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Abstract

Open source dependencies are the leading source of vulnerabilities in applications and are often exploited in software

supply chain attacks. Efforts to assess vulnerabilities are employed during DevSecOps pipelines in order to keep

a system compliant with security regimes. However, current strategies for continuous compliance are limited

to preventing issues before deployment, and thus do not address changes in dynamic aspects such as newfound

vulnerabilities, let alone how to respond to such incidents. In this work, we leverage zero-trust to enable continuous,

post-deployment vulnerability compliance assessment, isolating workloads that fail to meet a minimum security

posture. This approach balances exploitation prevention with application availability — a fundamental trade-off for

critical use cases. The solution is built on top of SPIRE, a robust open-source identity provider based on workload

attestation, and implements a custom plugin that responds to compliance violations driven by dynamic aspects

exposed by OWASP’s Dependency Track, an open-source tool for monitoring software components and their

dependencies for vulnerabilities. To enhance flexibility in the security-availability trade-off, we introduce a grace

period mechanism, enabling organizations to defer enforcement of newly identified vulnerabilities based on workload

criticality, thus supporting availability for non-critical workloads without compromising long-term security. Finally,

we evaluate the performance impact of this approach on a SPIRE environment, showing that the added resource usage

reliably remains within the recommended 16 GiB of RAM and 4 vCPUs to run Dependency Track in production.

We also show that the plugin adds less than 6 seconds of latency to the attestation process, which is insignificant

given its default frequency of twice per hour. Moreover, the results confirm that the approach successfully prevents

vulnerability exploitation by prioritizing security, while enabling controlled flexibility in less critical contexts.

Keywords: Continuous Compliance, Vulnerability Management, Zero Trust Architecture, Incident Response, Identity

Provisioning, Supply Chain, SPIRE

1 Introduction

The software supply chain is facing a critical security chal-

lenge, underscored by a staggering 742% increase in attacks

between 2019 and 2021 [Sonatype, 2022]. High-profile in-

cidents, such as the breaches involving SolarWinds’ Orion

Platform [IBM, 2024b] and the backdoor in XZ Utils [NVD,

2025], reveal the unprecedented scale of risk modern devel-

opment practices entail.

Software supply chain attacks aim to inject malicious or

vulnerable code into a final product through its dependencies.

By embedding compromised components, attackers effec-

tively bypass traditional security perimeters that focus on

external threats, allowing them to infect an entire ecosystem

from within.

This threat is magnified by the software industry’s heavy

reliance on open-source projects. A successful attack on

a single, popular open-source library can cascade through

countless downstream projects that depend on it. This danger

is not theoretical; in 2022 alone, over 245 000 malicious open-

source packages were discovered, more than doubling the

total from all previous years combined [Sonatype, 2023]

While DevSecOps best practices, such as using Static Ap-

plication Security Testing (SAST) in a CI/CD pipeline, are

crucial for identifying vulnerabilities in locally written source

code, they are not enough to secure the supply chain. The

primary defense against dependency-based threats starts with

two key components: Software Bill of Materials (SBOM)

and Software Composition Analysis (SCA).

An SBOM is a detailed inventory of every software com-

ponent within a system, including libraries, packages, and

their dependencies [CycloneDX Core Working Group, 2024].

An SBOM creates essential transparency by mapping out the

entire software supply chain. Then, using an SBOM as its

foundation, SCA tools automatically scan for known vulner-

abilities within all direct and transitive dependencies. The

analysis output enables teams to take decisive action, such as

blocking the deployment of a release containing critical vul-

nerabilities, thereby preventing a compromised component

from ever reaching production.

Compliance regulations such as PCI DSS [PCI Security

Standards Council, 2024] and FedRAMP [GSA, 2024] in-

clude vulnerability detection and mitigation requirements,
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highlighting the importance of SCA in the development life-

cycle. As regional and international markets push compliance

as a requirement for software, continuous compliance has be-

come a focal point for DevSecOps [Ramaj et al., 2022]. Ap-

proaches to ensure continuous compliance include building

on top of DevSecOps best practices to integrate CaC (Com-

pliance as Code), which can potentially automate checking

if security controls are satisfied during a pipeline [Nygard,

2021; Kellogg et al., 2021].

Unfortunately, even the best practices during development

cannot mitigate all issues. The absence of known vulnerabili-

ties in the product at release does not mean it is free from them.

New vulnerabilities will likely be discovered after release,

and a new CVE (Common Vulnerabilities Enumeration) en-

try can appear on a previously safe dependency. Moreover,

these vulnerabilities can be critical, as was the case for the

recent XZ Utils disclosure, which enabled a backdoor and

affected various Linux distributions. Recent studies have also

shown that generative AI such as ChatGPT-4 can automati-

cally generate exploits for CVEs [Fang et al., 2024], making

new entries instantaneously exploitable. The high impact and

short time to exploit prove the need for continuous compli-

ance approaches that react to new vulnerabilities as quickly

as possible.

This paper proposes an approach that leverages the recent

Zero-Trust Architecture (ZTA) paradigm to enable continu-

ous compliance. ZTA, as defined by NIST (National Institute

of Standards and Technology) [Rose et al., 2020], aims to

minimize the attack surface in modern distributed systems.

ZTA holds that by default, any person, event, or device is

untrustworthy before sufficient authentication, even if it is

within a local perimeter. In Zero-Trust environments, trust

is dynamic rather than static [Buck et al., 2021] and con-

tinuous authentication is required between communicating

parties. This idea of “never trust, always verify” diametri-

cally opposes the idea that the product is trustworthy if it left

a trusted DevSecOps pipeline. Thus, as it requires continuous

re-evaluation of the components’ identities, implementing

ZTA can support runtime security enforcement.

This work proposes leveraging ZTA to extend compliance

beyond deployment. Our approach has demonstrated the

following contributions:

1. We show how integrating vulnerability assessment as a

ZTA’s trust engine policy can isolate a non-conforming

application. Isolation can prevent vulnerability exploita-

tion and be considered an immediate response to com-

pliance violations.

2. We validate this approach through a new custom work-

load attestor plugin for using SPIRE, a robust, open-

source selective identity provider. The implemented

plugin transparently triggers the dependency analysis

during each identity renewal, confirming the feasibility

of integrating continuous compliance in existing envi-

ronments.

3. We evaluate the solution and confirm its practicality

regarding added performance and resource costs. Fur-

thermore, we discuss how the approach relies only on

well-established security mechanisms.

4. We discuss compliance on both critical and non-critical

applications and how adopting our approach impacts or-

ganizations, considering the roles of operations, security,

and development teams.

We organize this paper as follows. Section 2 reviews the

background needed to understand our approach and imple-

mentation, alongside related work and our gap analysis. Sec-

tion 3 explains our threat model and outlines the problem’s

requirements. Section 4 provides an overview of a proposed

architecture, and Section 5 details its implementation using

well-known tools. In Section 6, we evaluate our solution

regarding performance and security. Finally, Section 7 con-

cludes our work with some final considerations and future

directions.

2 Background and related work

This section reviews the concepts of continuous compliance

and ZTA, as well as related work on these lines of research.

We also explain relevant technology for the state of practice

of these concepts while explaining the technology used for

the solution.

2.1 Continuous compliance and supply chain

security

Among the efforts to protect a supply chain and prevent at-

tacks, one is adopting DevSecOps best practices. These prac-

tices can include using security frameworks such as SLSA

(Supply-chain Levels for Software Artifacts). SLSA speci-

fies incremental levels of artifact security to improve security

guarantees, such as hardened builds and non-forgeable prove-

nance [SLSA Specification, 2025]. The main point of such

frameworks is to propose a secure way to produce software in

a DevSecOps process, aiming to make a pipeline impervious

to direct attacks.

However, attacks often also exploit vulnerabilities present

in code when the product is delivered. That means that even

if the CI/CD pipeline itself is correctly configured, the same

may not be said about the source code of a project. Vulner-

abilities can be found directly in code, but are even more

frequently found in its dependencies, such as its libraries,

frameworks, and other tools. Synopsy’s BDSA (Black Duck

Security Advisories) analysis report for 2024 states that most

vulnerabilities found in audits were associated with JavaScript

libraries [Synopsys, 2024]. Such vulnerabilities can come

from direct and transitive dependencies (i.e., dependencies

included in dependencies recursively).

Many security advisories such as NIST and GHSA (GitHub

Security Advisory) disclose CVEs (Common Vulnerabili-

ties and Exposure). CVEs are records stored in vulnerabil-

ity databases that often provide APIs for consultation, the

most effective of them being NVD (National Vulnerability

Database) [Johnson et al., 2018], which is managed by NIST

and kept up to date with CVEs from various advisories. A

CVE describes affected versions of software, and by fre-

quently querying databases such as NVD, it is possible to

verify if there is any reported vulnerability for a given soft-

ware version before shipping it within the product.
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SCA tools can automate this process and search these

databases for vulnerabilities in a project’s dependencies. Ex-

amples of tools are Trivy1 or Snyk2, which can ingest SBOMs

for a transparent inventory of dependencies. Another exam-

ple is OWASP’s (Open Web Application Security Project)

Dependency Track. It not only supports NVD but can also be

integrated with many other public and private data sources.

This makes it possible to aggregate more knowledge and

allows companies with private vulnerability intelligence to

combine their information with open-source vulnerability

information.

