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Abstract This paper proposes an approach to evaluate the availability and reliability of drone surveillance systems
using complementary modeling techniques. Resilient system architecture with drone and battery redundancy is
analyzed using two modeling strategies: (i) an analytical model based on Continuous-Time Markov Chains (CTMC),
which yields closed-form availability equations, and (ii) a numerical model employing Stochastic Petri Nets (SPN) to
handle more complex redundancy scenarios. Both models consider key factors such as battery charging/discharging
times, drone failure and repair rates, and replacement operations. Sensitivity analyses highlight battery-related
parameters as critical to system performance. Case studies show that optimizing component parameters can yield
up to 97% availability, while redundancy alone can provide 91%. Combined strategies can achieve up to 99.89%
availability. For long missions (30 hours), reliability analysis indicates that 15-20 redundant batteries and charging
times below 36 minutes are needed to maintain over 80% reliability. For shorter missions, discharge times over 144
minutes are beneficial. This integrated modeling approach provides a robust framework for dependability assessment,
guiding the design of resilient and cost-effective drone surveillance systems for mission-critical applications.
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1 Introduction

Aerial computing is a paradigm that integrates computing and
networking capabilities into the aerial environment, utilizing
platforms such as Unmanned Aerial Vehicles (UAVs) and
High Altitude Platforms (HAPs). This approach leverages
aerial systems’ mobility, flexibility, and broad coverage to
provide computation, communication, and storage services,
particularly in areas where traditional ground-based infras-
tructure may be inadequate or impractical. Advancements
in wireless communication, miniaturized sensors, and edge
computing technologies have facilitated the development of
various applications, including environmental monitoring, dis-
aster response, and real-time data processing in smart cities.

The growing adoption of UAV technologies across various
sectors has revealed important challenges, particularly the
energy limitations in small drones, which affect operational
duration. This limitation directly impacts mission effective-
ness and raises concerns regarding reliability in continuous
surveillance applications. These challenges have prompted
advancements in systems engineering and energy manage-
ment strategies. For drone surveillance systems, assessing
metrics such as reliability and availability is essential for
system development, as failures may lead to security vulner-
abilities, data loss, and compromised monitoring capabili-
ties. As a result, research efforts have increasingly focused
on optimizing power management strategies, enhancing bat-
tery technologies, and refining operational methodologies to

improve overall system performance in critical monitoring
applications.

In surveillance contexts, system uptime is critical for main-
taining continuous monitoring capabilities and ensuring pub-
lic safety in smart cities. Evaluating key performance indi-
cators such as Mean Time Between Failures (MTBF) and
Mean Time to Repair (MTTR) provides insights into system
robustness. Additionally, considering external factors, in-
cluding weather variables and network reliability, enhances
the understanding of operational constraints. Implementing
redundancy mechanisms and systematic maintenance proto-
cols can improve system resilience, addressing the challenge
of maintaining consistent surveillance coverage in dynamic
environments.

The scientific community has increased efforts to enhance
UAYV systems’ robustness and operational efficiency in re-
sponse to existing challenges. Recent research has examined
various innovative approaches. For instance, Kotikalpudi
et al. [2020] investigated algorithmic redundancy to address
reliability issues in small drones, providing an alternative
to traditional hardware redundancy. Brito ef al. [2021] em-
ployed advanced modeling techniques, including Stochastic
Petri Nets and Reliability Block Diagrams, to assess availabil-
ity in UAV networks, yielding insights into system perfor-
mance across different scenarios. Additionally, Kharchenko
et al. [2022] developed a framework to classify UAVs as
Reliable Service Systems, focusing on their performance and
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availability, thereby contributing to a comprehensive under-
standing of these systems.

While these studies provide valuable insights, they often do
not address the detailed interactions between UAV compo-
nents and their operational dependencies. Machida and An-
drade Machida and Andrade [2021]; Watanabe and Machida
[2022] analyzed availability, performance, and power con-
sumption in drone systems using fog and edge computing
paradigms. They employed three different computing modes
and a stochastic Petri net model to calculate system avail-
ability. However, this study focused primarily on network
link and computational process failures and did not consider
factors such as average time to failure and repair of the drone,
loading and unloading times, or general availability assess-
ment models that include systems with redundancy mecha-
nisms.

