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Abstract

Open source dependencies are the leading source of vulnerabilities in applications and are often exploited in software
supply chain attacks. Efforts to assess vulnerabilities are employed during DevSecOps pipelines in order to keep
a system compliant with security regimes. However, current strategies for continuous compliance are limited
to preventing issues before deployment, and thus do not address changes in dynamic aspects such as newfound
vulnerabilities, let alone how to respond to such incidents. In this work, we leverage zero-trust to enable continuous,
post-deployment vulnerability compliance assessment, isolating workloads that fail to meet a minimum security
posture. This approach balances exploitation prevention with application availability — a fundamental trade-oft for
critical use cases. The solution is built on top of SPIRE, a robust open-source identity provider based on workload
attestation, and implements a custom plugin that responds to compliance violations driven by dynamic aspects
exposed by OWASP’s Dependency Track, an open-source tool for monitoring software components and their
dependencies for vulnerabilities. To enhance flexibility in the security-availability trade-off, we introduce a grace
period mechanism, enabling organizations to defer enforcement of newly identified vulnerabilities based on workload
criticality, thus supporting availability for non-critical workloads without compromising long-term security. Finally,
we evaluate the performance impact of this approach on a SPIRE environment, showing that the added resource usage
reliably remains within the recommended 16 GiB of RAM and 4 vCPUs to run Dependency Track in production.
We also show that the plugin adds less than 6 seconds of latency to the attestation process, which is insignificant
given its default frequency of twice per hour. Moreover, the results confirm that the approach successfully prevents

vulnerability exploitation by prioritizing security, while enabling controlled flexibility in less critical contexts.

Keywords: Continuous Compliance, Vulnerability Management, Zero Trust Architecture, Incident Response, Identity

Provisioning, Supply Chain, SPIRE

1 Introduction

The software supply chain is facing a critical security chal-
lenge, underscored by a staggering 742% increase in attacks
between 2019 and 2021 [Sonatype, 2022]. High-profile in-
cidents, such as the breaches involving SolarWinds’ Orion
Platform [IBM, 2024b] and the backdoor in XZ Utils [NVD,
2025], reveal the unprecedented scale of risk modern devel-
opment practices entail.

Software supply chain attacks aim to inject malicious or
vulnerable code into a final product through its dependencies.
By embedding compromised components, attackers effec-
tively bypass traditional security perimeters that focus on
external threats, allowing them to infect an entire ecosystem
from within.

This threat is magnified by the software industry’s heavy
reliance on open-source projects. A successful attack on
a single, popular open-source library can cascade through
countless downstream projects that depend on it. This danger
is not theoretical; in 2022 alone, over 245 000 malicious open-
source packages were discovered, more than doubling the
total from all previous years combined [Sonatype, 2023]

While DevSecOps best practices, such as using Static Ap-
plication Security Testing (SAST) in a CI/CD pipeline, are
crucial for identifying vulnerabilities in locally written source
code, they are not enough to secure the supply chain. The
primary defense against dependency-based threats starts with
two key components: Software Bill of Materials (SBOM)
and Software Composition Analysis (SCA).

An SBOM is a detailed inventory of every software com-
ponent within a system, including libraries, packages, and
their dependencies [CycloneDX Core Working Group, 2024].
An SBOM creates essential transparency by mapping out the
entire software supply chain. Then, using an SBOM as its
foundation, SCA tools automatically scan for known vulner-
abilities within all direct and transitive dependencies. The
analysis output enables teams to take decisive action, such as
blocking the deployment of a release containing critical vul-
nerabilities, thereby preventing a compromised component
from ever reaching production.

Compliance regulations such as PCI DSS [PCI Security
Standards Council, 2024] and FedRAMP [GSA, 2024] in-
clude vulnerability detection and mitigation requirements,
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highlighting the importance of SCA in the development life-
cycle. As regional and international markets push compliance
as a requirement for software, continuous compliance has be-
come a focal point for DevSecOps [Ramaj et al., 2022]. Ap-
proaches to ensure continuous compliance include building
on top of DevSecOps best practices to integrate CaC (Com-
pliance as Code), which can potentially automate checking
if security controls are satisfied during a pipeline [Nygard,
2021; Kellogg et al., 2021].

Unfortunately, even the best practices during development
cannot mitigate all issues. The absence of known vulnerabili-
ties in the product at release does not mean it is free from them.
New vulnerabilities will likely be discovered after release,
and a new CVE (Common Vulnerabilities Enumeration) en-
try can appear on a previously safe dependency. Moreover,
these vulnerabilities can be critical, as was the case for the
recent XZ Utils disclosure, which enabled a backdoor and
affected various Linux distributions. Recent studies have also
shown that generative Al such as ChatGPT-4 can automati-
cally generate exploits for CVEs [Fang et al., 2024], making
new entries instantaneously exploitable. The high impact and
short time to exploit prove the need for continuous compli-
ance approaches that react to new vulnerabilities as quickly
as possible.

This paper proposes an approach that leverages the recent
Zero-Trust Architecture (ZTA) paradigm to enable continu-
ous compliance. ZTA, as defined by NIST (National Institute
of Standards and Technology) [Rose ef al., 2020], aims to
minimize the attack surface in modern distributed systems.
ZTA holds that by default, any person, event, or device is
untrustworthy before sufficient authentication, even if it is
within a local perimeter. In Zero-Trust environments, trust
is dynamic rather than static [Buck et al., 2021] and con-
tinuous authentication is required between communicating
parties. This idea of “never trust, always verify” diametri-
cally opposes the idea that the product is trustworthy if it left
a trusted DevSecOps pipeline. Thus, as it requires continuous
re-evaluation of the components’ identities, implementing
ZTA can support runtime security enforcement.

This work proposes leveraging ZTA to extend compliance
beyond deployment. Our approach has demonstrated the
following contributions:

1. We show how integrating vulnerability assessment as a
ZTA'’s trust engine policy can isolate a non-conforming
application. Isolation can prevent vulnerability exploita-
tion and be considered an immediate response to com-
pliance violations.

2. We validate this approach through a new custom work-
load attestor plugin for using SPIRE, a robust, open-
source selective identity provider. The implemented
plugin transparently triggers the dependency analysis
during each identity renewal, confirming the feasibility
of integrating continuous compliance in existing envi-
ronments.

3. We evaluate the solution and confirm its practicality
regarding added performance and resource costs. Fur-
thermore, we discuss how the approach relies only on
well-established security mechanisms.

4. We discuss compliance on both critical and non-critical
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applications and how adopting our approach impacts or-
ganizations, considering the roles of operations, security,
and development teams.

We organize this paper as follows. Section 2 reviews the
background needed to understand our approach and imple-
mentation, alongside related work and our gap analysis. Sec-
tion 3 explains our threat model and outlines the problem’s
requirements. Section 4 provides an overview of a proposed
architecture, and Section 5 details its implementation using
well-known tools. In Section 6, we evaluate our solution
regarding performance and security. Finally, Section 7 con-
cludes our work with some final considerations and future
directions.

2 Background and related work

This section reviews the concepts of continuous compliance
and ZTA, as well as related work on these lines of research.
We also explain relevant technology for the state of practice
of these concepts while explaining the technology used for
the solution.

2.1 Continuous compliance and supply chain
security

Among the efforts to protect a supply chain and prevent at-
tacks, one is adopting DevSecOps best practices. These prac-
tices can include using security frameworks such as SLSA
(Supply-chain Levels for Software Artifacts). SLSA speci-
fies incremental levels of artifact security to improve security
guarantees, such as hardened builds and non-forgeable prove-
nance [SLSA Specification, 2025]. The main point of such
frameworks is to propose a secure way to produce software in
a DevSecOps process, aiming to make a pipeline impervious
to direct attacks.

However, attacks often also exploit vulnerabilities present
in code when the product is delivered. That means that even
if the CI/CD pipeline itself is correctly configured, the same
may not be said about the source code of a project. Vulner-
abilities can be found directly in code, but are even more
frequently found in its dependencies, such as its libraries,
frameworks, and other tools. Synopsy’s BDSA (Black Duck
Security Advisories) analysis report for 2024 states that most
vulnerabilities found in audits were associated with JavaScript
libraries [Synopsys, 2024]. Such vulnerabilities can come
from direct and transitive dependencies (i.e., dependencies
included in dependencies recursively).

Many security advisories such as NIST and GHSA (GitHub
Security Advisory) disclose CVEs (Common Vulnerabili-
ties and Exposure). CVEs are records stored in vulnerabil-
ity databases that often provide APIs for consultation, the
most effective of them being NVD (National Vulnerability
Database) [Johnson et al., 2018], which is managed by NIST
and kept up to date with CVEs from various advisories. A
CVE describes affected versions of software, and by fre-
quently querying databases such as NVD, it is possible to
verify if there is any reported vulnerability for a given soft-
ware version before shipping it within the product.
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SCA tools can automate this process and search these
databases for vulnerabilities in a project’s dependencies. Ex-
amples of tools are Trivy' or Snyk?, which can ingest SBOMs
for a transparent inventory of dependencies. Another exam-
ple is OWASP’s (Open Web Application Security Project)
Dependency Track. It not only supports NVD but can also be
integrated with many other public and private data sources.
This makes it possible to aggregate more knowledge and
allows companies with private vulnerability intelligence to
combine their information with open-source vulnerability
information.