Nonetheless, SBOM is as helpful as it is reliable. Given

the popularity of software supply chain attacks for exploit-

ing vulnerabilities, an attacker could try to tamper with an

unprotected SBOM to change dependency versions. This

could potentially misguide SCA into outputting a reduced list

of CVEs to mask a known vulnerability. To mitigate this,

tools employ artifact signing to attest provenance and help

discriminate a fake or tampered artifact from a legitimate one.

Cosign, from the Sigstore framework, is a popular option

for signing, verifying, and attaching artifacts as in-toto at-

testations [Sigstore, 2024]. An in-toto attestation is a fixed,

lightweight format to describe supply chain metadata, includ-

ing SBOM [Sirish and Hennen, 2024]. To both sign and verify

signatures on attestations, Cosign uses Rekor, another compo-

nent of the Sigstore framework that works as a transparency

log, providing an auditable record of when a signature was

created [Sigstore, 2024].

Vulnerability remediation can be a high-effort task, with

hundreds of companies remediating only a monthly rate of

15.5% of known vulnerabilities on average [Cyentia Insti-

tute and Kenna Security, 2022]. To assist with prioritization,

there are well-used scoring systems that help estimate how

vulnerable the current state of a product is. The Common

Vulnerability Scoring System (CVSS) is very prominently

used to describe the severity of a CVE. CVSS is considered

a dependable and robust method for rating the severity of a

vulnerability [Johnson et al., 2018].

For CVSS, the estimation of how vulnerable an application

is relies on exploitability and impact properties and ranges

from 0.0 to 10.0, usually discretized in classes. The classes
and their respective closed intervals are LOW for [0.1, 3.0],
MEDIUM for [4.0, 6.9], HIGH for [7.0, 8.9], and CRITICAL for

[9.0, 10.0]. Another way to describe the relevance of a vul-
nerability is to use the Exploit Prediction Scoring System

(EPSS) [Jacobs et al., 2021], which expresses the likelihood

between 0.0 and 1.0 of a CVE being exploited within the next

30 days. This risk metric is updated daily for every public

CVE reported [FIRST, 2024]. Both CVSS and EPSS are

widely used, mainly to help prioritize vulnerability remedia-

tion.

To standardize a developer’s stance towards known vulner-

abilities, the Vulnerability Exploitability eXchange (VEX)

format was specified [CISA, 2023a]. This format allows

a formal statement about vulnerabilities and is readable by

both machines and humans. VEX is useful for improving

transparency and ignoring non-applicable vulnerabilities. For

1https://trivy.dev/
2https://snyk.io/

instance, a vulnerability that comes from a library could have

high EPSS and CVSS scores, but the vulnerable code might

be unreachable in the context of a specific application, mak-

ing the threat harmless. As another example, if a vulnerability

could affect the product, the company can declare that will fix

it in the next patch cycle. This makes VEX a powerful format

to enhance transparency and further improve trustworthiness

between participants.

This level of effort to improve software quality and pre-

vent security issues is needed to comply with certain regimes.

Many vendors are required by organizations or governments

to abide by one or more compliance regimes. These can be

defined as a set of encoded best practices, such as guidelines

for data encryption, storage management, and vulnerability

management [Kellogg et al., 2021]. Regimes like PCI DSS

and FedRAMP consist of many requirements, and for each

requirement, there is usually some sort of control, a rule de-

fined by industry standards for fulfilling that requirement. As

expensive auditing is needed in order to provide evidence of

compliance, vendors strive to keep internal compliance, often

manually, to avoid failing an audit [Kellogg et al., 2021].

Upholding continuous compliance has become relevant

for DevSecOps. As described by Ramaj et al. [2022], works

related to continuous compliance seek to automate general se-

curity activities, like SCA, for compliance assessment. While

the usefulness of compliance-specific tools like OpenScap,

UpGuard1, and CIS-CAT is discussed in his work, non-

specific tools can be useful for fulfilling general compliance

requirements common to many regimes. There is also the

notion of CaC, where some approaches include defining com-

pliance through integrating common compliance controls into

automated testing [Agarwal et al., 2022; Kellogg et al., 2021],

and others aim to parameterize controls so that compliance

can be checked in a data-driven testing architecture [Steffens

et al., 2018]. Finally, there is research in assessing vulnera-

bilities in cloud infrastructure and automatically producing

security checks so the next pipeline iteration can further avoid

these vulnerabilities [Torkura and Meinel, 2016].

Although promising, these solutions fall into what Nygard

[2021] called “pipeline compliance”: embedded in a CI/CD

pipeline as a set of functions whose results are validated before

release. He states that if the entire responsibility of internal

audit sits within a pipeline, frequent changes may reduce

correctness and cause ownership issues. He then proposes a

form of “composite compliance” to distribute responsibility

by assuming that if the parts of a system are compliant, then

the system as a whole is also compliant. This, in turn, poses

the problem of a previously compliant component violating

compliance and then tainting the whole system. This is espe-

cially concerning when considering ecosystems comprised

of many microservices and their replicas.

As a final solution, the author proposes “point of change

compliance”, an architecture where a security team defines

compliance requirements, and pipelines built for these base-

lines run without security checks while producing security

evidence. Before deployment, the final product is analyzed

by an admission controller, which checks if the gathered ev-

idence satisfies the requirements. If not, the pipeline fails.

Otherwise, the product can be trusted because it is compliant,

and is consequently deployed. Through this method, there is

https://trivy.dev/
https://snyk.io/
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no confusion of ownership among developers and security

officers.

While these forms of continuous compliance solve the issue

of avoiding the launch of a non-compliant service, compli-

ance is violated if the vulnerability status of a service changes.

Since this situation cannot be completely prevented, and in

such cases, the component was already admitted and is there-

fore trusted, it can potentially endanger the rest of the ecosys-

tem.

This leaves a gap within the state of the art. If continuous

compliance cannot address incidents due to sudden compli-

ance violations, then the responsibility of incident response

falls completely to the team providing the software (i.e., de-

velopers).

2.2 Zero-trust principles and tools

The problem of trusting a component indefinitely because

of an initial state of compliance can be solved by leveraging

ZTA. The Zero Trust Architecture is an approach that seeks to

protect data in its various states, be it at rest or in transit [Syed

et al., 2022]. NIST defines ZTA as not a single network ar-

chitecture achievable using one technology, but a set of many

guiding principles that must be strategically implemented to

secure enterprise assets. This gives flexibility for ZTA to be

applied to many contexts, such as in the work of Chen et al.

[2021], where the authors also leverage ZTA in order to add

security awareness to healthcare devices in a 5G network.

One important principle of Zero Trust is that of commu-

nication security. It declares that communication needs to

be secured regardless of its location. In other words, there

should never be a communication that, due to taking place

in a certain perimeter, is considered safe enough to be unau-

thenticated or unencrypted. This means that just because a

component was able to be deployed, that does not imply that it

is safe to communicate with it insecurely. A standard solution

for this is the use of a software-defined perimeter (instead of

a firewall-defined perimeter), frequently through mTLS. In

orchestrated, containerized environments such as Kubernetes,

mTLS can be powered by Service Meshes like Istio to re-

move overhead from applications and secure traffic between

microservices [de Weever and Andreou, 2020]. Additionally,

trust in ZTA is never static, but rather dynamic [Buck et al.,

2021]. This results in authenticating a component before es-

tablishing trust, and since this trust is not static, authentication

must be continuous, which is a strong pillar of ZTA [He et al.,

2022].

Identity providers like Kerberos [IBM, 2024a] and WS02

Identity Server [Inc., 2024] can help with both establishing

trust and securing communication by granting identities to

applications. Such identities will be issued only to registered

applications, thus establishing trust, and can take the form of

X.509 certificates to power mTLS, thus securing communica-

tion between identified parties.

Another known specification for trust and identity issu-

ing is SPIFFE [Babakian et al., 2022], which proposes that

identities assigned within a certain Trust Domain (a logical

perimeter for an ecosystem) should be identifiable and verifi-

able. Identities, here called SPIFFE IDs, are merely semantic

URIs but always come embedded in an SVID (SPIFFE Veri-

fiable Identity Documents). SPIFFE specifies that the SVID

must always contain signatures from a trusted party to prove

that its SPIFFE ID is valid. Currently, the standard defines

JWT and X.509 as valid SVID formats3, making the SPIFFE

specification equivalent to other identity providers in terms

of establishing trust and securing communication.

However, the aforementioned solutions for authentication

do not establish dynamic trust, but rather static trust. That

is, one must statically define which applications or parties to

trust so that the provider can issue or deny an identity. To

help satisfy this requirement, among other goals, SPIRE was

created to implement the SPIFFE standard with a hierarchical

and dynamic authentication process.

SPIRE is a tool that graduated from the Cloud Native Com-

puting Foundation (CNCF) and was adopted by many com-

panies such as Netflix, Pinterest, and Uber. SPIFFE and

SPIRE have also been receiving contributions from big tech

companies such as VMWare, Google, and Hewlett-Packard

Enterprise [SPIFFE Project, 2025]. SPIRE differs from other

tools due to requiring a secret-less authentication process,

known as attestation, before issuing an identity. Whenever

an identity is defined in SPIRE, it must contain a set of se-

lectors. These values are criteria that need to be satisfied by

the application, referred to as workload, that is requesting the

identity. During attestation, SPIRE collects selectors from

the workload and compares them with each admin-defined

entry in its database. Only if a workload with those selectors

is eligible for some identity, an SVID with that identity with

the requested type (most often a short-lived X.509 certificate)

is issued to the application. If the application fails the attesta-

tion, it does not receive a new identity, which means that even

if it previously had an identity, said identity will eventually

expire and cease to power any mTLS-required connections

within that Trust Domain.