This work addresses the need to enhance availability and re-
liability in UAV surveillance systems as their deployment
expands in smart city applications. Existing research has
broadly focused on system-level challenges; this approach
specifically examines operational dynamics and analyzes how
key parameters—such as battery management, component
redundancy, and system configuration—impact performance
metrics. The study employs complementary modeling tech-
niques, combining Continuous-Time Markov Chains (CTMC)
for analytical insights with Stochastic Petri Nets (SPN) for
numerical evaluation of redundancy scenarios. A sensitiv-
ity analysis is conducted to identify components that signif-
icantly influence system behavior, providing direction for
targeted improvements. The resulting modeling framework
offers guidance for developing resilient UAV systems opti-
mized for sustained operation in challenging environments
and extended missions. The methodology aims to maximize
system uptime in mission-critical surveillance applications by
integrating strategic redundancy mechanisms with optimized
maintenance policies.

This work provides three key contributions to UAV surveil-
lance system dependability analysis:

* Analytical CTMC Framework: We propose a
Continuous-Time Markov Chain model that pro-
vides closed-form availability expressions (Equation 7)
for UAV surveillance systems, incorporating battery
charge/discharge rates, hardware failure/repair rates, and
drone swap operations. This enables direct mathematical
analysis and supports rapid sensitivity assessments.

* Numerical SPN Extension: We develop complemen-
tary Stochastic Petri Net models to evaluate complex
redundancy mechanisms, addressing state space explo-
sion limitations of analytical methods while representing
systems with multiple interdependent components and
redundancy strategies.

* Performance Assessment: We conduct sensitivity anal-
ysis identifying critical system components, plus three
case studies evaluating: (i) component optimization
strategies, (i1) redundancy implementation, and (iii) in-
tegrated approaches achieving up to 99.89% availability
for long-duration missions.
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Note: This paper extends our previous work presented at the
Latin American Dependable Computing Conference (LADC)
[Lins et al., 2024]. The current version includes significant
enhancements: (i) incorporation of a CTMC model for analyt-
ical availability analysis, (ii) expanded methodology section
with detailed coverage of both analytical and numerical ap-
proaches, (iii) comprehensive background section covering
UAV surveillance systems, and (iv) more extensive case stud-
ies with sensitivity analysis and reliability evaluation over
extended mission durations.

This paper is organized as follows. Section 2 reviews recent
related work; Section 3 provides an overview of the concepts
of evaluation, reliability, availability, Petri nets, and sensi-
tivity analysis relevant to this study; Section 4 outlines the
methodology employed in this research. Detailed analytical
and numerical models for availability and reliability are pre-
sented in Section 5. Section 6 examines three case studies
that assess the impact of component time improvements, re-
dundancy in drones and batteries, and their combination on
system availability and reliability. The paper concludes in
Section 7, summarizing the results and discussing potential
directions for future research.

2 Related work

Recently, modeling systems and services that use drones has
gained prominence. These studies range from drone swarm
coordination to the development of optimized flight routes.
A growing body of research focuses on evaluating the relia-
bility and availability of these systems, including the use of
redundancies to improve such metrics.

Aerial computing has emerged as an innovative paradigm that
combines aerial radio access networks and edge computing to
overcome limitations in traditional systems. A comprehensive
computing architecture was proposed by Pham et al. Pham
et al. [2022], encompassing low-altitude, high-altitude, and
satellite platforms, and integrating enabling technologies such
as Al big data, and energy refilling. Their work highlighted
potential applications in smart cities, factories, and grids,
while addressing challenges like energy efficiency, resource
management, and security. Building on this concept, a hierar-
chical aerial computing framework using UAVs and HAPs
was introduced in Jia ef al. [2023], providing Mobile Edge
Computing (MEC) services for [oT devices and optimizing
data offloading using matching game theory and heuristic
algorithms.

