adjacent lanes before applying emergency

braking, which is ultimately triggered by a system shutdown.

In contrast, the Constraint-Aware RSS updates its behavior

in accordance with eq. (5.3), initiating preemptive braking

Figure 9. EGO vehicle’s distance to vehicle in front and the Minimum Safe

Distance (MSD) according to RSS.

as soon as predictive conditions indicate imminent actuation

loss—specifically, when steering, throttle, and braking ca-

pabilities are forecasted to be fully constrained before the

maneuver can be completed. Leveraging the Brake.ttt metric,

the system anticipates the loss of actuation and proactively

avoids executing the overtake maneuver, opting instead for

early braking.

At simulation time step 57, the leading vehicle begins to

decelerate, prompting the ego vehicle to also reduce its speed.

As the relative speed decreases and closing distance narrows,

the vehicle governed by the original RSS attempts an overtak-

ing maneuver. However, it loses the capability to complete

this action at time step 143 due to a full system shutdown,

which had been predicted by the fault predictor P one sec-

ond earlier (at step 123). It is important to note that, in the

simulation, the system shutdown results in a wheel lock of

the electric vehicle model, bringing the vehicle to a complete

stop within a few steps (by time step 164).

The speed profiles further illustrate the advantage of the

Constraint-Aware RSS: the ego vehicle equipped with this

system begins preemptive braking precisely at time step 123,

coinciding with the fault prediction, and successfully comes

to a halt before the shutdown occurs. Moreover, it maintains

controlled steering to remain within its lane. In contrast, the

ego vehicle operating under the original RSS only reaches a

full stop later, due to the mechanical wheel lock induced by

the shutdown, by which point it has already veered out of its

lane.

7.2 Overtake Proper Response Results

The previous experiment tackled a view of the system consid-

ering a fault being detect in the early moments of an overtake

maneuver. Now, we will demonstrate an experiment in which

the fault is detect after the vehicle left the original lane and is

facing traffic in the opposite direction. First of all, we must

take into consideration that, if the maneuver is engaged, by

Definition 1, the plan is safe and the distance in all steps is

safe in regards to RSS minimum distance. Therefore, at any

moment that an unsafe situation is found, the vehicles are

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

Speed (m/s) - Context-Aware RSS

Speed (m/s) - Original RSS

Fautl Predicted

Power-Train Shutdown

Figure 10. EGO vehicle’s speed considering original RSS and Constraint-

Aware RSS.

able to return to a safe state (e.g., full stop) by applying the re-

spective braking proper response in accordance to Definition

2 and 3.

The scenario follows a constant turn-rate and acceleration

(CTRA)model with time-indexed fault injections around lane-

change, specifically mid maneuver, when the ego vehicle is

on the opposite lane attempting to gain sufficient distance to

return to the original lane and complete the overtake. Figure

11 presents the regular scenario, in which the vehicle does not

faces any fault during the overtake. The initial configuration

is: 1) opposite vehicle driving at 17m/s; 2) vehicle to be

overtaken (red) driving at 10m/s; 3) ego vehicle (blue) ini-
tially driving at 10m/s, accelerating at 3.5m/s2 (areal,lonmax,accel),

with a turn rate of ±0.25 rad/s, applied during lane changes,
respectively. The simulation step is 100 milliseconds. The

figure illustrates time via a gradient of the dot colors, white

being the first time-step, and the respective color being the

final time-step (e.g., when ego vehicle fully stops). After fin-

ishing the overtake, the ego vehicle brakes with areal,lonmax,brake

until a full stop is achieved.

In this experiment, we simulate a fault at 2 seconds of

simulation, when the ego vehicle arrives at the center of the

opposite lane. The BMS protection mechanism updates its

internal state, and either via a look-up-table search or a pre-

dictor, a 1 second time-to-trigger is identified. Figure 12

presents the first scenario, where the same proper response

used in the previous example (preemptively braking) is used.

By doing so, this allows for both ego vehicle and the vehicle

in the opposite direction to achieve full stop without crashing.