Nonetheless, SBOM is as helpful as it is reliable. Given
the popularity of software supply chain attacks for exploit-
ing vulnerabilities, an attacker could try to tamper with an
unprotected SBOM to change dependency versions. This
could potentially misguide SCA into outputting a reduced list
of CVEs to mask a known vulnerability. To mitigate this,
tools employ artifact signing to attest provenance and help
discriminate a fake or tampered artifact from a legitimate one.

Cosign, from the Sigstore framework, is a popular option
for signing, verifying, and attaching artifacts as in-toto at-
testations [Sigstore, 2024]. An in-toto attestation is a fixed,
lightweight format to describe supply chain metadata, includ-
ing SBOM [Sirish and Hennen, 2024]. To both sign and verify
signatures on attestations, Cosign uses Rekor, another compo-
nent of the Sigstore framework that works as a transparency
log, providing an auditable record of when a signature was
created [Sigstore, 2024].

Vulnerability remediation can be a high-effort task, with
hundreds of companies remediating only a monthly rate of
15.5% of known vulnerabilities on average [Cyentia Insti-
tute and Kenna Security, 2022]. To assist with prioritization,
there are well-used scoring systems that help estimate how
vulnerable the current state of a product is. The Common
Vulnerability Scoring System (CVSS) is very prominently
used to describe the severity of a CVE. CVSS is considered
a dependable and robust method for rating the severity of a
vulnerability [Johnson ef al., 2018].

For CVSS, the estimation of how vulnerable an application
is relies on exploitability and impact properties and ranges
from 0.0 to 10.0, usually discretized in classes. The classes
and their respective closed intervals are Low for [0.1, 3.0],
MEDIUM for [4.0, 6.9], HIGH for [7.0, 8.9], and CRITICAL for
[9.0,10.0]. Another way to describe the relevance of a vul-
nerability is to use the Exploit Prediction Scoring System
(EPSS) [Jacobs et al., 2021], which expresses the likelihood
between 0.0 and 1.0 of a CVE being exploited within the next
30 days. This risk metric is updated daily for every public
CVE reported [FIRST, 2024]. Both CVSS and EPSS are
widely used, mainly to help prioritize vulnerability remedia-
tion.

To standardize a developer’s stance towards known vulner-
abilities, the Vulnerability Exploitability eXchange (VEX)
format was specified [CISA, 2023a]. This format allows
a formal statement about vulnerabilities and is readable by
both machines and humans. VEX is useful for improving
transparency and ignoring non-applicable vulnerabilities. For
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instance, a vulnerability that comes from a library could have
high EPSS and CVSS scores, but the vulnerable code might
be unreachable in the context of a specific application, mak-
ing the threat harmless. As another example, if a vulnerability
could affect the product, the company can declare that will fix
it in the next patch cycle. This makes VEX a powerful format
to enhance transparency and further improve trustworthiness
between participants.

This level of effort to improve software quality and pre-
vent security issues is needed to comply with certain regimes.
Many vendors are required by organizations or governments
to abide by one or more compliance regimes. These can be
defined as a set of encoded best practices, such as guidelines
for data encryption, storage management, and vulnerability
management [Kellogg et al., 2021]. Regimes like PCI DSS
and FedRAMP consist of many requirements, and for each
requirement, there is usually some sort of control, a rule de-
fined by industry standards for fulfilling that requirement. As
expensive auditing is needed in order to provide evidence of
compliance, vendors strive to keep internal compliance, often
manually, to avoid failing an audit [Kellogg et al., 2021].

Upholding continuous compliance has become relevant
for DevSecOps. As described by Ramaj ef al. [2022], works
related to continuous compliance seek to automate general se-
curity activities, like SCA, for compliance assessment. While
the usefulness of compliance-specific tools like OpenScap,
UpGuardl, and CIS-CAT is discussed in his work, non-
specific tools can be useful for fulfilling general compliance
requirements common to many regimes. There is also the
notion of CaC, where some approaches include defining com-
pliance through integrating common compliance controls into
automated testing [Agarwal et al., 2022; Kellogg et al., 2021],
and others aim to parameterize controls so that compliance
can be checked in a data-driven testing architecture [Steffens
et al., 2018]. Finally, there is research in assessing vulnera-
bilities in cloud infrastructure and automatically producing
security checks so the next pipeline iteration can further avoid
these vulnerabilities [Torkura and Meinel, 2016].

Although promising, these solutions fall into what Nygard
[2021] called “pipeline compliance”: embedded in a CI/CD
pipeline as a set of functions whose results are validated before
release. He states that if the entire responsibility of internal
audit sits within a pipeline, frequent changes may reduce
correctness and cause ownership issues. He then proposes a
form of “composite compliance” to distribute responsibility
by assuming that if the parts of a system are compliant, then
the system as a whole is also compliant. This, in turn, poses
the problem of a previously compliant component violating
compliance and then tainting the whole system. This is espe-
cially concerning when considering ecosystems comprised
of many microservices and their replicas.

As a final solution, the author proposes “point of change
compliance”, an architecture where a security team defines
compliance requirements, and pipelines built for these base-
lines run without security checks while producing security
evidence. Before deployment, the final product is analyzed
by an admission controller, which checks if the gathered ev-
idence satisfies the requirements. If not, the pipeline fails.
Otherwise, the product can be trusted because it is compliant,
and is consequently deployed. Through this method, there is
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no confusion of ownership among developers and security
officers.

While these forms of continuous compliance solve the issue
of avoiding the launch of a non-compliant service, compli-
ance is violated if the vulnerability status of a service changes.
Since this situation cannot be completely prevented, and in
such cases, the component was already admitted and is there-
fore trusted, it can potentially endanger the rest of the ecosys-
tem.

This leaves a gap within the state of the art. If continuous
compliance cannot address incidents due to sudden compli-
ance violations, then the responsibility of incident response
falls completely to the team providing the software (i.c., de-
velopers).

2.2 Zero-trust principles and tools

The problem of trusting a component indefinitely because
of an initial state of compliance can be solved by leveraging
ZTA. The Zero Trust Architecture is an approach that seeks to
protect data in its various states, be it at rest or in transit [Syed
et al.,2022]. NIST defines ZTA as not a single network ar-
chitecture achievable using one technology, but a set of many
guiding principles that must be strategically implemented to
secure enterprise assets. This gives flexibility for ZTA to be
applied to many contexts, such as in the work of Chen et al.
[2021], where the authors also leverage ZTA in order to add
security awareness to healthcare devices in a 5G network.

One important principle of Zero Trust is that of commu-
nication security. It declares that communication needs to
be secured regardless of its location. In other words, there
should never be a communication that, due to taking place
in a certain perimeter, is considered safe enough to be unau-
thenticated or unencrypted. This means that just because a
component was able to be deployed, that does not imply that it
is safe to communicate with it insecurely. A standard solution
for this is the use of a software-defined perimeter (instead of
a firewall-defined perimeter), frequently through mTLS. In
orchestrated, containerized environments such as Kubernetes,
mTLS can be powered by Service Meshes like Istio to re-
move overhead from applications and secure traffic between
microservices [de Weever and Andreou, 2020]. Additionally,
trust in ZTA is never static, but rather dynamic [Buck et al.,
2021]. This results in authenticating a component before es-
tablishing trust, and since this trust is not static, authentication
must be continuous, which is a strong pillar of ZTA [He et al.,
2022].

Identity providers like Kerberos [IBM, 2024a] and WS02
Identity Server [Inc., 2024] can help with both establishing
trust and securing communication by granting identities to
applications. Such identities will be issued only to registered
applications, thus establishing trust, and can take the form of
X.509 certificates to power mTLS, thus securing communica-
tion between identified parties.

Another known specification for trust and identity issu-
ing is SPIFFE [Babakian et al., 2022], which proposes that
identities assigned within a certain Trust Domain (a logical
perimeter for an ecosystem) should be identifiable and verifi-
able. Identities, here called SPIFFE IDs, are merely semantic
URIs but always come embedded in an SVID (SPIFFE Veri-
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fiable Identity Documents). SPIFFE specifies that the SVID
must always contain signatures from a trusted party to prove
that its SPIFFE ID is valid. Currently, the standard defines
JWT and X.509 as valid SVID formats®, making the SPIFFE
specification equivalent to other identity providers in terms
of establishing trust and securing communication.

However, the aforementioned solutions for authentication
do not establish dynamic trust, but rather static trust. That
is, one must statically define which applications or parties to
trust so that the provider can issue or deny an identity. To
help satisfy this requirement, among other goals, SPIRE was
created to implement the SPIFFE standard with a hierarchical
and dynamic authentication process.