In the context of surveillance, a systematic review by the
authors in Gohari et al. [2022] examined drone applications
in smart cities, including transportation, environmental mon-
itoring, infrastructure inspection, object detection, disaster
response, and data collection. The study emphasized the po-
tential of rotary-wing drones equipped with cameras to deliver
efficient, sustainable solutions through integration with tech-
nologies such as 0T, Al, and machine learning, while also
noting that the field is still in early stages.

To address reliability concerns in small UAVs, Kotikalpudi
et al. Kotikalpudi et al. [2020] explored limitations arising
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from the impracticality of hardware redundancy due to size,
weight, and power constraints. Drawing parallels with sys-
tems like the Boeing 777’s triple-redundant control, they
proposed a “redundant algorithmic approach” that uses mul-
tiple fault detection and isolation (FDI) algorithms running
in parallel. While this provides valuable insights for algorith-
mic redundancy, it does not address the modeling of physical
redundancies such as additional batteries or drones.

An alternative focus on UAV reliability was presented by
Petritoli et al. Petritoli ef al. [2017, 2018], who emphasized
optimizing maintenance activities by tracking reliability met-
rics assigned to each subsystem. Their method supports the
optimization of maintenance intervals and associated costs.
Nonetheless, their approach does not incorporate redundancy
mechanisms or availability modeling that could further en-
hance system dependability.

Several researchers have also explored mathematical model-
ing techniques to analyze UAV reliability. Zaitseva et al. Za-
itseva et al. [2020] and the work in Rusnak et al. [2019]
represented UAV fleets using logical structure-functions in-
terpreted via reliability block diagrams. While their mod-
els addressed availability, reliability, and critical states, they
lacked the capability to model essential operational features
such as battery discharge, spare UAV and battery availability,
and switchover time from a failed drone to a replacement.

For evaluating trade-offs between availability, performance,
and energy, Machida and colleagues Machida and Andrade
[2021]; Watanabe and Machida [2022] examined three com-
puting strategies in image-processing drones: onboard pro-
cessing, fog offloading, and collaborative load balancing.
Their work employed stochastic Petri nets to model system
availability but did not consider drone hardware failure/re-
covery rates, loading and unloading durations, or redundancy-
aware availability modeling.

Maccarthy MacCarthy [2019] developed an analytical
stochastic model for K-out-of-N UAV systems based on
Markov chains. The model incorporates parameters such as
total fleet size, number of active drones, average repair time
(charging duration), and average failure time (flight duration).
While insightful, this work employs simplified assumptions
and does not capture complex component interdependencies.

Brito et al. Brito et al. [2021] addressed availability and re-
liability in distributed UAV systems using Stochastic Petri
Nets and Reliability Block Diagrams. Their sensitivity analy-
sis identified critical availability-affecting components, espe-
cially cloud servers. Although they provided a robust global
system analysis emphasizing redundancy to ensure continuity,
detailed modeling of drone-specific operations was limited.

Energy-related constraints in UAV systems have also received
attention. A cross-layer optimization approach was explored
in Lin et al. [2019] to balance system throughput and energy
efficiency in UAV-IoT networks. The study optimized param-
eters like speed, altitude, and MAC frame size. Similarly, Li
et al. Li ef al. [2020] proposed an energy-conscious strategy
involving drone replacement based on battery level monitor-
ing. Though promising, these studies do not assess how such
strategies affect service availability or reliability in detail.
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In disaster response scenarios, Mishra et al. Mishra et al.
[2020] developed a deep learning-enhanced drone surveil-
lance system for search and rescue missions. Their dataset
supported human action detection (e.g., waving). A stochas-
tic surveillance model for energy-aware UAV operation was
proposed in Hosseinalipour et al. [2021], using random walks
and inspection policies to minimize long-term energy use
while ensuring drones return for recharging.

A broader reliability perspective was offered in Xing and
Johnson [2023], which reviewed modeling and analysis tech-
niques for UAV reliability in mission-critical contexts. The
review discussed k-out-of-n models, failure mode and effects
analysis, and phased-mission models, and also considered
communication reliability and mission-abort scenarios.