When considering the overtake-specific proper response,

specifically the one described byDefinition 4 andDefinition 5,

the proper response will attempt returning to the original lane

by using steering. Figure 13 presents the scenario where the

proper response 4.2.a is attempted. Note that the ego vehicle

is not able to create enough space (SDLR) and return to the

original lane in time (e.g., t4.2.a < Brake.ttt). Thus, the
proper response should be braking according to Brake.ttt
instead, according to Definition 5.5. Nevertheless, it was able

to fully stop the vehicle without crashes. Since safe distances

to all nearby vehicles is taken into consideration, the vehicle

will either attempt this maneuver or fully stop in the lane,

which is feasible due to Definition 1, 2, and 3.

2 0 2
x (m)

300

250

200

150

100

50

0

y
(m

)

Lead (up)
Overtaker (up)
Opposite (down)

Figure 11. Complete overtake maneuver in a three vehicle scenario with

one vehicle in the opposite direction going down (purple), the vehicle that

will be overtaken (red), and the ego vehicle performing the overtake (blue).

A gradient from white to the aforementioned color is used to represent time.

The simulation step is 100 milliseconds.

2 0 2
x (m)

300

250

200

150

100

50

0

y
(m

)

Lead (up)
Overtaker (up)
Opposite (down)

Figure 12. Overtake maneuver where a fault is perceived at 2 seconds of

simulation. RSS proper response and preemptively braking promote a safe

full stop for both ego vehicle (blue) and the vehicle in the opposite direction

(purple). The same color semantics from previous figure is used in this figure

to represent time.

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

2 0 2
x (m)

300

250

200

150

100

50

0
y

(m
)

Lead (up)
Overtaker (up)
Opposite (down)

Figure 13. Overtake maneuver where a fault is perceived at 2 seconds

of simulation. By applying Definition 4.2.a proper response, the vehicle

attempts to return to the original lane but fails since the fault takes place

before the maneuver is completed. Nonetheless, the vehicle is fully stopped

without crashing and freeing more space for other vehicles in the opposite

direction to attempt evasive maneuvers.

Finally, we also demonstrate the scenario where the vehicle

is not yet in the middle of the opposite lane, and applies the

proper response given by Definition 4.2.a to safely return

to the original lane and avoid further performance losses.

Figure 14 presents the scenario where the fault is perceived

at 1.5 seconds instead of 2, and the vehicle is able to return

to the original lane safely within 1 second (e.g., t4.2.a ≥
Brake.ttt).

7.3 SEU Verification Latency

This evaluation examines the SEU’s performance in provid-

ing low-overhead, real-time monitoring and timing verifica-

tion of data, based on the RSS safety principles discussed

earlier. Table 1 offers a detailed breakdown of the latency

involved in both updating traces and verifying data within

the SEU. Whenever new data is detected on the network, the

SEU immediately triggers the update() function of the cor-

responding Verifiable SmartData. This operation transfers

the message contents into an internal buffer, which is then

processed by the Boolean Filters µ assigned to monitor this

specific SmartData. In this evaluation scenario, all SmartData

instances are being monitored, with a special focus on the

filters µRSSlon
and µRSSlat

, which assess longitudinal and

lateral safety conditions for both the EGOMotion Vector and

the Objects Fuser. These checks follow the RSS response

time of 100ms established before.
The DynamicsEGO module estimates the vehicle’s mo-

tion using IMU and GNSS data over time. Its output is crit-

ical for the Camera, LiDAR, and Object Fuser modules, as

it supports the generation of the object list used for RSS

verification. Consequently, there are four monitoring re-

quests directed at DynamicsEGO. When a Boolean Filter’s

2 0 2
x (m)

300

250

200

150

100

50

0

y
(m

)

Lead (up)
Overtaker (up)
Opposite (down)

Figure 14. Overtake maneuver where a fault is perceived at 1.5 seconds

of simulation. By applying Definition 4.2.a proper response, the vehicle

is able to return to the original lane before the 1 second to return to the

original lane but fails since the fault takes place before the maneuver is

completed. Nonetheless, the vehicle is fully stopped without crashing and

freeing more space for other vehicles in the opposite direction to attempt

evasive maneuvers.