SPIRE is a tool that graduated from the Cloud Native Com-
puting Foundation (CNCF) and was adopted by many com-
panies such as Netflix, Pinterest, and Uber. SPIFFE and
SPIRE have also been receiving contributions from big tech
companies such as VMWare, Google, and Hewlett-Packard
Enterprise [SPIFFE Project, 2025]. SPIRE differs from other
tools due to requiring a secret-less authentication process,
known as attestation, before issuing an identity. Whenever
an identity is defined in SPIRE, it must contain a set of se-
lectors. These values are criteria that need to be satisfied by
the application, referred to as workload, that is requesting the
identity. During attestation, SPIRE collects selectors from
the workload and compares them with each admin-defined
entry in its database. Only if a workload with those selectors
is eligible for some identity, an SVID with that identity with
the requested type (most often a short-lived X.509 certificate)
is issued to the application. If the application fails the attesta-
tion, it does not receive a new identity, which means that even
if it previously had an identity, said identity will eventually
expire and cease to power any mTLS-required connections
within that Trust Domain.

This required attestation process to obtain and renew iden-
tities effectively establishes trust as dynamic, because instead
of looking for specific workloads, it searches for their eligi-
bility, regardless of who they are. Trust can be defined to be
strict or lenient depending on the identities’ configurations. A
certain SPIFFE ID can be set to only match specific selectors,
guaranteeing that only the desired application will bear that
identity. However, the opposite can be achieved by declaring
multiple entries with the same SPIFFE ID, increasing the
attestation possibilities.

To support this attestation-based selective provisioning,
SPIRE employs two main components in a defined hierar-
chy: the SPIRE Server and the SPIRE Agent, as depicted
in Figure 1. The server acts as the single source of truth for
the entire Trust Domain, which should encompass a logical
perimeter for an ecosystem of applications. Because it is the
place where identities are registered and managed, it must be
protected, lest a penetration attack compromise the ecosystem.
Meanwhile, the SPIRE Agent is a proxy for the SPIRE Server
so that local applications can be attested without direct access
to the source of trust. For example, considering a distributed
cloud architecture of many nodes or instances, a SPIRE Agent
represents a node, while the SPIRE Server resides on a spe-
cially protected node, and workloads are applications that run

3https://github.com/spiffe/spiffe/tree/main/standards
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in each separate node, able only to communicate with their
local node.

Because the source of trust is the Server, no Agent, and
therefore no node, is trusted by default. Before it can be
trusted to be a proxy, it is subjected to a node attestation,
much like the workloads. Selectors for node attestation can
consider different properties of a node, such as its location
on the infrastructure, its runtime environment, and properties
from its software or hardware stack. If successful, the Server
issues an identity to the Agent, enabling it to attest its local
workloads (i.e., services running on the node). Afterwards,
workloads can try to attest to their local Agent to receive their
identity.

An important characteristic of this hierarchy is that, by
default, workloads are not meant to attest to all Agents. This is
enforced by SPIRE via the structure of the identity. When an
admin enters an identity into the SPIRE Server, they not only
specify the selectors and SPIFFE ID, but also which parent
SPIFFE ID (i.e., Agent identity) is responsible for issuing
it. This means that a workload that successfully contacts an
external Agent will only be able to attest to it if that Agent has
that specific parent SPIFFE ID. Additionally, communication
between Agents and workloads happens via local sockets,
both because it is insecure in nature since the workload is not
initially trusted, but also to enforce that only local Agents are
approachable. There are benefits to discriminating the node
based on its characteristics (e.g., restricting certain critical
applications on high-protected nodes). But if an admin wishes
to treat all nodes equally, entries can be configured so that all
Agents receive the same SPIFFE ID.

Finally, once bearing their SVIDs, Agents can communi-
cate with the Server and attest workloads. Once workloads
acquire their SVID, they can use it to employ mTLS or other
authentication mechanisms. As said before, because these are
usually short-lived, they must be renewed via reattestations.
Thus, if a workload loses mTLS clearance because its SVID
is no longer valid, that can only mean it failed to reattest
because it no longer matches the required selectors and is,
therefore, rightfully isolated in the network.

As a result of its selective identity provisioning, SPIRE
also supports another tenet of ZTA: Continuous Authentica-
tion. Because identities are short-lived and depend on peri-
odic attestation, if two services communicate through SVID-
powered mTLS connections, they will implicitly authenticate
each other continuously. Finally, although SPIRE does not
support every attestation use case with its built-in compo-
nents, it is extensible with its plugin architecture, allowing
for customization by implementing new plugins, including
workload attestation plugins. Thus, it is a viable alternative
for assessing compliance as a criterion for determining trust.

Although compliance is seen as important, efforts to estab-
lish good practices of ZTA do not detail the role of compli-
ance. As part of their multivocal review of both academic
and gray literature, Buck ef al. [2021] describe the trust as-
sessment process of a ZTA implementation as needing two
components: a Trust Engine and a zero-trust PEP (Policy
Enforcement Point). While the Trust Engine assesses trust
based on policy, the PEP enforces the decision by providing
secure communication. Compliance can be used as policy in
theory, but no work is shown by the authors to explore this
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Figure 1. SPIRE Hierarchy (Source: [SPIFFE, 2025b])

possibility despite its relevancy. The same can be said by
the survey from He et al. [2022], who point out that further
attention on continuous diagnostics and mitigation systems is
needed to integrate industrial compliance into ZTA. Finally,
industry standards for achieving maturity in Zero Trust also
lack guidance on integrating security posture while at the
same time recommending vulnerability management [CISA,
2023b]. This research gap appears, therefore, to be a missing
link for connecting ZTA to continuous compliance.

3 Threat model and solution require-
ments

Understanding our threat model requires thinking about some
roles people may assume and the tools used in the environ-
ment.

Starting with the human roles, we assume a typical envi-
ronment where developers and operators develop and main-
tain cloud-native applications. In addition, security officers
(or the operators themselves, in frequent cases) define se-
curity policies for the organization. Security officers know
the organization’s obligations and understand the functional
components of security management (e.g., PCI DSS [PCI
Security Standards Council, 2024], FedRAMP [GSA, 2024],
ITU-T Security Requirements [ITU, 2020]). Thus, security
officers understand the incident response strategies and the
development team’s deadlines to fix vulnerabilities.

Following the DevOps (or DevSecOps) movement, devel-
opers and operators try to cooperate but are not specialists in
each other’s work. Therefore, being responsible for the sys-
tem’s long-term operation, operators must understand system
security and want bug-free applications, but do not get deeply
involved in the development process. Nevertheless, we as-
sume operators are benign and do not represent an internal
threat.

We also assume developers are mostly benign but may
not have the necessary knowledge to build long-term secure
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services. Therefore, they may use libraries and modules that
are not mature enough. However, we assume that the most
experienced developers build the tests used in the CI/CD
pipeline. Thus, if some developers are not trusted, such as
in an open-source community, there must be a process that
forces reviews by selected community members, and evidence
of this process is collected. Consequently, we assume that the
application has no known vulnerabilities at the initial state of
arelease. Thus, all workloads composing an application are
compliant at that moment.

Regarding tools, our environment adopts three types of
tools: (i) CI/CD tools, which generate artifacts such as
SBOMs and images; (ii) zero-trust tools, which implement
the identity provisioning workflow and the proxies that con-
trol mTLS connections; (iii) vulnerability management tools
(Dependency Track in our implementation), which track vul-
nerability databases and serve local queries about vulnerabili-
ties.

We assume that the CI/CD pipeline implements good prac-
tices. Nevertheless, it is possible that a third-party attacker
can intercept a software release and substitute it with a tam-
pered image if the OCI container registry storing it is not se-
cure enough. Similarly, an attacker can substitute the SBOM.
Therefore, attackers can replace SBOMs and images but can-
not falsify the signatures of trust entities. SPIRE can already
check image signatures and, consequently, this is outside our
scope.

Next, the application runs within a ZTA. ZTA brings dy-
namic trust assessment to the environment. Therefore, all
workloads have unique identities and authenticate each other
in all communication. Although not strictly necessary for our
approach, our implementations assume mutual TLS commu-
nications. As a result, workloads have identities in the form
of X.509 certificates.

As a consequence of the ZTA, workloads that do not have
valid identities will be unable to communicate with other
workloads and will be effectively isolated. Isolating a work-
load should trigger termination (e.g., due to failing health
checks) and trigger alerts in monitoring tools. Tools such as
Envoy [Envoy Project, 2025] manage mutual TLS connec-
tions, and SPIRE generates workload identity certificates. We
assume that ZTAs and the SPIRE installations and operations
are correct. For example, attackers cannot access servers or
the private key from the local certificate authority to register
malicious identities or generate certificates. Similarly, pre-
venting attackers from changing critical configurations in the
environment is out of scope. Our focus is then on automat-
ing first responses to vulnerability compliance violations in
deployed applications, preventing exploits, and overcoming
the limitations of pipelines that only verify security before
deployment.

Considering these assumptions, the solution must provide
a way to monitor compliance continuously. If, at some point,
compliance is violated due to new vulnerabilities, the solution
must bridge the gap left by continuous compliance strategies
and apply an automatic incident response. This automated
response can lessen the overhead and responsibilities of teams
to detect and enact an emergency intervention. To achieve
this while integrating with a ZT A environment, selective iden-
tity provisioning must be implemented so that non-compliant

Gama et al. 2026

services are denied their identities. Accurately blocking the
generation and renewal of identities requires mapping com-
pliance into policy, also bridging the gap left by current ZTA
research. In the end, the approach should help operators work
smoothly with developers and compliance officers to decide
trade-offs between their applications’ availability and secu-
rity.