More recent efforts focus on formal modeling of UAV op-
erations. Moghadasi et al. Moghadasi ef a/. [2023] mod-
eled wildfire-monitoring drone swarms using PRISM for for-
mal verification. Their model incorporated leader-follower
roles and continuous rotation of drones toward incident zones.
Lopez et al. Lopez and Akundi [2023] used Model-Based Sys-
tems Engineering and SysML tools to construct detailed UAV
surveillance scenarios, particularly for monitoring armored
vehicles.

In communication-focused applications, Falcao et al. Falcao
et al. [2023] proposed a continuous-time Markov chain model
with a virtual resource scaling scheme for ultra-reliable low-
latency communications using UAVs. Their model balances
onboard computational resource use against UAV physical
limitations.

In summary, the reviewed literature reveals diverse ap-
proaches to modeling the reliability, availability, and per-
formance of UAV systems. This work advances the field by
modeling component-level interactions using complementary
analytical and numerical techniques—namely, Continuous-
Time Markov Chains and Stochastic Petri Nets. These models
support the evaluation of UAV system behavior under varying
operational and redundancy configurations.

The approach specifically assesses the impact of physical
redundancies—such as spare drones and batteries—on ser-
vice recovery. It incorporates detailed factors like battery
charge/discharge durations, mean time between failures, mean
time to repair, and drone handover timing. The geographic
distance between the command base and surveillance zones is
also modeled. Sensitivity analysis identifies the most influen-
tial components, offering guidance for targeted improvements
in system design to enhance availability and reliability.

3 Background

This section outlines fundamental concepts essential for eval-
uating drone surveillance systems. It introduces key depend-
ability metrics, stochastic modeling techniques, and analytical
frameworks that establish the foundation of the methodology
used in the evaluation process.
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3.1 Modeling for Dependability Evaluation

Dependability refers to a system’s ability to deliver its in-
tended service consistently, even when some components are
subject to failures. It is closely related to reliability, which
measures the probability that a system will function without
failure over a specified time interval ¢ Avizienis et al. [2004].
Specifically, for a system that starts operation at time 0, re-
liability at time ¢ quantifies the probability of uninterrupted
operation during the interval (0,¢) Trivedi [2008]; Maciel
[2023]. Equation 1 defines reliability in mathematical terms:

R(t) = e~ Jo X000 (1)

where A(t') is the instantaneous failure rate. When A(t') = A
is constant, the Time to Failure (TTF) follows an exponential
distribution, and the reliability simplifies to R(t) = e~ *".

Another key metric is steady-state availability, which char-
acterizes a system’s ability to continue functioning despite
failures and subsequent repairs Trivedi [2008]. It can be
computed using the expected uptime and downtime as in
Equation 2, or using the Mean Time to Failure (MTTF) and
Mean Time To Repair (MTTR), as in Equation 3:

E[Uptime]
A= 2
E[Uptime] + E[Downtime]’ &

B MTTF
© MTTF + MTTR’

A 3)
The MTTF can be derived as the integral of reliability over
time:

MTTF = / h R(t)dt. 4)
0

When TTF and TTR follow exponential distributions with
rates A and p respectively, availability becomes:

I
A= ——. 5
A %)
These fundamental relationships (Equations 1-3) provide the
theoretical foundation for the specific UAV system models
developed in Section 5, where reliability and availability ex-
pressions are derived for drone surveillance applications.

Modeling techniques are essential for analyzing systems that
are either complex or not yet implemented. State-based for-
malisms such as Continuous-Time Markov Chains (CTMCs)
and Stochastic Petri Nets (SPNs) have been widely adopted
for dependability evaluation Pereira et al. [2021]; Maciel et al.
[2022].

CTMC:s offer a rigorous mathematical structure to model
systems where future states depend only on the current state
(the Markov property). They are especially useful for sys-
tems with exponentially distributed transition times due to
the memoryless property of the exponential distribution. In
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UAV surveillance applications, CTMCs can model drone op-
erational states, failure states, battery depletion, and repair or
recharge events. These models allow closed-form analytical
expressions for performance metrics such as availability Ma-
ciel et al. [2018].

The state space of a CTMC encompasses all possible config-
urations of the system, with transitions governed by rates that
represent failure, repair, charging, or replacement events. An-
alytical solutions derived from CTMCs provide insights into
system behavior, enabling design optimization and trade-off
evaluations Maciel et al. [2022].