update() function is called, it runs the µ function and noti-

fies any safety properties that depend on that filter, thereby

logging a new state sample in the property’s trace through

STL_Verifier.update().
In Table 1, the first column categorizes the type of data,

while the second column reports the average latency for exe-

cuting the update() function for each data type. For multi-

dimensional data like 3D positions, accelerations, and angular

velocities, the reported values represent the combined aver-

ages of their individual SmartData components. The third

column summarizes the average latency of the evaluate()
function, aggregated across all properties that utilize the re-

spective data. These averages are based on measurements

collected over 2000 execution cycles. The final row of the

table provides the cumulative sum of these average laten-

cies. All evaluations were conducted on the NVIDIA Jetson

AGX Orin 64 ECU, which serves as the computing platform

for vision-based tasks (such as object detection and tracking

using LiDAR point clouds and camera imagery) in a real-

world autonomous vehicle prototype, developed as part of the

SmartData on Wheels project7. Considering a response time

of RSS of 100ms, the verification procedure is able to cope
with the periodicity consuming less than 1% of the platform

computational power.

8 Final Remarks

This paper presented an approach to improve RSS to be ro-

bust to faults by leveraging the knowledge behind vehicular

protection mechanisms. Vehicular Protection mechanisms

7https://lisha.ufsc.br/SDAV+Overview

https://lisha.ufsc.br/SDAV+Overview

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

Table 1. Latency of trace update and safety verification in NVIDIA Jetson Orin ECU.

Data (Ωj) Avg update() Avg evaluate()
GNSS Location (X,Y,Z) 29.796µs 15.075µs
IMU Accelerations x3 34.118µs 15, 144µs
IMU Heading 11.287µs 4.192µs
IMU Angular Velocities x3 42.765µs 16.003µs
DynamicsEGO 35.02µs 19.47µs
Dynamicsnearby objects CAM 13.2µs 3.244µs
Dynamicsnearby objects LiDAR 16.53µs 4.235µs
Dynamicsnearby objects Fuser 24.018µs 3.43µs
Total Latency 206.734µs 80.793µs

are designed to be proactive, constantly monitoring the sig-

nals to identify tendencies generated prior to a fault in order

to actuate by either turning off a component or limiting its

actuation range.

Our approach is based on predicting when a protection

mechanism will be triggered. We model a time-to-trigger

metric that allows for an early reaction to the possibility of

losing an actuation in the near future, ensuring the system is

always prepared for potential faults. The baseline approach

relies on either having a direct time-to-trigger metric when-

ever intrinsic of the protection mechanism, or, when this is

not available a design time look-up-table for protection mech-

anisms internal states, and finally, in the worst case, relying

on predictors. However, predictors have intrinsic prediction

errors that may lead to a false positive of a future triggering

of a protection mechanism. Therefore, two new proper re-

sponses are proposed to compensate for a possible loss of the

braking system. They focus on braking with the minimum

braking required to achieve a complete stop before losing the

ability to brake. Thus, by avoiding hard braking, we minimize

the thrashing of the AV performance due to false positives.

Nevertheless, having predictors with minimal errors is still

crucial to avoid trashing the AV performance. To reduce the

impact of performances losses on more complex maneuvers,

such as overtake, we have combined the proposed approach

with overtake-specific proper responses that also consider

using steering to recover from actuator loss.

Finally, by modeling the protection mechanisms as Smart-

Data, we can extract formal verification rules automatically,

without need for expert knowledge in formal methods from

system programmers. The monitoring of the state of pro-

tection mechanisms and triggering of the proper responses

can be done at run time automatically by the SEU with low

overhead (< 1% of platform processing power).

For future works, we envision evasive maneuvers to sup-

plement decision-making when a proper response is deemed

unfeasible and novel approaches to improve system perfor-

mance in the face of false positives, such as using side lanes.

Furthermore, expanding the proposed solutions to scenarios

with non-autonomous traffic, such as pedestrian and regular

drivers, is an open challenge to be addressed in the next steps

of the research.