4 Enforcing continuous compliance

Compliance must be present during the entire life cycle of the
application. As mentioned before, this can be made possible
by adopting DevSecOps best practices, SCA, and a supply
chain security framework during a CI/CD pipeline. By im-
plementing these known practices, a company can enforce an
initial state of compliance by ensuring the immutable part of
a release (its build and attached artifacts) follows compliance
rules. SLSA-compliant build processes further help with this
and, at its level 3, guarantee artifact provenance and hardened
builds [SLSA Specification, 2025].

However, to ensure continuous compliance, it is necessary
to continue to perform SCA, even after deployment or deliv-
ery. To operationalize this, we propose to integrate workload
attestation using vulnerability tolerance as a minimum se-
curity posture criterion for selective identity provisioning.
Figure 2 illustrates our architecture. By providing short-lived
identities to power mTLS between applications, we can lever-
age Zero Trust by imposing communication security that
requires frequent reattestation to renew.

The resulting isolation of a workload could be mitigated
by (1) a VEX issued by security officers so that SCA ignores
some vulnerabilities, (2) a new release without said vulnerabil-
ities, or (3) operators rolling back to previous non-vulnerable
versions. Since isolation is a response to a compliance viola-
tion, the maximum CVSS and EPSS requirements for issuing
an identity should be defined by security officers, considering
the trade-off between availability and exploitation prevention.
On top of CVE scoring requirements, a grace period could be
put in place to filter out young vulnerabilities, measured by
the day of their first known disclosure until the current day.
Configuring thresholds for grace periods could provide more
flexibility in said trade-off.

S Implementation

In this section, we discuss the implementation of the proposal
explained in the previous section. To perform continuous
SCA, we selected Dependency Track, a tool from the Open
Worldwide Application Security Project (OWASP), due to
its openness, robustness, and integration possibilities. De-
pendency Track already yields CVSS and EPSS for every
vulnerability in an SBOM’s dependency list. As for its inte-
gration, it supports the NVD database by default and allows
additional private data sources that extend the relevance of
this approach. Finally, it provides a REST API to help auto-
mate its use.

For the identity provider, we chose SPIRE due to its open-
ness, flexibility, and native workload-attesting capabilities.
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Figure 2. Proposed architecture

In addition, it is already being used to implement ZTA’s com-
munication security and continuous authentication principles.
We expand SPIRE in regard to its available selectors. This
is done by implementing a workload attestor plugin that will
be used during a workload attestation. Our custom plugin
connects to a Dependency Track instance to return the SCA
results and uses this information to provide the workload
properties to the SPIRE agent as selectors.

Two preconditions are necessary for the plugin features:
(1) it needs to have access to the image information (i.e., its
complete identification) in order to tell which workload it
is attesting, and (2) it must also have access to that image’s
SBOM. With this information, it can call Dependency Track
to feed it the SBOM and then gather the results.

These conditions can be provided in any containerized en-
vironment. However, in this work, we use Kubernetes as
an orchestration tool due to its popularity. The following
subsections will respectively propose how to embed the evi-
dence so it can be accessible, and then detail how the plugin
can collect the evidence to use SCA. Figure 3 illustrates our
proposal, and how operators and developers can collaborate
on the attestation process.

Similar approaches could be implemented in other contexts.
For example, if we assume that microservices run in micro-
VMs orchestrated by a system such as OpenStack®, the image
information could be retrieved from the image service and
the SBOM embedded in the image metadata.

5.1 Embedding the basic information

To make sure the product possesses an SBOM describing it, its
build pipeline should contain a stage that generates and saves
this artifact prior to release. Ideally, this information is open
so that clients and other interested stakeholders can access
it for transparency reasons. This can be done by making the

“https://www.openstack.org/
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SBOMs available in a repository, a public artifact registry
of some kind, or within the same OCI registry the product
images are kept. The latter is especially practical because if a
client or other interested stakeholder has access to the image,
they also have access to the SBOM. As mentioned before,
Cosign can be helpful to both sign and attach the SBOM to
the image, storing it to the registry and making it available
for the future.

SBOMs come in various formats. CycloneDJX is a format
also created by OWASP, with high interoperability due to
high adoption, and is required by Dependency Track. Many
tools can produce CycloneDX formatted SBOMs, such as the
aforementioned Trivy and Snyk.

In addition to the SBOM, another compliance evidence
that can be used is a provenance artifact. The provenance can
prove that the image’s origins are trustworthy. That means it
came from a trusted, quality pipeline, managed by a special-
ized or otherwise trusted party. An example of this artifact
is a SLSA Provenance, that can be generated by adhering to
tools with at least SLSA level 2 or, preferably, level 3 guar-
antees. SLSA level 2 means that the tool provides a signed
provenance evidence that the image was built on that pipeline,
while on top of that SLSA level 3 means that forging the
provenance is beyond the capabilities of most adversaries
and the build platform is hardened against tampering [SLSA
Specification, 2025].

If available, the workload attestor plugin will use SLSA
Provenance to report the image’s origins in addition to vulner-
ability data. This allows administrators to restrict the origin
of their images (e.g., the CI pipeline that produced it) and the
source code repository and branch used.

Lastly, to make sure the SBOM and provenance are trust-
worthy, the same authority should sign both. This way, we
can discriminate if the in-toto attestations come from the same
pipeline as the built image and tell apart a legitimate artifact
from one forged by an attacker.

5.2 Framework for evidence collection

The plugin implementation follows the desired workflow spec-
ified by SPIRE for a workload attestor. It is triggered by
the SPIRE Agent when a workload tries to fetch an identity.
When it does so, the Agent begins the workload attestation
process, which triggers all installed workload attestor plugins,
including our custom one. Figure 4 illustrates the workflow
for the plugin.

When it starts, the plugin immediately collects information
about the running image. For the scope of this work, it queries
the Kubernetes API regarding the Pod (i.e., the Kubernetes
set of running containers). This information will include the
image source and its hash digest. After it discovers which
container started the attestation, the plugin tries to fetch all
attached evidence using Cosign and looks among them for
SBOM and SLSA Provenance. It then checks their signature
using Rekor to build selectors regarding who issued the arti-
facts (the pipeline that generated them) and who signed them.
Then, it proceeds to process both artifacts.

Firstly, it uses the SBOM to feed Dependency Track’s SCA
via its REST APIL. It registers the workload in Dependency
Track if there is no entry for this image version using digest,
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and then triggers component analysis. Following that, the
plugin will request Dependency Track all of that image’s
known CVEs, alongside their CVSS scores and EPSS like-
lihoods. Then, the CVE list will be processed to return the
highest CVSS severity and EPSS risk scores and build them
as selectors.

Secondly, the SLSA Provenance will be inspected to find
the repository’s location and the build pipeline used. It will
include the repository and the reference version (i.e., branch
or tag) used to build the image in the selectors.

After all selectors are built, they are returned so that the
SPIRE Agent can compare the results found with the crite-
ria defined for the identities in its database. If one or more
artifacts are not found during attestation, no selectors about
them will be built, and thus, no identity that requires such
selectors will be issued. Table 1 lists all available selectors
for the compliance workload attestor plugin.

To make sure the communication with Dependency Track
is protected, it also uses mTLS powered by SPIRE so that
only attested SPIRE Agents can communicate with Depen-
dency Track, preventing unauthorized or illegitimate Agents
to deposit SBOMs or consume analysis results. Furthermore,
since Dependency Track does not have native support for
SPIRE, we use an official utility sidecar, named SPIFFE
Helper [SPIFFE, 2025a], to fetch SVIDs and configure non-
SPIRE-aware workloads to use them.

One important note about the selectors is the format of
both highest-cvss-severity and highest-epss-risk. It would

certainly be more intuitive if thresholds could be represented
as a number. For instance, CVSS could be represented as
the actual value, providing more control for operators. EPSS
would benefit the most from this, as it does not contain official
classes like CVSS.

The reasoning behind using a category instead of a number
is that SPIRE does not natively support numeric selectors;
they are all used as strings. To be more specific, to compare
selectors during attestation, SPIRE checks if the set of ex-
pected selectors is a subset of returned selectors, and element
comparison is done by string equality. This way, if numbers
were used, they would have no inherent numerical value or
order. Using them more semantically would require contri-
butions to the selector comparison logic within SPIRE, and
this is not currently aligned with the community vision of
selectors, which sees the selectors as properties that a node
or workload has or does not have.