SPNs extend basic Petri Nets by associating firing times
with transitions, typically modeled using exponential distri-
butions. This study focuses on exponential firing times to
enable CTMC-based solutions from the underlying model
structure. Nevertheless, SPNs also support non-exponential
distributions, enhancing modeling flexibility for systems ex-
hibiting complex or state-dependent timing behavior Araujo
et al. [2013].

For large systems with high-dimensional state spaces that
would render CTMC modeling impractical, SPNs offer a
compact, intuitive, and modular representation. They support
numerical solution techniques that preserve model fidelity
while allowing performance evaluation even in complex re-
dundancy configurations.

3.2 Sensitivity Analysis Methods

Sensitivity analysis is used to determine how variations in
input parameters influence system performance, particularly
availability. Several techniques exist, including differential
sensitivity analysis, the One-at-a-Time (OAT) method, rela-
tive deviation methods, partial rank correlation coefficients,
and sensitivity indices Hamby [1995]. This work adopts the
Sensitivity Index (SI), which measures the percentage change
in an output metric due to variations in an input parameter.

Equation 6 defines the sensitivity index for a given param-
eter y, based on its maximum and minimum output values
obtained by varying it within a range Clemente ef al. [2022]:

maxy — My,

Sy = (6)

mazxy
During the computation of S, other input parameters remain
fixed, enabling a clearer assessment of y’s influence. This
approach is useful for identifying which parameters most
strongly impact system performance, guiding targeted opti-
mization efforts.

For the CTMC-based analytical model, sensitivity analysis
can be performed through direct differentiation of the closed-
form availability expression concerning specific input param-
eters. This enables precise characterization of how parameter
changes affect availability and supports mathematical opti-
mization.

For the SPN-based numerical model, sensitivity analysis in-
volves varying one parameter at a time, solving the model
under each scenario, and observing the resulting changes in
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availability or reliability. This is particularly useful when
closed-form solutions are infeasible due to state space explo-
sion or complex system interactions.

Computational Considerations: While SPNs effectively
handle complex redundancy scenarios, their computational
requirements merit discussion. The current models, with
moderate redundancy levels (up to 20 spare batteries and 7
spare drones), maintain tractable state spaces suitable for nu-
merical solution. However, larger-scale deployments with
extensive UAV fleets could face computational limitations re-
quiring optimization strategies such as model decomposition,
approximate solution techniques, or hierarchical modeling
approaches. The Mercury tool employed for SPN evaluation
demonstrates good scalability for the presented scenarios, but
performance monitoring remains important for more complex
configurations. Future extensions to large-scale multi-drone
systems may benefit from hybrid modeling approaches com-
bining analytical tractability with numerical flexibility.

3.3 UAYV Surveillance Systems

Evaluating the availability of UAV-based systems requires
models tailored to distinct system configurations and redun-
dancy mechanisms. CTMCs are well-suited for systems with
a single operational drone or minimal redundancy, offering
tractable analytical frameworks.

In contrast, SPNs are better suited for systems with extensive
redundancy and complex dependencies. They can manage
large state spaces without causing state-space explosions,
providing a robust basis for evaluating systems with multiple
spare drones and batteries.

This paper adopts a complementary modeling approach, ap-
plying CTMC:s to derive analytical availability expressions
and using SPNs for detailed, numerically solvable models
in complex configurations. Both models address key opera-
tional aspects such as drone failures, hardware repairs, battery
discharge and recharge cycles, and drone replacement dynam-
ics.

By capturing these processes in a formal and structured way,
the modeling framework enables a comprehensive understand-
ing of UAV system behavior and supports the design of more
dependable drone surveillance systems operating in dynamic,
mission-critical environments.

4 Methodology

This section outlines the methodology employed to evaluate
the availability and reliability of drone surveillance systems.
A systematic approach is adopted, integrating analytical and
numerical modeling techniques to assess system performance
across diverse operational scenarios.