Acknowledgements

This paper is an extension of the conference paper ”José Luis

Conradi Hoffmann, Antônio Augusto Fröhlich, Marcus Völp, and

Paolo Milazzo. 2024. Using Vehicular Protection Mechanisms

to Enable Fault-Aware Safety Verification of Autonomous Ve-

hicles. In Proceedings of the 13th Latin-American Symposium

on Dependable and Secure Computing (LADC ’24). Associa-

tion for Computing Machinery, New York, NY, USA, 55–64.

https://doi.org/10.1145/3697090.3697101”. We would like to ac-

knowledge Murillo Guindani, from the Software/Hardware Integra-

tion Lab for supporting the simulation configuration in CARLA.

Funding

This research was partially funded by FUNDEP Rota 2030 project

AutoDL (29271.03.01/2023.04-00).

Authors’ Contributions

JLCH, AAF,MV, and PM contributed to the conception of this study.

JLCH performed the experiments. AAF, MV, and PM contributed

with the revision of the manuscript. JLCH is the main contributor

and writer of this manuscript. All authors read and approved the

final manuscript.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The source code for the SEU implementation is available at LISHA’s

GitLab.

References

Althoff, M. and Magdici, S. (2016). Set-based prediction

of traffic participants on arbitrary road networks. IEEE

Transactions on Intelligent Vehicles, 1(2):187–202. DOI:

10.1109/TIV.2016.2622920.

Conradi Hoffmann, J. L., Augusto Fröhlich, A., and Völp, M.

(2024a). Enhancing rss to be fault tolerant during overtak-

ing maneuvers. In IECON 2024 - 50th Annual Conference

of the IEEE Industrial Electronics Society, pages 1–6. DOI:

10.1109/IECON55916.2024.10905937.

Conradi Hoffmann, J. L., Fröhlich, A. A., Völp, M., and Mi-

lazzo, P. (2024b). Using vehicular protection mechanisms

to enable fault-aware safety verification of autonomous

https://gitlab.lisha.ufsc.br/pub/Hoffmann-PhD
https://gitlab.lisha.ufsc.br/pub/Hoffmann-PhD
https://doi.org/10.1109/TIV.2016.2622920
https://doi.org/10.1109/IECON55916.2024.10905937

Safe and Protected: Combining Protection Mechanism with Safety

Verification In Autonomous Vehicles Hoffmann et al. 2026

vehicles. In Proceedings of the 13th Latin-American Sym-

posium on Dependable and Secure Computing, LADC ’24,

page 55–64, New York, NY, USA. Association for Com-

puting Machinery. DOI: 10.1145/3697090.3697101.

Conradi Hoffmann, J. L., Passig Horstmann, L., and Fröhlich,

A. A. (2024c). Transparent integration of autonomous

vehicles simulation tools with a data-centric middleware.

Design Automation for Embedded Systems, 28(1):45–66.

DOI: 10.1007/s10617-023-09280-w.

Cui, J., Sabaliauskaite, G., Liew, L. S., Zhou, F., and Zhang,

B. (2019). Collaborative analysis framework of safety

and security for autonomous vehicles. IEEE Access,

7:148672–148683. DOI: 10.1109/access.2019.2946632.

de Lucena, M.M. and Augusto Fröhlich, A. (2022). Modeling

misbehavior detection timeliness in vanets. In 2022 IEEE

27th International Conference on Emerging Technologies

and Factory Automation (ETFA), pages 1–8, Stuttgart, Ger-

many. IEEE. DOI: 10.1109/ETFA52439.2022.9921605.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and

Koltun, V. (2017). CARLA: An open urban driving simula-

tor. In Proceedings of the 1st Annual Conference on Robot

Learning, pages 1–16. DOI: 10.48550/arXiv.1711.03938.

Fröhlich, A. A. (2018). SmartData: an IoT-ready API for

sensor networks. International Journal of Sensor Networks,

28(3):202. DOI: 10.1504/ijsnet.2018.096264.