The categories are a workaround for this limitation. If a
high severity is the highest CVSS found, the attestor returns
only this information, and if a medium risk is found as the
highest EPSS, only this is returned on the selector. This re-
quires additional entries, but is also useful to create different
identities for different levels of vulnerabilities, enabling oper-
ators to create slightly different SPIFFE IDs for different risk
levels. To make this viable to EPSS, we needed to map the
values on a similar scale and then provide classes in the same
way. Without an official definition for EPSS risk classes, we
allow every organization to configure the intervals for each
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Table 1. Selectors for the workload attestor plugin

Selector

Semantics

Example

attestation-certificate-
identity

attestation-certificate-
oidc-issuer

has-provenance

source-code-uri

source-code-version

has-sbom

highest-cvss-severity

highest-epss-risk

The identity that generated the attesta-
tions (i.e., workflow that produced the
evidence)

The OIDC issuer that signed the at-
testations (i.e., GitHub OIDC Issuer,
which signed on the pipeline’s behalf)

The image possesses a SLSA Prove-
nance

The public URI for the repository that
produced the image

The version (i.e., branch or tag) of the
source code

The image has an SBOM

The list of CVSS severities tolerated
for the workload

The list of EPSS risks tolerated for the

https://github.com/company/
trusted-workflows/.github/
workflows/devsecops-pipeline.
yml@refs/heads/main

https://token.actions.
githubusercontent.com

True or False
https://github.com/repository.git
main

True or False

LOW or MEDIUM or HIGH or CRITI-
CAL

LOW or MEDIUM or HIGH or CRITI-

workload

CAL

class in plugin settings.

5.3 Managing different security requirements

The main intended consequence of using the plugin is the
unavailability in the presence of an unacceptable vulnerabil-
ity. In other words, in order to uphold compliance beyond
deployment, it may be preferable to stop the workload rather
than to allow it to be susceptible to exploitation.

This, of course, is not the case for many noncritical work-
loads. For example, security officers may decide that a simple
web application that does not handle sensitive information
should remain available while developers patch vulnerable
dependencies. In this scenario, a CVE with a critical CVSS
might be an unacceptable threat, while a high CVSS vulnera-
bility could await mitigation without damaging SLA. Such
differentiation is aligned with strategies such as CISA’s Stake-
holder Specific Vulnerability Categorization (SSVC), which
aims to improve prioritization [CISA, 2025].

To enable this behavior, the plugin can be configured to
apply a grace period for newly identified CVEs. With this
configuration in place, when a new CVE is identified in the
project or in its dependencies, instead of immediately reacting
by including the CVE in the analysis, the plugin can disregard
its existence (when evaluating the scores for the selectors)
until the assigned grace period expires. The practical con-
sequence is that, while the grace period granted to a certain
CVE remains valid, the attestation plugin will tolerate it. In
this context, workloads are allowed to continue running along-
side newer vulnerabilities for a limited time, according to the
organization’s policies.

To achieve this effect, an admin could set the length of this
period in the plugin configuration for every CVSS and EPSS
class. This way, the plugin can better consider the context of

the workload when reporting its findings to the SPIRE Agent.
The state machine in Figure 5 illustrates the evaluation of
each CVE found after SCA, including the initial grace period
filter.

sm Evaluate CVE Levels
if CVE publication is within
CVE to be grace period CVE @
evaluated tolerated

else
\]/
considered
it CVSS is below %
eQ_Ise the highest CVSS ignored
v

CVE selected as

new highest
CVSS

3 it EPSS isbelow | EPSS risk
Q the highest EPSS ignored
else

CVE selected as
new highest
EPSS

CVE evaluated @

Figure 5. State machine of CVE evaluation

Unfortunately, this approach alone is not applicable to an
environment containing both critical and noncritical work-
loads. For instance, consider the same example as before with
the web application, except now it has a separate component
in charge of authentication and authorization. This compo-
nent is naturally more critical than the web application, since
exposing it to a vulnerability could allow unauthorized access,
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potentially resulting in a sensitive data breach. Considering
the configuration explained before, the plugin would apply
the same grace period rules to both workloads, which would
be either too lenient or too restrictive.

To avoid this problem, the configuration is further devel-
oped into a table that maps what grace period behavior to
consider for each level of criticality. Following the semantics
kept so far, they also use the same classes defined in CVSS
and EPSS, namely, LOW, MEDIUM, HIGH, and CRITICAL; each
level represents a degree of stringency regarding the tolerance
allowed by the grace period. Below, we provide a sample
definition based on the examples discussed in this paper. It
is important to note, however, that this is not a prescriptive
guideline. In practice, the interpretation of each level and the
corresponding behavior should be defined by the organiza-
tion through a collaborative effort involving security officers,
infrastructure operators, and development teams.

* LOW: The workload is associated with a low security
concern, allowing for extended grace periods before
remediation is required. This includes auxiliary or low-
impact services, such as static content servers, telemetry
exporters, monitoring agents with read-only access, and
non-sensitive background tasks. These workloads typi-
cally have limited privileges and minimal impact in case
of compromise.

« MEDIUM: The workload presents a moderate security
concern. Grace periods remain relatively long but are
shorter than those defined for the Low level. Typi-
cal examples are internal microservices processing non-
sensitive business logic, authenticated APIs with limited
scope, or batch jobs that handle controlled data. These
workloads may have broader access or serve user re-
quests, but are not critical to core system security.

* HIGH: Security concerns for this workload are high.
Grace periods are shorter, but still allow for a measured
response. This applies to services that authenticate users,
manage permissions, or handle personally identifiable
information or regulated data, such as financial records.
These workloads require tighter response windows due
to their potential impact.

* CRITICAL: The workload is deemed critical from a secu-
rity standpoint. Grace periods are minimized to reduce
the exploitation window. Examples include certificate
authorities, secrets managers, encryption key storage,
ingress controllers exposed to public traffic, or compo-
nents with privileged cluster access. Exploitation of
vulnerabilities in these workloads would likely result in
severe or cascading consequences.

Tables 2, 3, 4, and 5 present example configurations that
define grace periods based on the workload’s criticality, and
then the match between the CVSS severity of a CVE and its
EPSS risk level. For instance, suppose a CVE with a high
CVSS is found in a workload classified with low criticality, as
found in Table 2. If the same CVE has a low EPSS, its grace
period would be of 60 days. For a different CVE of this same
workload, if it had a medium EPSS and a critical CVSS, the
grace period would be of 20 days. Until this period elapses,
both CVEs will be ignored by the plugin. On the very next
day after the expiry date, they will be included in the analysis.
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As another example, consider a CVE with a critical CVSS
and a high EPSS in a critical workload, as described in Ta-
ble 5. The plugin will only suppress it for 18 hours (i.e., 0.75
days) before returning it in selectors. Finally, for workloads
with no declared criticality, the plugin’s default behavior is
applied, disabling consideration of the grace period entirely
and reacting to CVEs immediately.

Table 2. Criticality: LOW
EPSS Score

CVE Score LOW MEDIUM HIGH CRITICAL
LOW 240 220 210 180
MEDIUM 135 120 105 90
HIGH 60 50 40 30
CRITICAL 25 20 15 10
Table 3. Criticality: MEDIUM

EPSS Score
CVE Score LOW MEDIUM HIGH CRITICAL
LOW 135 120 105 90
MEDIUM 60 50 40 30
HIGH 25 20 15 10
CRITICAL 8 7 6 5

Table 4. Criticality: HIGH

EPSS Score
CVE Score LOW MEDIUM HIGH CRITICAL
LOW 135 120 105 90
MEDIUM 25 20 15 10
HIGH 8 7 6 5
CRITICAL 3.5 3 2.5 2

Table 5. Criticality: CRITICAL

EPSS Score
CVE Score LOW MEDIUM HIGH CRITICAL
LOW 25 20 15 10
MEDIUM 8 7 6 5
HIGH 3.5 3 2.5 2
CRITICAL 1.25 1 0.75 0.5

Since the plugin cannot discern the criticality of a given
workload during the attestation process, we need to input this
information in some way. For this, we chose to leverage Ku-
bernetes as our choice of environment. Kubernetes manifests
can contain labels and annotations used by operators, both for
semantics and sometimes for the configuration of Kubernetes
tools. The plugin calls the Kubelet to collect annotations of
the workload being attested and searches specifically for the
spire.io/criticality label. The string value should be either
LOW, MEDIUM, HIGH or CRITICAL. This allows the plugin to
determine which grace period behavior, if any, to apply.
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Another way to implement this is to embed this informa-
tion within the SBOM from the start. One could argue that
since the SBOM is trusted due to its verifiable provenance,
this information should be discovered during the SCA step.
Moreover, it could be set in CycloneDX’s properties section,
made specifically for the format’s extensibility [CycloneDX
Core Working Group, 2024].

However, this is only appropriate for applications that
should retain a single criticality in all environments and use
cases. This is not always the case. For instance, the same
database management system can be used in one context to
keep low-sensitivity data accessible by multiple components,
while in another context it might store only high-sensitivity
information that should have strict access rules. The former
use case could receive a low criticality, while the latter is
more akin to a high criticality value; despite being the same
application, its criticality could be set as low. This could
happen for a variety of reasons, from the priority on security
to the available workforce dedicated to patching vulnerabili-
ties. Since each version of an application should produce a
single SBOM, such an application would only have a single
criticality. This would force different organizations to define
their criticalities based on the application settings, instead of
their own semantics as discussed before.

Therefore, we chose to decouple this information from the
application itself and set it into its configuration in the runtime
environment (i.e., Kubernetes manifest, in our case).

5.4 Plugin usage and configuration

Following the configuration pattern defined in SPIRE, the
plugin is configured in HCL (HashiCorp Configuration Lan-
guage) according to Listing 2. These settings declare how to
communicate with Dependency Track and Cosign, as well as
acceptable identity issuers and owners for the in-toto attesta-
tions.