This required attestation process to obtain and renew iden-

tities effectively establishes trust as dynamic, because instead

of looking for specific workloads, it searches for their eligi-

bility, regardless of who they are. Trust can be defined to be

strict or lenient depending on the identities’ configurations. A

certain SPIFFE ID can be set to only match specific selectors,

guaranteeing that only the desired application will bear that

identity. However, the opposite can be achieved by declaring

multiple entries with the same SPIFFE ID, increasing the

attestation possibilities.

To support this attestation-based selective provisioning,

SPIRE employs two main components in a defined hierar-

chy: the SPIRE Server and the SPIRE Agent, as depicted

in Figure 1. The server acts as the single source of truth for

the entire Trust Domain, which should encompass a logical

perimeter for an ecosystem of applications. Because it is the

place where identities are registered and managed, it must be

protected, lest a penetration attack compromise the ecosystem.

Meanwhile, the SPIRE Agent is a proxy for the SPIRE Server

so that local applications can be attested without direct access

to the source of trust. For example, considering a distributed

cloud architecture of many nodes or instances, a SPIRE Agent

represents a node, while the SPIRE Server resides on a spe-

cially protected node, and workloads are applications that run

3https://github.com/spiffe/spiffe/tree/main/standards

https://github.com/spiffe/spiffe/tree/main/standards


Leveraging zero trust and risk indicators to support continuous

vulnerability compliance Gama et al. 2026

in each separate node, able only to communicate with their

local node.

Because the source of trust is the Server, no Agent, and

therefore no node, is trusted by default. Before it can be

trusted to be a proxy, it is subjected to a node attestation,

much like the workloads. Selectors for node attestation can

consider different properties of a node, such as its location

on the infrastructure, its runtime environment, and properties

from its software or hardware stack. If successful, the Server

issues an identity to the Agent, enabling it to attest its local

workloads (i.e., services running on the node). Afterwards,

workloads can try to attest to their local Agent to receive their

identity.

An important characteristic of this hierarchy is that, by

default, workloads are not meant to attest to all Agents. This is

enforced by SPIRE via the structure of the identity. When an

admin enters an identity into the SPIRE Server, they not only

specify the selectors and SPIFFE ID, but also which parent

SPIFFE ID (i.e., Agent identity) is responsible for issuing

it. This means that a workload that successfully contacts an

external Agent will only be able to attest to it if that Agent has

that specific parent SPIFFE ID. Additionally, communication

between Agents and workloads happens via local sockets,

both because it is insecure in nature since the workload is not

initially trusted, but also to enforce that only local Agents are

approachable. There are benefits to discriminating the node

based on its characteristics (e.g., restricting certain critical

applications on high-protected nodes). But if an admin wishes

to treat all nodes equally, entries can be configured so that all

Agents receive the same SPIFFE ID.

Finally, once bearing their SVIDs, Agents can communi-

cate with the Server and attest workloads. Once workloads

acquire their SVID, they can use it to employ mTLS or other

authentication mechanisms. As said before, because these are

usually short-lived, they must be renewed via reattestations.

Thus, if a workload loses mTLS clearance because its SVID

is no longer valid, that can only mean it failed to reattest

because it no longer matches the required selectors and is,

therefore, rightfully isolated in the network.

As a result of its selective identity provisioning, SPIRE

also supports another tenet of ZTA: Continuous Authentica-

tion. Because identities are short-lived and depend on peri-

odic attestation, if two services communicate through SVID-

powered mTLS connections, they will implicitly authenticate

each other continuously. Finally, although SPIRE does not

support every attestation use case with its built-in compo-

nents, it is extensible with its plugin architecture, allowing

for customization by implementing new plugins, including

workload attestation plugins. Thus, it is a viable alternative

for assessing compliance as a criterion for determining trust.

Although compliance is seen as important, efforts to estab-

lish good practices of ZTA do not detail the role of compli-

ance. As part of their multivocal review of both academic

and gray literature, Buck et al. [2021] describe the trust as-

sessment process of a ZTA implementation as needing two

components: a Trust Engine and a zero-trust PEP (Policy

Enforcement Point). While the Trust Engine assesses trust

based on policy, the PEP enforces the decision by providing

secure communication. Compliance can be used as policy in

theory, but no work is shown by the authors to explore this

Figure 1. SPIRE Hierarchy (Source: [SPIFFE, 2025b])

possibility despite its relevancy. The same can be said by

the survey from He et al. [2022], who point out that further

attention on continuous diagnostics and mitigation systems is

needed to integrate industrial compliance into ZTA. Finally,

industry standards for achieving maturity in Zero Trust also

lack guidance on integrating security posture while at the

same time recommending vulnerability management [CISA,

2023b]. This research gap appears, therefore, to be a missing

link for connecting ZTA to continuous compliance.

3 Threat model and solution require-

ments

Understanding our threat model requires thinking about some

roles people may assume and the tools used in the environ-

ment.

Starting with the human roles, we assume a typical envi-

ronment where developers and operators develop and main-

tain cloud-native applications. In addition, security officers

(or the operators themselves, in frequent cases) define se-

curity policies for the organization. Security officers know

the organization’s obligations and understand the functional

components of security management (e.g., PCI DSS [PCI

Security Standards Council, 2024], FedRAMP [GSA, 2024],

ITU-T Security Requirements [ITU, 2020]). Thus, security

officers understand the incident response strategies and the

development team’s deadlines to fix vulnerabilities.

Following the DevOps (or DevSecOps) movement, devel-

opers and operators try to cooperate but are not specialists in

each other’s work. Therefore, being responsible for the sys-

tem’s long-term operation, operators must understand system

security and want bug-free applications, but do not get deeply

involved in the development process. Nevertheless, we as-

sume operators are benign and do not represent an internal

threat.

We also assume developers are mostly benign but may

not have the necessary knowledge to build long-term secure
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services. Therefore, they may use libraries and modules that

are not mature enough. However, we assume that the most

experienced developers build the tests used in the CI/CD

pipeline. Thus, if some developers are not trusted, such as

in an open-source community, there must be a process that

forces reviews by selected communitymembers, and evidence

of this process is collected. Consequently, we assume that the

application has no known vulnerabilities at the initial state of

a release. Thus, all workloads composing an application are

compliant at that moment.

Regarding tools, our environment adopts three types of

tools: (i) CI/CD tools, which generate artifacts such as

SBOMs and images; (ii) zero-trust tools, which implement

the identity provisioning workflow and the proxies that con-

trol mTLS connections; (iii) vulnerability management tools

(Dependency Track in our implementation), which track vul-

nerability databases and serve local queries about vulnerabili-

ties.

We assume that the CI/CD pipeline implements good prac-

tices. Nevertheless, it is possible that a third-party attacker

can intercept a software release and substitute it with a tam-

pered image if the OCI container registry storing it is not se-

cure enough. Similarly, an attacker can substitute the SBOM.

Therefore, attackers can replace SBOMs and images but can-

not falsify the signatures of trust entities. SPIRE can already

check image signatures and, consequently, this is outside our

scope.

Next, the application runs within a ZTA. ZTA brings dy-

namic trust assessment to the environment. Therefore, all

workloads have unique identities and authenticate each other

in all communication. Although not strictly necessary for our

approach, our implementations assume mutual TLS commu-

nications. As a result, workloads have identities in the form

of X.509 certificates.

As a consequence of the ZTA, workloads that do not have

valid identities will be unable to communicate with other

workloads and will be effectively isolated. Isolating a work-

load should trigger termination (e.g., due to failing health

checks) and trigger alerts in monitoring tools. Tools such as

Envoy [Envoy Project, 2025] manage mutual TLS connec-

tions, and SPIRE generates workload identity certificates. We

assume that ZTAs and the SPIRE installations and operations

are correct. For example, attackers cannot access servers or

the private key from the local certificate authority to register

malicious identities or generate certificates. Similarly, pre-

venting attackers from changing critical configurations in the

environment is out of scope. Our focus is then on automat-

ing first responses to vulnerability compliance violations in

deployed applications, preventing exploits, and overcoming

the limitations of pipelines that only verify security before

deployment.

Considering these assumptions, the solution must provide

a way to monitor compliance continuously. If, at some point,

compliance is violated due to new vulnerabilities, the solution

must bridge the gap left by continuous compliance strategies

and apply an automatic incident response. This automated

response can lessen the overhead and responsibilities of teams

to detect and enact an emergency intervention. To achieve

this while integrating with a ZTA environment, selective iden-

tity provisioning must be implemented so that non-compliant

services are denied their identities. Accurately blocking the

generation and renewal of identities requires mapping com-

pliance into policy, also bridging the gap left by current ZTA

research. In the end, the approach should help operators work

smoothly with developers and compliance officers to decide

trade-offs between their applications’ availability and secu-

rity.

4 Enforcing continuous compliance

Compliance must be present during the entire life cycle of the

application. As mentioned before, this can be made possible

by adopting DevSecOps best practices, SCA, and a supply

chain security framework during a CI/CD pipeline. By im-

plementing these known practices, a company can enforce an

initial state of compliance by ensuring the immutable part of

a release (its build and attached artifacts) follows compliance

rules. SLSA-compliant build processes further help with this

and, at its level 3, guarantee artifact provenance and hardened

builds [SLSA Specification, 2025].