Gruber, F. and Althoff, M. (2018). Anytime safety veri-

fication of autonomous vehicles. In 2018 21st Interna-

tional Conference on Intelligent Transportation Systems

(ITSC), pages 1708–1714, Maui, HI, USA. IEEE. DOI:

10.1109/ITSC.2018.8569950.

Hoffmann, J. L. C. and Fröhlich, A. A. (2022). Smartdata

safety: Online safetymodels for data-driven cyber-physical

systems. In 48th Annual Conference of the IEEE Industrial

Electronics Society, pages 1–6, Brussels, Belgium. IEEE.

DOI: 10.1109/IECON49645.2022.9969074.

Hoffmann, J. L. C. and Fröhlich, A. A. (2025). Smart-

data: Toward the data-driven design of critical sys-

tems. IEEE Access, 13:41865–41886. DOI: 10.1109/AC-

CESS.2025.3548542.

Hoffmann, J. L. C., Horstmann, L. P., Wagner, M., Vieira, F.,

de Lucena, M.M., and Fröhlich, A. A. (2022). Using formal

methods to specify data-driven cyber-physical systems. In

2022 IEEE 31st International Symposium on Industrial

Electronics (ISIE), pages 643–648, Anchorage, AK, USA.

IEEE. DOI: 10.1109/ISIE51582.2022.9831686.

Huang, J. and Tan, H.-S. (2016). Control system design of

an automated bus in revenue service. IEEE Transactions

on Intelligent Transportation Systems, 17(10):2868–2878.

DOI: 10.1109/tits.2016.2530760.

International Organization for Standardization (2018). ISO

2626: Road vehicles – functional safety. Avail-

able at: https://www.iso.org/obp/ui/#iso:std:
iso:26262:-1:ed-2:v1:en.

Kim, S.-W., Qin, B., Chong, Z. J., Shen, X., Liu, W., Ang,

M. H., Frazzoli, E., and Rus, D. (2015). Multivehicle co-

operative driving using cooperative perception: Design

and experimental validation. IEEE Transactions on In-

telligent Transportation Systems, 16(2):663–680. DOI:

10.1109/TITS.2014.2337316.

Kong, W., Luo, Y., Qin, Z., Qi, Y., and Lian, X. (2019).

Comprehensive fault diagnosis and fault-tolerant protec-

tion of in-vehicle intelligent electric power supply net-

work. IEEE Transactions on Vehicular Technology,

68(11):10453–10464. DOI: 10.1109/TVT.2019.2921784.

Koopman, P. and Wagner, M. (2016). Challenges in au-

tonomous vehicle testing and validation. SAE Interna-

tional Journal of Transportation Safety, 4(1):15–24. DOI:

10.4271/2016-01-0128.

Lucchetti, F., Graczyk, R., and Völp, M. (2023). Toward

resilient autonomous driving—an experience report on inte-

grating resilience mechanisms into the apollo autonomous

driving software stack. Frontiers in Computer Science,

5:1–11. DOI: 10.3389/fcomp.2023.1125055.

Ludwich, M. K. and Frohlich, A. A. (2015). Proper handling

of interrupts in cyber-physical systems. In 2015 Inter-

national Symposium on Rapid System Prototyping (RSP),

pages 83–89, Piscataway, New Jersey, USA. IEEE. DOI:

10.1109/RSP.2015.7416551.

Maler, O. and Nickovic, D. (2004). Monitoring temporal prop-

erties of continuous signals. In Lakhnech, Y. and Yovine,

S., editors, Formal Techniques, Modelling and Analysis of

Timed and Fault-Tolerant Systems, pages 152–166, Berlin,

Heidelberg. Springer Berlin Heidelberg. DOI: 10.1007/978-

3-540-30206-3_12.

of Automotive Engineers, I. S. (2021). Taxonomy and defini-

tions for terms related to driving automation systems for

on-road motor vehicles. DOI: 10.4271/j3016_202104.