For instance, the snippet shows that the only trusted iden-
tity issuer is GitHub Actions and that the only identity to be
trusted is that of a specific CI/CD pipeline. This means that
the plugin will consider invalid any attestations with different
credentials, and thus will not perform their respective anal-
ysis, which will result in no relevant selectors. In order for
the identities to be taken into consideration, they must be
trusted in the first place. Therefore, all trusted and expected
credentials should be included, as the plugin will verify every
possible combination between identity and issuer for each
attestation.

Additionally, the grace-periods section defines the behavior
explained in Section 5.3. The outermost levels represent the
CVSS severity classes, and the innermost levels represent the
workload criticality classes. Each element in the classified
lists, from left to right, represents the EPSS levels from Low
to CRITICAL. If there are fewer than 4 elements in any list, no
grace period will be applied for that combination of CVSS,
Criticality, and EPSS classes.

This configuration should be included in the deployment
of the plugin within the SPIRE Agent configuration®.

Workloads deployed in the system must contain the

Shttps://spiffe.io/docs/latest /deploying/spire_ agent/
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spire.io/criticality annotation in their manifests, as exempli-
fied in Listing 1. Otherwise, as explained before, the plugin
will not enable any grace periods for this workload and will
instead consider all vulnerabilities it finds.

Listing 3 illustrates how to register entries for identities to
the SPIRE Server using the defined selectors. The URI for
an identity is defined in the snippet as -spiffelD, where exam-
ple.org is the Trust Domain and example-service/main/low-
severity /low-risk is the full name of the first identity, and
example-service/main/no-severity /no-risk is the full name of
the second identity, both for the same workload.

As for the selectors, they are defined by using the -selector
argument, and all of them are prefixed by cc, which signals
to SPIRE that this selector comes from the continuous com-
pliance plugin.

Via these selectors, this first entry imposes that the example-
service should only tolerate CVEs with low values for both
severity (CVSS) and risk (EPSS). The entry also restricts the
provenance of the product. By defining the source-code-uri
selector, it will only match workloads that come from that
specific Git repository, and by defining attestation-certificate-
identity it restricts the pipeline that built the workload. In
this example, the pipeline is not in the same location as the
repository, which is not the default but can be the case if the
pipeline runs on another platform, or if employing reusable
pipelines.

The second entry is stricter, as it defines that no vulnerabil-
ities are tolerated (by using NONE, because if any CVSS or
EPSS values are found at all, the returned category in either
selector cannot be NONE.

The semantics of defining two identities for the same work-
load help specify that this application tolerates either no
vulnerabilities or low-risk and low-severity ones. If no vul-
nerabilities are found, the identity example-service/main/no-
severity /no-risk will be issued, while if low-risk and low-
severity vulnerabilities are found, then the identity example-
service/main /low-severity /low-risk will be issued.

If both identities had the same SPIFFE IDs, which is pos-
sible, then a neighboring workload that accepts that ID will
allow communication regardless of which identity was is-
sued. However, if they have different SPIFFE IDs, the neigh-
boring workload can decide if it trusts all IDs prefixed by
example-service or not. This allows the neighboring work-
load to evaluate the risk of trusting that same workload when
its vulnerability posture changes over time.

Listing 1: Deployment manifest example

apiVersion: apps/vl
kind: Deployment
metadata:

spec:
selector:

template:
metadata:
labels:

annotations:
spire.io/criticality:
spec:

"HIGH”
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Listing 2: Plugin configuration

WorkloadAttestor "cc” {
plugin_data {

dependency_ track__host = ”dependency-track.example.org.com”
dependency__track_ port = ”8080”
dependency_ track_x_api_key = "X API KEY”
cosign__login_ registry = ”ghcr.io”
cosign_ login__username = "registryusername”
cosign_login_ password = "registrytoken”
trusted_certificate oidc_issuers = ["https://token.actions.githubusercontent.com”]
trusted certificate_ identities = [”https://github.com/example-company/trusted - pipelines /.github/
workflows/devsecops - pipeline . yml@refs/heads/main”]
grace_ periods = {
77I‘OW” o {
TOW’ = [240, 220, 210, 180],
"MEDIUM” = [135, 120, 105, 90],
"HIGH” = [60, 50, 40, 30],
"CRITICAL” = [25, 20, 15, 10] }
77mﬂM7’ — {

TOW” = [135, 120, 105, 90],
"MEDIUM” = [60, 50, 40, 30],

"HIGH” = [25, 20, 15, 10],
"CRITICAL” = [8, 7, 6, 5] }
77I_]:[GH” — {

TOW” = [60, 50, 40, 30],

"MEDIUM” = [25, 20, 15, 10],

"HIGH” = [8, 7, 6, 5],

"CRITICAL” = [3.5, 3, 2.5, 2] }
"CRITICAL” = {

TOW” = [25, 20, 15, 10],

"MEDIUM” = [8, 7, 6, 5],

"HIGH” = [3.5, 3, 2.5, 2],

"CRITICAL” = [1.25, 1, 0.75, 0.5] }

Listing 3: SPIRE entry creation example

spire -server entry create \
-spiffeID spiffe://example.org/example-service/main/low-severity /low-risk \
-parentID spiffe://example.org/ns/spire/sa/spire-agent \
-selector cc:has-sbom:true \
-selector cc:highest-epss-risk LOW \
-selector cc:highest-cvss-severity :LOW \
-selector cc:attestation-certificate -identity:https://github.com/example-company/trusted-pipelines
/.github/workflows/devsecops-pipeline.yml@refs/heads/main \
-selector cc:has-provenance:true \
-selector cc:source-code-uri:https://github.com/example-company/example-service \
-selector cc:source-code-version:vd.1.4 \
-selector cc:attestation-certificate -oidc-issuer:https://token.actions.githubusercontent.com

spire -server entry create \
-spiffelD spiffe://example.org/example-service/main/no-severity/no-risk \
-parentID spiffe://example.org/ns/spire/sa/spire-agent \
-selector cc:has-sbom:true \
-selector cc:highest-epss-risk :NONE \
-selector cc:highest-cvss-severity :NONE \
-selector cc:attestation-certificate -identity:https://github.com/example-company/trusted -pipelines
/.github/workflows/devsecops-pipeline.yml@refs/heads/main \
-selector cc:has-provenance:true \
-selector cc:source-code-uri:https://github.com/example-company/example-service \
-selector cc:source-code-version:vd.1.4 \
-selector cc:attestation-certificate -oidc-issuer:https://token.actions.githubusercontent.com
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5.5 Grace Period Impact on Compliance En-
forcement

As shown in Section 5.3, when the grace period configuration
is enabled, the CVSS and EPSS Scores of a newly identified
CVE will only be considered as potential compliance vio-
lations after the expiry of the period for that CVE. If, after
the grace period filters tolerated vulnerabilities, the highest
CVSS or EPSS among the remaining CVEs still exceeds the
thresholds defined in the workload’s identity selectors, the
attestation will fail, and an SVID is not issued to the workload.
To illustrate this behavior, consider a workload deployed
with a manifest such as the one shown in Listing 1. This means
it would have a high criticality value and would be represented
by Table 4, as set in the plugin’s configuration in Listing 2.
Also, consider the registration entries in Listing 3. These
selectors define the workload as accepting only vulnerabilities
with low severity and low risk. Table 6 summarizes four base
scenarios involving a CVE identified in this context:

* SC1: CVE is not tolerated, but is within the grace
period. A CVE published 15 days ago is identified with
a CVSS higher than the allowed threshold. However,
since it is still within the configured grace period, its
levels are temporarily tolerated, and the attestation suc-
ceeds.

* SC2: CVE is not tolerated, and the grace period
expired. 11 additional days have passed since SC1,
causing the grace period to expire. The same CVE now
has its severity and risk levels evaluated, and since they
exceed the allowed thresholds, the attestation fails.

* SC3: Tolerated CVE within the grace period. A re-
cently published CVE (3 days ago) is identified, with
both CVSS and EPSS Scores within the accepted low
thresholds. Although its scores are acceptable, it is dis-
regarded by the plugin since it is still in its grace period.
The attestation succeeds.

+ SC4: Tolerated CVE outside of the grace period. The
same low CVSS and low EPSS CVE has expired its
grace period, but its scores remain within acceptable
thresholds. The attestation still succeeds.

In other words, the grace period mechanism does not alter
the core compliance enforcement logic implemented by the
plugin — it simply delays the evaluation of CVEs during a
configured window of time. This deferral enables organiza-
tions to implement measured responses to newly discovered
vulnerabilities, instead of immediate enforcement. The crit-
icality defined for each workload influences this behavior
directly: the higher the criticality, the lower the tolerance to
potential exposure, reflected in shorter grace periods con-
ceived for the CVEs.

6 Evaluation

SPIRE is a graduate project at CNCEF, it is already considered
a stable, production-ready system [CNCF, 2024]. In addition,
SPIRE generates cryptographically robust identities in the
form of X.509 certificates and these certificates are used by
also mature libraries and proxies (e.g., Envoy [Envoy Project,
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2025]). Therefore, instead of evaluating the resources and
security of SPIRE and tools related to zero-trust implemen-
tation, we focus on the proposed plugin itself. We separate
our evaluation into three aspects: (1) a performance analysis
to assess the impact of our plugin and its supporting architec-
ture on a running SPIRE environment, (2) a security analysis
to verify if the motivating problems are solved by adopting
our plugin, and (3) an analysis of the threats to validity to
provide a transparent overview of the study’s limitations and
the factors that may influence the general applicability of our
results.