However, to ensure continuous compliance, it is necessary

to continue to perform SCA, even after deployment or deliv-

ery. To operationalize this, we propose to integrate workload

attestation using vulnerability tolerance as a minimum se-

curity posture criterion for selective identity provisioning.

Figure 2 illustrates our architecture. By providing short-lived

identities to power mTLS between applications, we can lever-

age Zero Trust by imposing communication security that

requires frequent reattestation to renew.

The resulting isolation of a workload could be mitigated

by (1) a VEX issued by security officers so that SCA ignores

some vulnerabilities, (2) a new release without said vulnerabil-

ities, or (3) operators rolling back to previous non-vulnerable

versions. Since isolation is a response to a compliance viola-

tion, the maximum CVSS and EPSS requirements for issuing

an identity should be defined by security officers, considering

the trade-off between availability and exploitation prevention.

On top of CVE scoring requirements, a grace period could be

put in place to filter out young vulnerabilities, measured by

the day of their first known disclosure until the current day.

Configuring thresholds for grace periods could provide more

flexibility in said trade-off.

5 Implementation

In this section, we discuss the implementation of the proposal

explained in the previous section. To perform continuous

SCA, we selected Dependency Track, a tool from the Open

Worldwide Application Security Project (OWASP), due to

its openness, robustness, and integration possibilities. De-

pendency Track already yields CVSS and EPSS for every

vulnerability in an SBOM’s dependency list. As for its inte-

gration, it supports the NVD database by default and allows

additional private data sources that extend the relevance of

this approach. Finally, it provides a REST API to help auto-

mate its use.

For the identity provider, we chose SPIRE due to its open-

ness, flexibility, and native workload-attesting capabilities.
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Figure 2. Proposed architecture

In addition, it is already being used to implement ZTA’s com-

munication security and continuous authentication principles.

We expand SPIRE in regard to its available selectors. This

is done by implementing a workload attestor plugin that will

be used during a workload attestation. Our custom plugin

connects to a Dependency Track instance to return the SCA

results and uses this information to provide the workload

properties to the SPIRE agent as selectors.

Two preconditions are necessary for the plugin features:

(1) it needs to have access to the image information (i.e., its

complete identification) in order to tell which workload it

is attesting, and (2) it must also have access to that image’s

SBOM. With this information, it can call Dependency Track

to feed it the SBOM and then gather the results.

These conditions can be provided in any containerized en-

vironment. However, in this work, we use Kubernetes as

an orchestration tool due to its popularity. The following

subsections will respectively propose how to embed the evi-

dence so it can be accessible, and then detail how the plugin

can collect the evidence to use SCA. Figure 3 illustrates our

proposal, and how operators and developers can collaborate

on the attestation process.

Similar approaches could be implemented in other contexts.

For example, if we assume that microservices run in micro-

VMs orchestrated by a system such as OpenStack4, the image

information could be retrieved from the image service and

the SBOM embedded in the image metadata.

5.1 Embedding the basic information

Tomake sure the product possesses an SBOMdescribing it, its

build pipeline should contain a stage that generates and saves

this artifact prior to release. Ideally, this information is open

so that clients and other interested stakeholders can access

it for transparency reasons. This can be done by making the

4https://www.openstack.org/

SBOMs available in a repository, a public artifact registry

of some kind, or within the same OCI registry the product

images are kept. The latter is especially practical because if a

client or other interested stakeholder has access to the image,

they also have access to the SBOM. As mentioned before,

Cosign can be helpful to both sign and attach the SBOM to

the image, storing it to the registry and making it available

for the future.

SBOMs come in various formats. CycloneDX is a format

also created by OWASP, with high interoperability due to

high adoption, and is required by Dependency Track. Many

tools can produce CycloneDX formatted SBOMs, such as the

aforementioned Trivy and Snyk.

In addition to the SBOM, another compliance evidence

that can be used is a provenance artifact. The provenance can

prove that the image’s origins are trustworthy. That means it

came from a trusted, quality pipeline, managed by a special-

ized or otherwise trusted party. An example of this artifact

is a SLSA Provenance, that can be generated by adhering to

tools with at least SLSA level 2 or, preferably, level 3 guar-

antees. SLSA level 2 means that the tool provides a signed

provenance evidence that the image was built on that pipeline,

while on top of that SLSA level 3 means that forging the

provenance is beyond the capabilities of most adversaries

and the build platform is hardened against tampering [SLSA

Specification, 2025].

If available, the workload attestor plugin will use SLSA

Provenance to report the image’s origins in addition to vulner-

ability data. This allows administrators to restrict the origin

of their images (e.g., the CI pipeline that produced it) and the

source code repository and branch used.

Lastly, to make sure the SBOM and provenance are trust-

worthy, the same authority should sign both. This way, we

can discriminate if the in-toto attestations come from the same

pipeline as the built image and tell apart a legitimate artifact

from one forged by an attacker.

5.2 Framework for evidence collection

The plugin implementation follows the desiredworkflow spec-

ified by SPIRE for a workload attestor. It is triggered by

the SPIRE Agent when a workload tries to fetch an identity.

When it does so, the Agent begins the workload attestation

process, which triggers all installed workload attestor plugins,

including our custom one. Figure 4 illustrates the workflow

for the plugin.

When it starts, the plugin immediately collects information

about the running image. For the scope of this work, it queries

the Kubernetes API regarding the Pod (i.e., the Kubernetes

set of running containers). This information will include the

image source and its hash digest. After it discovers which

container started the attestation, the plugin tries to fetch all

attached evidence using Cosign and looks among them for

SBOM and SLSA Provenance. It then checks their signature

using Rekor to build selectors regarding who issued the arti-

facts (the pipeline that generated them) and who signed them.

Then, it proceeds to process both artifacts.

Firstly, it uses the SBOM to feedDependency Track’s SCA

via its REST API. It registers the workload in Dependency

Track if there is no entry for this image version using digest,

https://www.openstack.org/
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Figure 3. Proposal of compliance attestation within SPIRE

Figure 4. Compliance workload attestor plugin

and then triggers component analysis. Following that, the

plugin will request Dependency Track all of that image’s

known CVEs, alongside their CVSS scores and EPSS like-

lihoods. Then, the CVE list will be processed to return the

highest CVSS severity and EPSS risk scores and build them

as selectors.

Secondly, the SLSA Provenance will be inspected to find

the repository’s location and the build pipeline used. It will

include the repository and the reference version (i.e., branch

or tag) used to build the image in the selectors.

After all selectors are built, they are returned so that the

SPIRE Agent can compare the results found with the crite-

ria defined for the identities in its database. If one or more

artifacts are not found during attestation, no selectors about

them will be built, and thus, no identity that requires such

selectors will be issued. Table 1 lists all available selectors

for the compliance workload attestor plugin.

To make sure the communication with Dependency Track

is protected, it also uses mTLS powered by SPIRE so that

only attested SPIRE Agents can communicate with Depen-

dency Track, preventing unauthorized or illegitimate Agents

to deposit SBOMs or consume analysis results. Furthermore,

since Dependency Track does not have native support for

SPIRE, we use an official utility sidecar, named SPIFFE

Helper [SPIFFE, 2025a], to fetch SVIDs and configure non-

SPIRE-aware workloads to use them.

One important note about the selectors is the format of

both highest-cvss-severity and highest-epss-risk. It would

certainly be more intuitive if thresholds could be represented

as a number. For instance, CVSS could be represented as

the actual value, providing more control for operators. EPSS

would benefit the most from this, as it does not contain official

classes like CVSS.

The reasoning behind using a category instead of a number

is that SPIRE does not natively support numeric selectors;

they are all used as strings. To be more specific, to compare

selectors during attestation, SPIRE checks if the set of ex-

pected selectors is a subset of returned selectors, and element

comparison is done by string equality. This way, if numbers

were used, they would have no inherent numerical value or

order. Using them more semantically would require contri-

butions to the selector comparison logic within SPIRE, and

this is not currently aligned with the community vision of

selectors, which sees the selectors as properties that a node

or workload has or does not have.

The categories are a workaround for this limitation. If a

high severity is the highest CVSS found, the attestor returns

only this information, and if a medium risk is found as the

highest EPSS, only this is returned on the selector. This re-

quires additional entries, but is also useful to create different

identities for different levels of vulnerabilities, enabling oper-

ators to create slightly different SPIFFE IDs for different risk

levels. To make this viable to EPSS, we needed to map the

values on a similar scale and then provide classes in the same

way. Without an official definition for EPSS risk classes, we

allow every organization to configure the intervals for each
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Table 1. Selectors for the workload attestor plugin

Selector Semantics Example

attestation-certificate-
identity

The identity that generated the attesta-

tions (i.e., workflow that produced the

evidence)

https://github.com/company/
trusted-workflows/.github/
workflows/devsecops-pipeline.
yml@refs/heads/main

attestation-certificate-
oidc-issuer

The OIDC issuer that signed the at-

testations (i.e., GitHub OIDC Issuer,

which signed on the pipeline’s behalf)

https://token.actions.
githubusercontent.com

has-provenance The image possesses a SLSA Prove-

nance

True or False

source-code-uri The public URI for the repository that

produced the image

https://github.com/repository.git

source-code-version The version (i.e., branch or tag) of the

source code

main

has-sbom The image has an SBOM True or False
highest-cvss-severity The list of CVSS severities tolerated

for the workload

LOW or MEDIUM or HIGH or CRITI-
CAL

highest-epss-risk The list of EPSS risks tolerated for the

workload

LOW or MEDIUM or HIGH or CRITI-
CAL

class in plugin settings.