Figure 1 illustrates the proposed methodology. The process
begins with a comprehensive understanding of the target sys-
tem, including defining a baseline architecture and identifying
key dependability metrics. These inputs guide the develop-
ment of analytical (CTMC) and numerical (SPN) models,
each capturing distinct aspects of system behavior.
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Figure 1. Comprehensive methodology for drone surveillance system analy-
S1S

Model validation ensures alignment with real-world behav-
ior. Sensitivity analysis identifies critical components and
parameters that influence performance. Findings from these
analyses lead to results and recommendations, highlighting
potential improvements and the effects of redundancy. The
methodology concludes with presenting interpretable out-
comes intended for stakeholders, including technical experts
and decision-makers.

4.1 System Understanding and Baseline Archi-
tecture

The initial phase involves a thorough examination of the tar-
get drone surveillance system. This step includes collecting
detailed information from manufacturers, literature, domain
experts, and observational studies. Relevant aspects such
as hardware specifications, operational parameters, failure
modes, and maintenance procedures are analyzed to develop
a grounded understanding of system behavior.

Based on this examination, a baseline system architecture
is defined to represent the minimum configuration required
for effective operation. For drone surveillance systems, this
typically includes a command base with an operator, com-
munication infrastructure, and at least one operational drone
with its power supply. The analysis also identifies opera-
tional scenarios and failure modes to be incorporated into the
models.

4.2 Define Metrics of Interest

Two principal dependability metrics are used to assess the
performance of drone surveillance systems. The first is steady-
state availability, which expresses the long-term probability
that the system is operational at any randomly chosen point in
time. This metric reflects the system’s capability to maintain
continuous surveillance.
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The second metric is reliability over mission time, represent-
ing the probability that the system remains fully operational
throughout the entire mission duration without experiencing
any interruptions. This is especially relevant for time-critical
surveillance operations.

From these primary metrics, additional measures can be de-
rived, including expected downtime, mean time between fail-
ures (MTBF), and the number of availability “nines” (e.g.,
99.9% corresponds to “three nines”).

4.3 Model Building

The proposed methodology adopts a dual modeling strat-
egy using Continuous-Time Markov Chains (CTMCs) and
Stochastic Petri Nets (SPNs). This combination enables both
analytical and numerical analysis of different system config-
urations.

The CTMC model describes the UAV flight system and its
associated components, capturing transitions between opera-
tional, failure, and recovery or repair states. It incorporates
essential parameters such as battery charging and discharg-
ing rates, drone failure and repair rates, and swapping rates
between active and backup drones.

This analytical approach allows for the derivation of closed-
form expressions for steady-state availability. These expres-
sions support symbolic differentiation and provide insights
into how system parameters affect performance. The CTMC
model is particularly effective for systems with limited redun-
dancy and well-defined behavior.

For systems with high levels of redundancy or complex in-
teractions that make CTMC modeling impractical, SPNs are
used. These models can be evaluated numerically using Mer-
cury [Maciel et al., 2017].

The SPN model preserves the fundamental behaviors rep-
resented in the CTMC model but allows for more flexible
modeling of redundancy, operational policies, and multiple
spare components. Its structure is compact and suitable for
managing large state spaces without incurring state explosion.

Erlang distributions are incorporated into the SPN to enhance
reliability modeling and to represent quasi-deterministic pro-
cesses. For instance, they enable modeling the declaration of
failure after a fixed duration of inactivity, better approximat-
ing real-world behavior than purely exponential models.

4.4 Validation

Model Validation Approach and Limitations: Before con-
ducting detailed analyses, the models undergo validation to
confirm that they accurately represent system behavior. This
includes checking internal consistency between CTMC and
SPN representations, analyzing model behavior under ex-
treme parameter values, and consulting domain experts to
validate assumptions. However, it is important to acknowl-
edge that the current validation is primarily theoretical and
based on expert knowledge rather than empirical data from
actual UAV operations.