6.1 Performance costs

To evaluate the performance cost, we must first consider the
resource allocation for running Dependency Track, which is
responsible for analyzing the SBOM. According to official
guidance, the sum of the Dependency Track Docker contain-
ers requires a minimum of 4.5 GiB of memory and 2 CPU
cores, with a recommended allocation of 16 GiB of memory
and 4 CPU cores [Springett, 2024]. In a production environ-
ment concerned with compliance, a vulnerability assessment
tool would already be a necessary expense. Hence, these
resource costs are inherent to the security posture itself, not
an exclusive overhead of our solution.

We deployed Dependency Track on a Kubernetes cluster
and measured its resource consumption through a controlled
workload to validate these recommendations. Additionally,
because the SCA runs entirely on Dependency Track and is
completely parallel to the attestation process, the only po-
tential overhead imposed by integrating Dependency Track
would be the latency of REST API communications.

6.1.1 Impact on resources

By default, a SPIRE workload attestation occurs at half of the
certificate’s expiration time. Since a short-lived certificate
has a default longevity of one hour, reattestation happens
approximately every 30 minutes, or twice per hour. Given
that the daily mean of CVE reports in 2023 for NVD is 79.18,
which amounts to 3.29 per hour [Gamblin, 2024], checking
for new vulnerabilities frequently is a recommended practice.

To test the solution’s impact on performance and scala-
bility, we simulated environments with multiple workloads.
Because we are interested in seeing how well the system han-
dles stress when accommodating highly scalable applications,
we chose certain bursts of attestation requests per second
to represent a high number of workloads that might request
attestation at the same time. The bursts start from only 1 re-
quest per second, then go to 50, then to 100, and stop at 250.
Realistically, workloads from multiple applications will not
all attest simultaneously, so these bursts should not represent
the total number of workloads in a single environment, but
rather the volume of incidental concurrent requests. While
higher stress levels could be tested, the likelihood of such a
large number of applications initiating attestation at the same
moment — unless deliberately coordinated — is minimal. For
this reason, we capped our evaluation at 250 simultaneous
requests.
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Table 6. Attestation result for CVEs in different conditions

Scenario CVE Severity CVE Risk Grace Period Publication Time Attestation Result
SC1 MEDIUM LOW 25d 15d Succeed
SC2 MEDIUM LOW 25d 26d Fail
SC3 LOW LOW 135d 3d Succeed
SC4 LOW LOW 135d 136d Succeed
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Figure 6. Dependency Track’s CPU Usage per Burst
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Figure 7. Dependency Track Memory Usage per Burst

To fire these request bursts, we used the same applica-
tion with an increasing number of replicas. This approach
is equivalent to using distinct applications, given that each
replica will nonetheless try to attest independently and that
the workload attestor does not have any applicable cache
logic that could cause interference. The application’s SBOM
contained over 800 dependencies, above the average of 526
per application [Synopsys, 2024]. For each burst number, the
workload requested attestation from the SPIRE Agent, which
prompted the plugin to query Dependency Track for a vulner-
ability report and to verify the grace period before returning
the selectors found. Each burst number was executed for 20
minutes and repeated 30 times to minimize the interference
of infrastructure on the experiment.

Figure 6 illustrates the CPU usage for each burst level. We
can see that although processing time changes with higher de-
mands, it remains well below the recommended 4 CPU cores,
with observed peaks just exceeding 100% of a single core’s
worth of time. Figure 7 exhibits a different behavior regard-
ing memory usage. While it is true that even the heaviest load
remains well below the 16 GiB recommendation, the usage
is not as stable. This fluctuation correlates to Dependency
Track updating its database mirrors periodically, in parallel to
synchronous requests. As a result of this independent update,
Dependency Track appears to withstand both sudden demand
peaks and high, stable loads.

Since all burst cases use the same application, the SBOM
is the same across all cases. Given that Dependency Track
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Figure 8. Dependency Track CPU Usage per SBOM Size
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Figure 9. Dependency Track Memory Usage per SBOM Size

analyzes each dependency in the SBOM to perform SCA,
further experimentation is required to assess the impact of
SBOM size on resource usage. This is particularly relevant
because different applications within the same ecosystem
might use different technology stacks, resulting in widely
varying numbers of dependencies (be they direct or transitive).
To address this, we extended our experiments to cover four
different SBOM sizes: 100, 250, 500, and 1000 dependencies.
In order to better isolate the impact of the SBOM’s size, we
stabilized the number of requests per second to 1.

Figure 8 shows that, apart from an initial peak, the num-
ber of dependencies does not dictate CPU usage. After this
peak, usage fluctuates with no strong pattern across all SBOM
sizes. A similar behavior is displayed in Figure 9, concerning
memory usage: an initial peak that is influenced by SBOM
size, followed by a general fluctuation that does not strongly
correlate with size changes.

Another observation is that the initial peak displays the
most resource-intensive part of the attestation process: the
first time a workload is ever attested. This corresponds to
step 7.1 in Figure 4, where the project is created in Depen-
dency Track if it does not yet exist. This means SCA is being
performed for the first time, which is understandably a more
intensive task than updating an internal database of the most
recent vulnerabilities.

In conclusion, our findings suggest that the recommended
resource allocation can be more than sufficient, even for high-
stress situations involving numerous simultaneous attestation
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requests and varying SBOM sizes. Furthermore, if attestation
resources become a concern, simply reconfiguring the iden-
tity’s lifetime (e.g., to be longer than one hour) or the renewal
margins (e.g., renewing at 75% of lifetime instead of 50%)
would considerably reduce the attestation load.

6.1.2 Impact on latency

Regarding added latency, there are two primary points of
interest: the latency from Sigstore-related requests and the
latency from Dependency Track-related requests. While the
latter involves requests to a single component, the former
comprises requests to both Cosign (to download attestations)
and Rekor (to validate the signature and its trustworthiness).

To test this, we performed over 1 600 attestations on a test
environment using the default public remote of Sigstore and a
Dependency Track instance running in the same Kubernetes
cluster as SPIRE. We measured the individual latency for
each type of Sigstore request, as well as Dependency Track
requests, during each attestation.

Figure 10 illustrates the latency distribution for each Sig-
store component. Despite the distributions being highly
skewed due to network variability, their 99" percentiles show
that attestations are typically downloaded in 2 529 ms or less
and are then verified in 3 460 ms or less. This amounts to just
above 6 seconds of added delay for a single attestation.

As for Dependency Track, because the distribution is log-
normal, we bootstrapped the MLE (Maximum Likelihood
Estimation) of the mean of latency on 5 000 re-samples. The
resulting mean of means, as shown in Figure 11, is 84.6 ms,
with a Confidence Interval of [84.1 ms, 85.1 ms] for a confi-
dence level of 95%.

When combining the latency impacts of Dependency Track
and the Sigstore components, the total additional processing
time per attestation is less than 6 seconds in most cases. This
latency does not significantly hinder an attestation process,
given that attempts are made by default twice every hour.
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Figure 12. Comparison of total attestation latency without plugin, with
plugin but without grace period, and with plugin and grace period

6.1.3 Grace period impact on evaluation

The introduction of the grace period does not significantly
affect the performance of the plugin. In practical terms, it
performs a lookup on the local configuration and decides
whether to omit a CVE or not, in case the grace period is
still active. Consequently, this feature builds directly on the
result of the already existing Dependency Track communi-
cation, without introducing new interactions or altering the
established communication flow in any way.

Considering that no impact on external components can be
caused by the plugin, assessing its true performance overhead
requires measuring its effect on the attestation process itself.
To this end, we compared the general attestation response
time of the SPIRE Agents in three different scenarios: (1) the
default SPIRE Agent with the compliance plugin disabled,
(2) the SPIRE Agent with the plugin enabled but with the
grace period feature disabled, and (3) the SPIRE Agent with
all compliance plugin features enabled. For this comparison,
we performed a 20-minute execution for each configuration,
using the SPIFFE Helper as the workload performing the at-
testation attempts. The experiment ignores a warm-up phase,
focusing on the steady state, and is shown in Figure 12.

As seen in the figure, the total attestation time with the
plugin, with and without the grace period filtering, is around
6 seconds longer than the base attestation time. Also note-
worthy is that the base attestation is very stable, while the
continuous compliance plugin shows some variation. This is
a consequence of the base attestation using local information,
while the plugin still needs to query the Dependency Track,
which inevitably adds some network and processing jitter.

6.2 Security evaluation

As defined in our threat model from Section 3, our security
objectives do not include an analysis of failing to implement
SPIRE’s or ZTA’s guidelines or how trustworthy and com-
plete the CVEs provided by NVD are to the Dependency
Check tool. Therefore, we first analyze the workload attesta-
tion workflow and then review how this workflow satisfies
our requirements defined in Section 3.