5.3 Managing different security requirements

The main intended consequence of using the plugin is the

unavailability in the presence of an unacceptable vulnerabil-

ity. In other words, in order to uphold compliance beyond

deployment, it may be preferable to stop the workload rather

than to allow it to be susceptible to exploitation.

This, of course, is not the case for many noncritical work-

loads. For example, security officers may decide that a simple

web application that does not handle sensitive information

should remain available while developers patch vulnerable

dependencies. In this scenario, a CVE with a critical CVSS

might be an unacceptable threat, while a high CVSS vulnera-

bility could await mitigation without damaging SLA. Such

differentiation is aligned with strategies such as CISA’s Stake-

holder Specific Vulnerability Categorization (SSVC), which

aims to improve prioritization [CISA, 2025].

To enable this behavior, the plugin can be configured to

apply a grace period for newly identified CVEs. With this

configuration in place, when a new CVE is identified in the

project or in its dependencies, instead of immediately reacting

by including the CVE in the analysis, the plugin can disregard

its existence (when evaluating the scores for the selectors)

until the assigned grace period expires. The practical con-

sequence is that, while the grace period granted to a certain

CVE remains valid, the attestation plugin will tolerate it. In

this context, workloads are allowed to continue running along-

side newer vulnerabilities for a limited time, according to the

organization’s policies.

To achieve this effect, an admin could set the length of this

period in the plugin configuration for every CVSS and EPSS

class. This way, the plugin can better consider the context of

the workload when reporting its findings to the SPIRE Agent.

The state machine in Figure 5 illustrates the evaluation of

each CVE found after SCA, including the initial grace period

filter.

Figure 5. State machine of CVE evaluation

Unfortunately, this approach alone is not applicable to an

environment containing both critical and noncritical work-

loads. For instance, consider the same example as before with

the web application, except now it has a separate component

in charge of authentication and authorization. This compo-

nent is naturally more critical than the web application, since

exposing it to a vulnerability could allow unauthorized access,

https://github.com/company/trusted-workflows/.github/workflows/devsecops-pipeline.yml@refs/heads/main
https://github.com/company/trusted-workflows/.github/workflows/devsecops-pipeline.yml@refs/heads/main
https://github.com/company/trusted-workflows/.github/workflows/devsecops-pipeline.yml@refs/heads/main
https://github.com/company/trusted-workflows/.github/workflows/devsecops-pipeline.yml@refs/heads/main
https://token.actions.githubusercontent.com
https://token.actions.githubusercontent.com
https://github.com/repository.git
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potentially resulting in a sensitive data breach. Considering

the configuration explained before, the plugin would apply

the same grace period rules to both workloads, which would

be either too lenient or too restrictive.

To avoid this problem, the configuration is further devel-

oped into a table that maps what grace period behavior to

consider for each level of criticality. Following the semantics

kept so far, they also use the same classes defined in CVSS

and EPSS, namely, LOW, MEDIUM, HIGH, and CRITICAL; each

level represents a degree of stringency regarding the tolerance

allowed by the grace period. Below, we provide a sample

definition based on the examples discussed in this paper. It

is important to note, however, that this is not a prescriptive

guideline. In practice, the interpretation of each level and the

corresponding behavior should be defined by the organiza-

tion through a collaborative effort involving security officers,

infrastructure operators, and development teams.

• LOW: The workload is associated with a low security

concern, allowing for extended grace periods before

remediation is required. This includes auxiliary or low-

impact services, such as static content servers, telemetry

exporters, monitoring agents with read-only access, and

non-sensitive background tasks. These workloads typi-

cally have limited privileges and minimal impact in case

of compromise.

• MEDIUM: The workload presents a moderate security

concern. Grace periods remain relatively long but are

shorter than those defined for the LOW level. Typi-

cal examples are internal microservices processing non-

sensitive business logic, authenticated APIs with limited

scope, or batch jobs that handle controlled data. These

workloads may have broader access or serve user re-

quests, but are not critical to core system security.

• HIGH: Security concerns for this workload are high.

Grace periods are shorter, but still allow for a measured

response. This applies to services that authenticate users,

manage permissions, or handle personally identifiable

information or regulated data, such as financial records.

These workloads require tighter response windows due

to their potential impact.

• CRITICAL: The workload is deemed critical from a secu-

rity standpoint. Grace periods are minimized to reduce

the exploitation window. Examples include certificate

authorities, secrets managers, encryption key storage,

ingress controllers exposed to public traffic, or compo-

nents with privileged cluster access. Exploitation of

vulnerabilities in these workloads would likely result in

severe or cascading consequences.

Tables 2, 3, 4, and 5 present example configurations that

define grace periods based on the workload’s criticality, and

then the match between the CVSS severity of a CVE and its

EPSS risk level. For instance, suppose a CVE with a high

CVSS is found in a workload classified with low criticality, as

found in Table 2. If the same CVE has a low EPSS, its grace

period would be of 60 days. For a different CVE of this same

workload, if it had a medium EPSS and a critical CVSS, the

grace period would be of 20 days. Until this period elapses,

both CVEs will be ignored by the plugin. On the very next

day after the expiry date, they will be included in the analysis.

As another example, consider a CVE with a critical CVSS

and a high EPSS in a critical workload, as described in Ta-

ble 5. The plugin will only suppress it for 18 hours (i.e., 0.75
days) before returning it in selectors. Finally, for workloads

with no declared criticality, the plugin’s default behavior is

applied, disabling consideration of the grace period entirely

and reacting to CVEs immediately.

Table 2. Criticality: LOW

EPSS Score

CVE Score LOW MEDIUM HIGH CRITICAL

LOW 240 220 210 180
MEDIUM 135 120 105 90
HIGH 60 50 40 30
CRITICAL 25 20 15 10

Table 3. Criticality: MEDIUM

EPSS Score

CVE Score LOW MEDIUM HIGH CRITICAL

LOW 135 120 105 90
MEDIUM 60 50 40 30
HIGH 25 20 15 10
CRITICAL 8 7 6 5

Table 4. Criticality: HIGH

EPSS Score

CVE Score LOW MEDIUM HIGH CRITICAL

LOW 135 120 105 90
MEDIUM 25 20 15 10
HIGH 8 7 6 5
CRITICAL 3.5 3 2.5 2

Table 5. Criticality: CRITICAL

EPSS Score

CVE Score LOW MEDIUM HIGH CRITICAL

LOW 25 20 15 10
MEDIUM 8 7 6 5
HIGH 3.5 3 2.5 2
CRITICAL 1.25 1 0.75 0.5

Since the plugin cannot discern the criticality of a given

workload during the attestation process, we need to input this

information in some way. For this, we chose to leverage Ku-

bernetes as our choice of environment. Kubernetes manifests

can contain labels and annotations used by operators, both for

semantics and sometimes for the configuration of Kubernetes

tools. The plugin calls the Kubelet to collect annotations of

the workload being attested and searches specifically for the

spire.io/criticality label. The string value should be either

LOW, MEDIUM, HIGH or CRITICAL. This allows the plugin to

determine which grace period behavior, if any, to apply.
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Another way to implement this is to embed this informa-

tion within the SBOM from the start. One could argue that

since the SBOM is trusted due to its verifiable provenance,

this information should be discovered during the SCA step.

Moreover, it could be set in CycloneDX’s properties section,

made specifically for the format’s extensibility [CycloneDX

Core Working Group, 2024].

However, this is only appropriate for applications that

should retain a single criticality in all environments and use

cases. This is not always the case. For instance, the same

database management system can be used in one context to

keep low-sensitivity data accessible by multiple components,

while in another context it might store only high-sensitivity

information that should have strict access rules. The former

use case could receive a low criticality, while the latter is

more akin to a high criticality value; despite being the same

application, its criticality could be set as low. This could

happen for a variety of reasons, from the priority on security

to the available workforce dedicated to patching vulnerabili-

ties. Since each version of an application should produce a

single SBOM, such an application would only have a single

criticality. This would force different organizations to define

their criticalities based on the application settings, instead of

their own semantics as discussed before.

Therefore, we chose to decouple this information from the

application itself and set it into its configuration in the runtime

environment (i.e., Kubernetes manifest, in our case).

5.4 Plugin usage and configuration

Following the configuration pattern defined in SPIRE, the

plugin is configured in HCL (HashiCorp Configuration Lan-

guage) according to Listing 2. These settings declare how to

communicate with Dependency Track and Cosign, as well as

acceptable identity issuers and owners for the in-toto attesta-

tions.

For instance, the snippet shows that the only trusted iden-

tity issuer is GitHub Actions and that the only identity to be

trusted is that of a specific CI/CD pipeline. This means that

the plugin will consider invalid any attestations with different

credentials, and thus will not perform their respective anal-

ysis, which will result in no relevant selectors. In order for

the identities to be taken into consideration, they must be

trusted in the first place. Therefore, all trusted and expected

credentials should be included, as the plugin will verify every

possible combination between identity and issuer for each

attestation.

Additionally, the grace-periods section defines the behavior
explained in Section 5.3. The outermost levels represent the

CVSS severity classes, and the innermost levels represent the

workload criticality classes. Each element in the classified

lists, from left to right, represents the EPSS levels from LOW

to CRITICAL. If there are fewer than 4 elements in any list, no

grace period will be applied for that combination of CVSS,

Criticality, and EPSS classes.