Orzechowski, P. F., Li, K., and Lauer, M. (2019). To-

wards responsibility-sensitive safety of automated vehi-

cles with reachable set analysis. In 2019 IEEE Interna-

tional Conference on Connected Vehicles and Expo (IC-

CVE), pages 1–6, Graz, Austria. IEEE. DOI: 10.1109/IC-

CVE45908.2019.8965069.

Pek, C., Manzinger, S., Koschi, M., and Althoff, M. (2020).

Using online verification to prevent autonomous vehicles

from causing accidents. Nature Machine Intelligence,

2(9):518–528. DOI: 10.1038/s42256-020-0225-y.

Sangha, M., Gomm, J., Yu, D., and Page, G. (2005). Fault de-

tection and identification of automotive engines using neu-

ral networks. IFAC Proceedings Volumes, 38(1):272–277.

16th IFAC World Congress. DOI: 10.3182/20050703-6-

CZ-1902.01933.

Shalev-Shwartz, S., Shammah, S., and Shashua, A.

(2017). On a formal model of safe and scalable

self-driving cars. CoRR, abs/1708.06374:1–37. DOI:

http://arxiv.org/abs/1708.06374.

Sidorenko, G., Fedorov, A., Thunberg, J., and Vinel, A.

(2022). Towards a complete safety framework for longitu-

dinal driving. IEEE Transactions on Intelligent Vehicles,

7(4):809–814. DOI: 10.1109/TIV.2022.3209910.

Sivakumar, A. and Mohanty, P. (2020). Electronic sys-

tem design of a formula student electric car. In 2020

IEEE International Conference on Distributed Comput-

ing, VLSI, Electrical Circuits and Robotics (DISCOVER),

pages 115–120, Udupi, India. IEEE. DOI: 10.1109/DIS-

COVER50404.2020.9278091.

https://doi.org/10.1145/3697090.3697101
https://doi.org/10.1007/s10617-023-09280-w
https://doi.org/10.1109/access.2019.2946632
https://doi.org/10.1109/ETFA52439.2022.9921605
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.1504/ijsnet.2018.096264
https://doi.org/10.1109/ITSC.2018.8569950
https://doi.org/10.1109/IECON49645.2022.9969074
https://doi.org/10.1109/ACCESS.2025.3548542
https://doi.org/10.1109/ACCESS.2025.3548542
https://doi.org/10.1109/ISIE51582.2022.9831686
https://doi.org/10.1109/tits.2016.2530760
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://doi.org/10.1109/TITS.2014.2337316
https://doi.org/10.1109/TVT.2019.2921784
https://doi.org/10.4271/2016-01-0128
https://doi.org/10.3389/fcomp.2023.1125055
https://doi.org/10.1109/RSP.2015.7416551
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.4271/j3016_202104
https://doi.org/10.1109/ICCVE45908.2019.8965069
https://doi.org/10.1109/ICCVE45908.2019.8965069
https://doi.org/10.1038/s42256-020-0225-y
https://doi.org/10.3182/20050703-6-CZ-1902.01933
https://doi.org/10.3182/20050703-6-CZ-1902.01933
https://doi.org/http://arxiv.org/abs/1708.06374
https://doi.org/10.1109/TIV.2022.3209910
https://doi.org/10.1109/DISCOVER50404.2020.9278091
https://doi.org/10.1109/DISCOVER50404.2020.9278091

	Introduction
	Related Works
	Background
	SmartData
	Signal Temporal Logic

	Safety Enforcement Unit
	SEU Implementation
	RSS Safety Property

	Protection Mechanisms Integration into SmartData Design
	Protection Mechanisms as SmartData
	Estimating Time-to-Triggering
	Calculating Compensation of Actuation Constraint

	Constraint-Aware RSS Triggered by SEU
	Constraints into Steer and Throttle
	Constraints into Brake
	Handling Overtake Maneuvers
	Proving Compliance with RSS
	Overtake Proper Responses Compliance with Legal Evasive Maneuvers

	Constraint-Aware RSS in CARLA
	Safe Distance Keeping Experimental Results
	Overtake Proper Response Results
	SEU Verification Latency

	Final Remarks