The periodic re-attestation performed by SPIRE analyzes
workloads periodically. An SPIRE Agent calls the attestation
plugins, and they use direct and indirect means to derive the
selectors (i.e., properties) of a workload. Our vulnerability
compliance plugin adds SCA to this routine. Then, because
of Dependency Track’s self-update, the plugin always returns
the current vulnerabilities associated with the workload’s
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dependency. Therefore, changes in this status are tracked at
each re-attestation, extending continuous compliance beyond
when the deployment occurred.

Next, as SPIRE selectors will reflect the expected vulner-
ability posture of a workload, deviations cause identities to
no longer be issued. Consequently, mTLS connections to the
noncompliant workload will cease after the previous certifi-
cate expires. Thus, workloads or the zero-trust proxies that
implement mTLS connections correctly will transparently
ensure vulnerability posture compliance. Such support ad-
dresses the gap we found in ZTA’s treatment of compliance
while applying a first, automatic response to incidents.

The failed workload is free to retry attestation ad infinitum.
However, the only way to receive an actual valid identity cer-
tificate is through outside forces, such as updates in CVSS or
EPSS Scores in the CVEs related to its SBOM. Alternatively,
developers and operators can interact to insert a VEX entry
that voids that specific vulnerability to that specific project
into Dependency Track. In both cases, the workload has be-
come compliant again because either its vulnerability state
changed or it was considered irrelevant, or at least not urgent,
due to internal officers’ intervention.

As explained in our threat model, we are also concerned
about the provenance of an SBOM, since it is the source of
truth for our vulnerability assessment. Two cases may take
place. First, if there is an attempt to alter or forge the SBOM,
Cosign and Rekor can easily use the SLSA Provenance to
discriminate the origin of the trustworthiness of the SBOM.
As SLSA 3 focuses on signed SBOMs, this guarantees that
forging the provenance is beyond the capabilities of most
adversaries. We can avoid the threat of illegitimate SBOM
masking vulnerabilities. Second, it may be the case that some
critical applications require a reviewing board. In this case, if
only specific entities should sign the SBOM for some appli-
cation, the SPIRE entries for the identities of the workloads
will include the OIDC issuer field as a selector (as detailed
in Table 1). This selector will force SPIRE to check this
field in the SBOM, and the use of invalid issuers will block
workloads from getting the identity.

Once workloads have no identity, they will be isolated.
In practice, as the workload identity should be the same as
that used to respond to health checkers, the workload will
be terminated. Workload termination should then generate
alerts on a monitoring system, which is also a well-established
practice for production systems.

The consequence of isolating a noncompliant workload is,
of course, reduced availability. Isolating non-critical appli-
cations due to minor security issues reduces our solution’s
applicability. To mitigate this, we provide a flexible grace
period option, so that stakeholders can decide the best preven-
tion versus availability trade-off, considering the isolation’s
impact on the provided workloads and the vulnerability miti-
gation deadlines of the development team.

In summary, the implemented plugin, through the help of
Sigstore and Dependency Track, can map selective identity
provisioning with vulnerability posture rules for compliance.
Tying vulnerability posture rules to X.509 identities that are
(directly or indirectly) the base for all communications ef-
fectively isolates noncompliant workloads, even if they were
previously considered compliant at some point. This isola-
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tion prevents threat exploits as soon as organizational policies
dictate, even without human intervention.

6.3 Threats to validity

This work proposes integrating vulnerability assessment into
ZTA to enable continuous compliance enforcement post-
deployment. In order to assess vulnerability, SCA should
be continuously performed and its results used as evidence
of an application’s security posture. Consequently, this ap-
proach heavily depends on the completeness and accuracy of
vulnerability databases.

Such databases merely contain the CVEs disclosed by
CNAs (CVE Numbering Authorities) — third-party orga-
nizations authorized by the CVE Program to disclose and
assign CVEs CVE [2025]. Examples include the MITRE or-
ganization, the GitHub Security Advisory, as well as software
vendors such as Netflix Inc and Atlassian . These CNAs
are also responsible for devising appropriate mitigations for
the vulnerabilities published by them. However, some CNAs
take longer than others to disclose, and their severity assess-
ments might diverge, potentially introducing inconsistencies
or biases in CVSS and EPSS scoring Lin ef a/. [2023]. This
can lead to false positives or false negatives in vulnerability
scores, which in turn might negatively impact the workload
attestor’s decision.

While this risk also impacts this paper, it is a well-
recognized, field-wide challenge that cannot be mitigated
at the methodological level of this work. In fact, it is impera-
tive for organizations employing vulnerability assessments to
remain aware of this and implement complementary strategies
to mitigate its impact.

Another significant factor is the accuracy of the SBOM.
Since the SBOM is the required basis for SCA, incomplete
or incorrect data results in an inaccurate vulnerability list.
This highlights the importance of choosing a reliable SBOM
generation tool, such as Trivy and Snyk. This is not to be
seen as a recommendation, however, as there are many open-
source tools as well as proprietary ones available. Such a
choice is at the discretion of the organization, and this paper
does not aim to guide on choosing tools, but rather only to
point out their importance.

Additionally, the choice of tools also represents a potential
threat. This work is supported by the selection of prestigious
tools, based on related work and relevant, renowned organiza-
tions. The correct mitigation of the threat model in Section 3
relies on the chosen tools (i.e., SPIRE and Dependency Track)
and their respective open-source communities’ continuous
maintenance. While such tools can lose quality or become
inadequate over time, this risk is mitigated by the backing of
well-regarded organizations such as the CNCF and OWASP,
ensuring ongoing relevance and security.

With the introduction of the grace period mechanism, com-
pliance assurance also depends on accurately translating an
organization’s policy into the values added by the SPIRE oper-
ator to the Workload Attestor’s configuration file. Since these
policies are defined and updated through human decision-
making, they are subject to change due to executive strategies

Shttps://www.cve.org/PartnerInformation/ListofPartners
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and may not always be accurately reflected in the configura-
tion. Outdated, incorrect, or improperly entered grace period
values can result in attestation outcomes misaligned with
organizational intent. To avoid undesired behavior, when
deciding for configuring a grace period policy, the organiza-
tion must also establish a strict process to make sure these
values have been correctly entered by the SPIRE operator and
reconfigured whenever the policies are updated.

Lastly, the very existence of a grace period, if not strategi-
cally employed, may introduce a threat by fostering a false
sense of security. Vulnerabilities might appear absent when,
in fact, their assessment has merely been deferred. In this
sense, even though the Workload Attestor responds as in-
tended, the mechanism fails to fulfill its purpose, and instead
only allows the system to be available with unaddressed vul-
nerabilities. This availability window should only be per-
mitted under a clear strategy. Therefore, it is important to
monitor the vulnerability records logged by the Workload
Attestor, and use the afforded time to prepare for remediation
or for a potential downtime once the grace period expires,
rather than simply overlooking the vulnerabilities.

7 Conclusion

In this work, we present a comprehensive workflow designed
to continuously evaluate workloads for compliance related to
their provenance and vulnerability status. This solution fills a
significant gap in existing continuous compliance methodolo-
gies, which often overlook vulnerabilities post-deployment.
Our approach is grounded in Zero-Trust principles, where
applications undergo explicit and ongoing authentication. It
is built upon two fundamental requirements: (1) a CI/CD
pipeline that generates compliance evidence, specifically a
Software Bill of Materials (SBOM) and, ideally, provenance
information of the source code, such as SLSA Provenance;
and (2) an identity provisioning tool that regularly updates the
identities utilized within a Zero-Trust framework. This tool
effectively isolates workloads that fail to renew their identi-
ties. We believe these requirements are in line with modern,
well-established practices in development and operations.

To ensure the solution is applicable for both critical and
non-critical workloads, we introduced the concept of a config-
urable grace period for newly discovered CVEs. By deferring
immediate enforcement, the grace period provides the organi-
zation with a critical window to assess the risk, plan mitigation
steps, and prepare for any necessary downtime. The possible
duration values for the grace period vary according to the
characteristics of the CVE and the application in which it was
identified, based on the following factors: (1) the severity of
the impact of the CVE being exploited, as indicated by its
CVSS score; (2) the likelihood of exploitation within the next
30 days, as estimated by the EPSS score; and (3) the criticality
of securing the affected application within the system’s con-
text, as specified by the infrastructure operator. By explicitly
encoding these criteria into a policy, organizations can better
align vulnerability management with their risk tolerance and
operational constraints.

We implemented this approach as a new plugin for the
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CNCF’ SPIRE framework, integrating simple and popular
tools, such as the Sigstore framework and OWASP’s® Depen-
dency Track. Our evaluation demonstrated that the plugin
does not hinder the deployment or operation of modern cloud-
native applications. Specifically, the performance analysis
showed that it does not add significant latency to SPIRE’s
attestation process, and enabling the grace period feature had
negligible runtime cost. The necessary resources to run our
implementation are primarily those required to run Depen-
dency Track in a scalable way — an expense already justified
in any compliance-conscious environment. These results con-
firm that our approach is practical for real-world cloud-native
deployments without compromising operational performance.
Finally, the extensibility of SPIRE serves as a fertile ground
for simple-to-adopt verification mechanisms. For example,
we envisage that additional compliance metrics can be imple-
mented together with SPIRE’s open-source community.
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