This configuration should be included in the deployment

of the plugin within the SPIRE Agent configuration5.

Workloads deployed in the system must contain the

5https://spiffe.io/docs/latest/deploying/spire_agent/

spire.io/criticality annotation in their manifests, as exempli-

fied in Listing 1. Otherwise, as explained before, the plugin

will not enable any grace periods for this workload and will

instead consider all vulnerabilities it finds.

Listing 3 illustrates how to register entries for identities to

the SPIRE Server using the defined selectors. The URI for

an identity is defined in the snippet as -spiffeID, where exam-
ple.org is the Trust Domain and example-service/main/low-
severity/low-risk is the full name of the first identity, and

example-service/main/no-severity/no-risk is the full name of

the second identity, both for the same workload.

As for the selectors, they are defined by using the -selector
argument, and all of them are prefixed by cc, which signals
to SPIRE that this selector comes from the continuous com-

pliance plugin.

Via these selectors, this first entry imposes that the example-
service should only tolerate CVEs with low values for both

severity (CVSS) and risk (EPSS). The entry also restricts the

provenance of the product. By defining the source-code-uri
selector, it will only match workloads that come from that

specific Git repository, and by defining attestation-certificate-
identity it restricts the pipeline that built the workload. In

this example, the pipeline is not in the same location as the

repository, which is not the default but can be the case if the

pipeline runs on another platform, or if employing reusable

pipelines.

The second entry is stricter, as it defines that no vulnerabil-

ities are tolerated (by using NONE, because if any CVSS or

EPSS values are found at all, the returned category in either

selector cannot be NONE.
The semantics of defining two identities for the same work-

load help specify that this application tolerates either no

vulnerabilities or low-risk and low-severity ones. If no vul-

nerabilities are found, the identity example-service/main/no-
severity/no-risk will be issued, while if low-risk and low-

severity vulnerabilities are found, then the identity example-
service/main/low-severity/low-risk will be issued.

If both identities had the same SPIFFE IDs, which is pos-

sible, then a neighboring workload that accepts that ID will

allow communication regardless of which identity was is-

sued. However, if they have different SPIFFE IDs, the neigh-

boring workload can decide if it trusts all IDs prefixed by

example-service or not. This allows the neighboring work-

load to evaluate the risk of trusting that same workload when

its vulnerability posture changes over time.

Listing 1: Deployment manifest example

apiVersion : apps/v1
kind : Deployment
metadata :

. . .
spec :

s e l e c t o r :
. . .

template :
metadata :

l a b e l s :
. .

annotations :
sp i r e . io / c r i t i c a l i t y : ”HIGH”

spec :
. . .

https://spiffe.io/docs/latest/deploying/spire_agent/
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Listing 2: Plugin configuration

WorkloadAttestor ”cc” {
plugin_data {

dependency_track_host = ”dependency - track . example . org . com”
dependency_track_port = ”8080”
dependency_track_x_api_key = ”X_API_KEY”
cosign_login_registry = ”ghcr . io ”
cosign_login_username = ” registryusername ”
cosign_login_password = ” reg istrytoken ”
trusted_cert i f i cate_oidc_issuers = [ ” https :// token . act ions . githubusercontent . com” ]
t rus t ed_cer t i f i ca t e_ident i t i e s = [ ” https :// github .com/example -company/trusted - p ipe l ine s / . github/

workflows/devsecops - p ipe l ine . yml@refs/heads/main” ]
grace_periods = {

”LOW” = {
”LOW” = [240 , 220 , 210 , 180] ,
”MEDIUM” = [135 , 120 , 105 , 90 ] ,
”HIGH” = [60 , 50 , 40 , 30 ] ,
”CRITICAL” = [25 , 20 , 15 , 10] }

”MEDIUM” = {
”LOW” = [135 , 120 , 105 , 90 ] ,
”MEDIUM” = [60 , 50 , 40 , 30 ] ,
”HIGH” = [25 , 20 , 15 , 10 ] ,
”CRITICAL” = [8 , 7 , 6 , 5 ] }

”HIGH” = {
”LOW” = [60 , 50 , 40 , 30 ] ,
”MEDIUM” = [25 , 20 , 15 , 10 ] ,
”HIGH” = [8 , 7 , 6 , 5 ] ,
”CRITICAL” = [ 3 . 5 , 3 , 2 .5 , 2 ] }

”CRITICAL” = {
”LOW” = [25 , 20 , 15 , 10 ] ,
”MEDIUM” = [8 , 7 , 6 , 5 ] ,
”HIGH” = [ 3 . 5 , 3 , 2 .5 , 2 ] ,
”CRITICAL” = [1 . 25 , 1 , 0 .75 , 0 . 5 ] }

}
}

}

Listing 3: SPIRE entry creation example

spire - server entry create \
- sp i f f e ID s p i f f e :// example . org/example - s e rv i c e /main/low - sever i ty /low - r i s k \
- parentID s p i f f e :// example . org/ns/ sp i r e /sa/ spire - agent \
- s e l e c t o r cc : has -sbom : true \
- s e l e c t o r cc : highest - epss - r i s k :LOW \
- s e l e c t o r cc : highest - cvss - s ever i ty :LOW \
- s e l e c t o r cc : attestat ion - c e r t i f i c a t e - ident i ty : https :// github .com/example -company/trusted - p ipe l ine s

/ . github/workflows/devsecops - p ipe l ine . yml@refs/heads/main \
- s e l e c t o r cc : has - provenance : true \
- s e l e c t o r cc : source - code - ur i : https :// github .com/example -company/example - s e rv i c e \
- s e l e c t o r cc : source - code - vers ion : vd . 1 . 4 \
- s e l e c t o r cc : attestat ion - c e r t i f i c a t e - oidc - i s s u e r : https :// token . act ions . githubusercontent . com

spire - server entry create \
- sp i f f e ID s p i f f e :// example . org/example - s e rv i c e /main/no - sever i ty /no - r i s k \
- parentID s p i f f e :// example . org/ns/ sp i r e /sa/ spire - agent \
- s e l e c t o r cc : has -sbom : true \
- s e l e c t o r cc : highest - epss - r i s k :NONE \
- s e l e c t o r cc : highest - cvss - s ever i ty :NONE \
- s e l e c t o r cc : attestat ion - c e r t i f i c a t e - ident i ty : https :// github .com/example -company/trusted - p ipe l ine s

/ . github/workflows/devsecops - p ipe l ine . yml@refs/heads/main \
- s e l e c t o r cc : has - provenance : true \
- s e l e c t o r cc : source - code - ur i : https :// github .com/example -company/example - s e rv i c e \
- s e l e c t o r cc : source - code - vers ion : vd . 1 . 4 \
- s e l e c t o r cc : attestat ion - c e r t i f i c a t e - oidc - i s s u e r : https :// token . act ions . githubusercontent . com
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5.5 Grace Period Impact on Compliance En-

forcement

As shown in Section 5.3, when the grace period configuration
is enabled, the CVSS and EPSS Scores of a newly identified

CVE will only be considered as potential compliance vio-

lations after the expiry of the period for that CVE. If, after

the grace period filters tolerated vulnerabilities, the highest

CVSS or EPSS among the remaining CVEs still exceeds the

thresholds defined in the workload’s identity selectors, the

attestation will fail, and an SVID is not issued to the workload.

To illustrate this behavior, consider a workload deployed

with amanifest such as the one shown in Listing 1. Thismeans

it would have a high criticality value and would be represented

by Table 4, as set in the plugin’s configuration in Listing 2.

Also, consider the registration entries in Listing 3. These

selectors define the workload as accepting only vulnerabilities

with low severity and low risk. Table 6 summarizes four base

scenarios involving a CVE identified in this context:

• SC1: CVE is not tolerated, but is within the grace

period. A CVE published 15 days ago is identified with

a CVSS higher than the allowed threshold. However,

since it is still within the configured grace period, its

levels are temporarily tolerated, and the attestation suc-

ceeds.

• SC2: CVE is not tolerated, and the grace period

expired. 11 additional days have passed since SC1,

causing the grace period to expire. The same CVE now

has its severity and risk levels evaluated, and since they

exceed the allowed thresholds, the attestation fails.

• SC3: Tolerated CVE within the grace period. A re-

cently published CVE (3 days ago) is identified, with

both CVSS and EPSS Scores within the accepted low

thresholds. Although its scores are acceptable, it is dis-

regarded by the plugin since it is still in its grace period.

The attestation succeeds.

• SC4: Tolerated CVE outside of the grace period. The

same low CVSS and low EPSS CVE has expired its

grace period, but its scores remain within acceptable

thresholds. The attestation still succeeds.

In other words, the grace period mechanism does not alter

the core compliance enforcement logic implemented by the

plugin — it simply delays the evaluation of CVEs during a

configured window of time. This deferral enables organiza-

tions to implement measured responses to newly discovered

vulnerabilities, instead of immediate enforcement. The crit-

icality defined for each workload influences this behavior

directly: the higher the criticality, the lower the tolerance to

potential exposure, reflected in shorter grace periods con-

ceived for the CVEs.

6 Evaluation

SPIRE is a graduate project at CNCF, it is already considered

a stable, production-ready system [CNCF, 2024]. In addition,

SPIRE generates cryptographically robust identities in the

form of X.509 certificates and these certificates are used by

also mature libraries and proxies (e.g., Envoy [Envoy Project,

2025]). Therefore, instead of evaluating the resources and

security of SPIRE and tools related to zero-trust implemen-

tation, we focus on the proposed plugin itself. We separate

our evaluation into three aspects: (1) a performance analysis

to assess the impact of our plugin and its supporting architec-

ture on a running SPIRE environment, (2) a security analysis

to verify if the motivating problems are solved by adopting

our plugin, and (3) an analysis of the threats to validity to

provide a transparent overview of the study’s limitations and

the factors that may influence the general applicability of our

results.

6.1 Performance costs

To evaluate the performance cost, we must first consider the

resource allocation for running Dependency Track, which is

responsible for analyzing the SBOM. According to official

guidance, the sum of the Dependency Track Docker contain-

ers requires a minimum of 4.5 GiB of memory and 2 CPU

cores, with a recommended allocation of 16 GiB of memory

and 4 CPU cores [Springett, 2024]. In a production environ-

ment concerned with compliance, a vulnerability assessment

tool would already be a necessary expense. Hence, these

resource costs are inherent to the security posture itself, not

an exclusive overhead of our solution.

We deployed Dependency Track on a Kubernetes cluster

and measured its resource consumption through a controlled

workload to validate these recommendations. Additionally,

because the SCA runs entirely on Dependency Track and is

completely parallel to the attestation process, the only po-

tential overhead imposed by integrating Dependency Track

would be the latency of REST API communications.

6.1.1 Impact on resources

By default, a SPIRE workload attestation occurs at half of the

certificate’s expiration time. Since a short-lived certificate

has a default longevity of one hour, reattestation happens

approximately every 30 minutes, or twice per hour. Given

that the daily mean of CVE reports in 2023 for NVD is 79.18,
which amounts to 3.29 per hour [Gamblin, 2024], checking

for new vulnerabilities frequently is a recommended practice.

To test the solution’s impact on performance and scala-

bility, we simulated environments with multiple workloads.

Because we are interested in seeing how well the system han-

dles stress when accommodating highly scalable applications,

we chose certain bursts of attestation requests per second

to represent a high number of workloads that might request

attestation at the same time. The bursts start from only 1 re-

quest per second, then go to 50, then to 100, and stop at 250.
Realistically, workloads from multiple applications will not

all attest simultaneously, so these bursts should not represent

the total number of workloads in a single environment, but

rather the volume of incidental concurrent requests. While

higher stress levels could be tested, the likelihood of such a

large number of applications initiating attestation at the same

moment – unless deliberately coordinated – is minimal. For

this reason, we capped our evaluation at 250 simultaneous

requests.
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Table 6. Attestation result for CVEs in different conditions

Scenario CVE Severity CVE Risk Grace Period Publication Time Attestation Result

SC1 MEDIUM LOW 25d 15d Succeed

SC2 MEDIUM LOW 25d 26d Fail

SC3 LOW LOW 135d 3d Succeed

SC4 LOW LOW 135d 136d Succeed

Figure 6. Dependency Track’s CPU Usage per Burst

Figure 7. Dependency Track Memory Usage per Burst

To fire these request bursts, we used the same applica-

tion with an increasing number of replicas. This approach

is equivalent to using distinct applications, given that each

replica will nonetheless try to attest independently and that

the workload attestor does not have any applicable cache

logic that could cause interference. The application’s SBOM

contained over 800 dependencies, above the average of 526
per application [Synopsys, 2024]. For each burst number, the

workload requested attestation from the SPIRE Agent, which

prompted the plugin to query Dependency Track for a vulner-

ability report and to verify the grace period before returning

the selectors found. Each burst number was executed for 20
minutes and repeated 30 times to minimize the interference

of infrastructure on the experiment.

Figure 6 illustrates the CPU usage for each burst level. We

can see that although processing time changes with higher de-

mands, it remains well below the recommended 4 CPU cores,

with observed peaks just exceeding 100% of a single core’s

worth of time. Figure 7 exhibits a different behavior regard-

ing memory usage. While it is true that even the heaviest load

remains well below the 16 GiB recommendation, the usage

is not as stable. This fluctuation correlates to Dependency

Track updating its database mirrors periodically, in parallel to

synchronous requests. As a result of this independent update,

Dependency Track appears to withstand both sudden demand

peaks and high, stable loads.

Since all burst cases use the same application, the SBOM

is the same across all cases. Given that Dependency Track

Figure 8. Dependency Track CPU Usage per SBOM Size

Figure 9. Dependency Track Memory Usage per SBOM Size

analyzes each dependency in the SBOM to perform SCA,

further experimentation is required to assess the impact of

SBOM size on resource usage. This is particularly relevant

because different applications within the same ecosystem

might use different technology stacks, resulting in widely

varying numbers of dependencies (be they direct or transitive).

To address this, we extended our experiments to cover four

different SBOM sizes: 100, 250, 500, and 1000 dependencies.
In order to better isolate the impact of the SBOM’s size, we

stabilized the number of requests per second to 1.
Figure 8 shows that, apart from an initial peak, the num-

ber of dependencies does not dictate CPU usage. After this

peak, usage fluctuates with no strong pattern across all SBOM

sizes. A similar behavior is displayed in Figure 9, concerning

memory usage: an initial peak that is influenced by SBOM

size, followed by a general fluctuation that does not strongly

correlate with size changes.

Another observation is that the initial peak displays the

most resource-intensive part of the attestation process: the

first time a workload is ever attested. This corresponds to

step 7.1 in Figure 4, where the project is created in Depen-

dency Track if it does not yet exist. This means SCA is being

performed for the first time, which is understandably a more

intensive task than updating an internal database of the most

recent vulnerabilities.

In conclusion, our findings suggest that the recommended

resource allocation can be more than sufficient, even for high-

stress situations involving numerous simultaneous attestation
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Figure 10. Distribution of Latency in Cosign Requests

Figure 11. Distribution of Latency in Dependency Track Requests

requests and varying SBOM sizes. Furthermore, if attestation

resources become a concern, simply reconfiguring the iden-

tity’s lifetime (e.g., to be longer than one hour) or the renewal

margins (e.g., renewing at 75% of lifetime instead of 50%)

would considerably reduce the attestation load.

6.1.2 Impact on latency

Regarding added latency, there are two primary points of

interest: the latency from Sigstore-related requests and the

latency from Dependency Track-related requests. While the

latter involves requests to a single component, the former

comprises requests to both Cosign (to download attestations)

and Rekor (to validate the signature and its trustworthiness).

To test this, we performed over 1 600 attestations on a test

environment using the default public remote of Sigstore and a

Dependency Track instance running in the same Kubernetes

cluster as SPIRE. We measured the individual latency for

each type of Sigstore request, as well as Dependency Track

requests, during each attestation.

Figure 10 illustrates the latency distribution for each Sig-

store component. Despite the distributions being highly

skewed due to network variability, their 99th percentiles show

that attestations are typically downloaded in 2 529 ms or less

and are then verified in 3 460 ms or less. This amounts to just

above 6 seconds of added delay for a single attestation.

As for Dependency Track, because the distribution is log-

normal, we bootstrapped the MLE (Maximum Likelihood

Estimation) of the mean of latency on 5 000 re-samples. The

resulting mean of means, as shown in Figure 11, is 84.6 ms,

with a Confidence Interval of [84.1 ms, 85.1 ms] for a confi-

dence level of 95%.

When combining the latency impacts ofDependency Track

and the Sigstore components, the total additional processing

time per attestation is less than 6 seconds in most cases. This

latency does not significantly hinder an attestation process,

given that attempts are made by default twice every hour.

Figure 12. Comparison of total attestation latency without plugin, with

plugin but without grace period, and with plugin and grace period

6.1.3 Grace period impact on evaluation

The introduction of the grace period does not significantly

affect the performance of the plugin. In practical terms, it

performs a lookup on the local configuration and decides

whether to omit a CVE or not, in case the grace period is

still active. Consequently, this feature builds directly on the

result of the already existing Dependency Track communi-

cation, without introducing new interactions or altering the

established communication flow in any way.

Considering that no impact on external components can be

caused by the plugin, assessing its true performance overhead

requires measuring its effect on the attestation process itself.

To this end, we compared the general attestation response

time of the SPIRE Agents in three different scenarios: (1) the

default SPIRE Agent with the compliance plugin disabled,

(2) the SPIRE Agent with the plugin enabled but with the

grace period feature disabled, and (3) the SPIRE Agent with

all compliance plugin features enabled. For this comparison,

we performed a 20-minute execution for each configuration,

using the SPIFFE Helper as the workload performing the at-

testation attempts. The experiment ignores a warm-up phase,

focusing on the steady state, and is shown in Figure 12.

As seen in the figure, the total attestation time with the

plugin, with and without the grace period filtering, is around

6 seconds longer than the base attestation time. Also note-

worthy is that the base attestation is very stable, while the

continuous compliance plugin shows some variation. This is

a consequence of the base attestation using local information,

while the plugin still needs to query the Dependency Track,

which inevitably adds some network and processing jitter.

6.2 Security evaluation

As defined in our threat model from Section 3, our security

objectives do not include an analysis of failing to implement

SPIRE’s or ZTA’s guidelines or how trustworthy and com-

plete the CVEs provided by NVD are to the Dependency

Check tool. Therefore, we first analyze the workload attesta-

tion workflow and then review how this workflow satisfies

our requirements defined in Section 3.

The periodic re-attestation performed by SPIRE analyzes

workloads periodically. An SPIRE Agent calls the attestation

plugins, and they use direct and indirect means to derive the

selectors (i.e., properties) of a workload. Our vulnerability

compliance plugin adds SCA to this routine. Then, because

of Dependency Track’s self-update, the plugin always returns

the current vulnerabilities associated with the workload’s
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dependency. Therefore, changes in this status are tracked at

each re-attestation, extending continuous compliance beyond

when the deployment occurred.

Next, as SPIRE selectors will reflect the expected vulner-

ability posture of a workload, deviations cause identities to

no longer be issued. Consequently, mTLS connections to the

noncompliant workload will cease after the previous certifi-

cate expires. Thus, workloads or the zero-trust proxies that

implement mTLS connections correctly will transparently

ensure vulnerability posture compliance. Such support ad-

dresses the gap we found in ZTA’s treatment of compliance

while applying a first, automatic response to incidents.

The failed workload is free to retry attestation ad infinitum.

However, the only way to receive an actual valid identity cer-

tificate is through outside forces, such as updates in CVSS or

EPSS Scores in the CVEs related to its SBOM. Alternatively,

developers and operators can interact to insert a VEX entry

that voids that specific vulnerability to that specific project

into Dependency Track. In both cases, the workload has be-

come compliant again because either its vulnerability state

changed or it was considered irrelevant, or at least not urgent,

due to internal officers’ intervention.

As explained in our threat model, we are also concerned

about the provenance of an SBOM, since it is the source of

truth for our vulnerability assessment. Two cases may take

place. First, if there is an attempt to alter or forge the SBOM,

Cosign and Rekor can easily use the SLSA Provenance to

discriminate the origin of the trustworthiness of the SBOM.

As SLSA 3 focuses on signed SBOMs, this guarantees that

forging the provenance is beyond the capabilities of most

adversaries. We can avoid the threat of illegitimate SBOM

masking vulnerabilities. Second, it may be the case that some

critical applications require a reviewing board. In this case, if

only specific entities should sign the SBOM for some appli-

cation, the SPIRE entries for the identities of the workloads

will include the OIDC issuer field as a selector (as detailed

in Table 1). This selector will force SPIRE to check this

field in the SBOM, and the use of invalid issuers will block

workloads from getting the identity.

Once workloads have no identity, they will be isolated.

In practice, as the workload identity should be the same as

that used to respond to health checkers, the workload will

be terminated. Workload termination should then generate

alerts on a monitoring system, which is also a well-established

practice for production systems.

The consequence of isolating a noncompliant workload is,

of course, reduced availability. Isolating non-critical appli-

cations due to minor security issues reduces our solution’s

applicability. To mitigate this, we provide a flexible grace

period option, so that stakeholders can decide the best preven-

tion versus availability trade-off, considering the isolation’s

impact on the provided workloads and the vulnerability miti-

gation deadlines of the development team.

In summary, the implemented plugin, through the help of

Sigstore and Dependency Track, can map selective identity

provisioning with vulnerability posture rules for compliance.

Tying vulnerability posture rules to X.509 identities that are

(directly or indirectly) the base for all communications ef-

fectively isolates noncompliant workloads, even if they were

previously considered compliant at some point. This isola-

tion prevents threat exploits as soon as organizational policies

dictate, even without human intervention.

6.3 Threats to validity

This work proposes integrating vulnerability assessment into

ZTA to enable continuous compliance enforcement post-

deployment. In order to assess vulnerability, SCA should

be continuously performed and its results used as evidence

of an application’s security posture. Consequently, this ap-

proach heavily depends on the completeness and accuracy of

vulnerability databases.

Such databases merely contain the CVEs disclosed by

CNAs (CVE Numbering Authorities) — third-party orga-

nizations authorized by the CVE Program to disclose and

assign CVEs CVE [2025]. Examples include the MITRE or-

ganization, the GitHub Security Advisory, as well as software

vendors such as Netflix Inc and Atlassian 6. These CNAs

are also responsible for devising appropriate mitigations for

the vulnerabilities published by them. However, some CNAs

take longer than others to disclose, and their severity assess-

ments might diverge, potentially introducing inconsistencies

or biases in CVSS and EPSS scoring Lin et al. [2023]. This

can lead to false positives or false negatives in vulnerability

scores, which in turn might negatively impact the workload

attestor’s decision.

While this risk also impacts this paper, it is a well-

recognized, field-wide challenge that cannot be mitigated

at the methodological level of this work. In fact, it is impera-

tive for organizations employing vulnerability assessments to

remain aware of this and implement complementary strategies

to mitigate its impact.

Another significant factor is the accuracy of the SBOM.

Since the SBOM is the required basis for SCA, incomplete

or incorrect data results in an inaccurate vulnerability list.

This highlights the importance of choosing a reliable SBOM

generation tool, such as Trivy and Snyk. This is not to be

seen as a recommendation, however, as there are many open-

source tools as well as proprietary ones available. Such a

choice is at the discretion of the organization, and this paper

does not aim to guide on choosing tools, but rather only to

point out their importance.

Additionally, the choice of tools also represents a potential

threat. This work is supported by the selection of prestigious

tools, based on related work and relevant, renowned organiza-

tions. The correct mitigation of the threat model in Section 3
relies on the chosen tools (i.e., SPIRE and Dependency Track)

and their respective open-source communities’ continuous

maintenance. While such tools can lose quality or become

inadequate over time, this risk is mitigated by the backing of

well-regarded organizations such as the CNCF and OWASP,

ensuring ongoing relevance and security.

With the introduction of the grace period mechanism, com-

pliance assurance also depends on accurately translating an

organization’s policy into the values added by the SPIRE oper-

ator to theWorkload Attestor’s configuration file. Since these

policies are defined and updated through human decision-

making, they are subject to change due to executive strategies

6https://www.cve.org/PartnerInformation/ListofPartners

https://www.cve.org/PartnerInformation/ListofPartners
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and may not always be accurately reflected in the configura-

tion. Outdated, incorrect, or improperly entered grace period

values can result in attestation outcomes misaligned with

organizational intent. To avoid undesired behavior, when

deciding for configuring a grace period policy, the organiza-

tion must also establish a strict process to make sure these

values have been correctly entered by the SPIRE operator and

reconfigured whenever the policies are updated.

Lastly, the very existence of a grace period, if not strategi-

cally employed, may introduce a threat by fostering a false

sense of security. Vulnerabilities might appear absent when,

in fact, their assessment has merely been deferred. In this

sense, even though the Workload Attestor responds as in-

tended, the mechanism fails to fulfill its purpose, and instead

only allows the system to be available with unaddressed vul-

nerabilities. This availability window should only be per-

mitted under a clear strategy. Therefore, it is important to

monitor the vulnerability records logged by the Workload

Attestor, and use the afforded time to prepare for remediation

or for a potential downtime once the grace period expires,

rather than simply overlooking the vulnerabilities.

7 Conclusion

In this work, we present a comprehensive workflow designed

to continuously evaluate workloads for compliance related to

their provenance and vulnerability status. This solution fills a

significant gap in existing continuous compliance methodolo-

gies, which often overlook vulnerabilities post-deployment.

Our approach is grounded in Zero-Trust principles, where

applications undergo explicit and ongoing authentication. It

is built upon two fundamental requirements: (1) a CI/CD

pipeline that generates compliance evidence, specifically a

Software Bill of Materials (SBOM) and, ideally, provenance

information of the source code, such as SLSA Provenance;

and (2) an identity provisioning tool that regularly updates the

identities utilized within a Zero-Trust framework. This tool

effectively isolates workloads that fail to renew their identi-

ties. We believe these requirements are in line with modern,

well-established practices in development and operations.

To ensure the solution is applicable for both critical and

non-critical workloads, we introduced the concept of a config-

urable grace period for newly discovered CVEs. By deferring

immediate enforcement, the grace period provides the organi-

zation with a critical window to assess the risk, planmitigation

steps, and prepare for any necessary downtime. The possible

duration values for the grace period vary according to the

characteristics of the CVE and the application in which it was

identified, based on the following factors: (1) the severity of

the impact of the CVE being exploited, as indicated by its

CVSS score; (2) the likelihood of exploitation within the next

30 days, as estimated by the EPSS score; and (3) the criticality

of securing the affected application within the system’s con-

text, as specified by the infrastructure operator. By explicitly

encoding these criteria into a policy, organizations can better

align vulnerability management with their risk tolerance and

operational constraints.

We implemented this approach as a new plugin for the

CNCF7 SPIRE framework, integrating simple and popular

tools, such as the Sigstore framework and OWASP’s8 Depen-

dency Track. Our evaluation demonstrated that the plugin

does not hinder the deployment or operation of modern cloud-

native applications. Specifically, the performance analysis

showed that it does not add significant latency to SPIRE’s

attestation process, and enabling the grace period feature had

negligible runtime cost. The necessary resources to run our

implementation are primarily those required to run Depen-

dency Track in a scalable way – an expense already justified

in any compliance-conscious environment. These results con-

firm that our approach is practical for real-world cloud-native

deployments without compromising operational performance.

Finally, the extensibility of SPIRE serves as a fertile ground

for simple-to-adopt verification mechanisms. For example,

we envisage that additional compliance metrics can be imple-

mented together with SPIRE’s open-source community.
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