This limitation reflects a common challenge in dependability
modeling where access to comprehensive failure data from
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real-world UAV deployments is often restricted due to opera-
tional security, proprietary concerns, or the relative novelty
of large-scale drone surveillance systems. The inherent un-
certainties in drone behavior, component reliability under
varying conditions, and mission-specific factors necessitate
future empirical validation studies. When discrepancies are
found, models are refined through iterative improvements.
While this validation approach ensures internal model consis-
tency and expert-validated assumptions, empirical validation
with real UAV operational data remains a critical future re-
quirement to enhance confidence in the quantitative results
and their practical applicability.

4.5 Sensitivity Analysis

A central component of the methodology is sensitivity analy-
sis, which determines how variations in specific parameters
affect availability and reliability. The objective is to identify
the most influential parameters to guide optimization efforts.

This analysis is based on the Sensitivity Index (SI), defined
in Equation 6, which quantifies the percentage impact of a
parameter change on system performance. Each parameter
is varied individually, while others remain fixed, and the
resulting impact on availability or reliability is measured.

Scope and Limitations of Sensitivity Analysis: The cur-
rent sensitivity analysis focuses primarily on battery-related
parameters and drone operational characteristics, as these
emerged as the most influential factors in the baseline config-
uration. However, a comprehensive dependability assessment
would benefit from broader analysis encompassing additional
critical subsystems such as communication link reliability,
mechanical component degradation, software fault rates, and
sensor failures. While battery management dominates system
performance in the current architecture, other factors become
increasingly important in more complex operational environ-
ments. Future extensions should incorporate environmental
sensitivity (e.g., temperature effects on battery performance),
communication reliability parameters, and mechanical wear
factors to provide a more holistic view of system dependabil-
ity across diverse operational conditions.

For the CTMC model, sensitivity analysis is performed an-
alytically by differentiating the availability expression with
respect to each parameter. For the SPN model, numerical
methods are used to evaluate performance under varied pa-
rameter settings. The results are organized into a sensitivity
ranking, highlighting the components with the greatest im-
pact.

4.6 Analysis of Results

The final phase applies insights from sensitivity analysis to
conduct case studies focused on performance enhancement
strategies. Three main strategies are considered.

The first strategy involves optimizing component time pa-
rameters—such as battery discharge, recharge durations, and
drone swap times—to reduce unavailability. The second
strategy introduces redundancy mechanisms by adding spare
drones and batteries, increasing fault tolerance. The third
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strategy combines both approaches to achieve high perfor-
mance while balancing implementation costs.

Each case study evaluates performance across various pa-
rameter values or redundancy configurations. Results are
visualized to facilitate comparison and interpretation, with
emphasis on identifying cost-benefit trade-offs and practical
design implications.

The final step translates technical findings into intuitive visual-
izations and actionable recommendations. These include the
impact of parameter variations on availability and reliability,
comparative performance of different strategies, identifica-
tion of optimal configurations, and economic considerations.
This ensures that stakeholders at all levels—from system
designers to decision-makers—can interpret and apply the
results effectively to real-world implementations.

5 Architecture and Proposed Models

This section introduces the base architecture of a drone surveil-
lance system and presents models using Stochastic Petri Nets
(SPNs) and Continuous-Time Markov Chains (CTMCs) to
evaluate availability and reliability metrics. These comple-
mentary models incorporate redundancy mechanisms to opti-
mize and improve system performance.

5.1 System Architecture

Figure 2 presents the base architecture of a small drone
surveillance system. The system comprises an operator base
and a communication tower, enabling communication be-
tween the operator and the drones during surveillance mis-
sions. Traditional surveillance systems that rely on a single
drone suffer from single points of failure, potentially impact-
ing site security and critical services like intrusion detection
or fire alerting. The proposed architecture includes redun-
dant drones and energy sources (batteries) to address this
vulnerability.

Figure 2. Baseline Surveillance Architecture

Marking M1 in the figure shows the arrangement of drones
and spare batteries. At M2, a drone and battery are consumed
and deployed to replace a faulty or discharged unit. M3
captures the delay until the swap operation is completed.

Model Scope and Limitations: The architecture assumes
only one drone operates at a time and does not explicitly
model communication failures or adverse weather conditions.
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While these simplifying assumptions facilitate tractable ana-
lytical modeling and provide valuable baseline insights, they
represent important limitations for real-world deployments.
Environmental factors such as wind, precipitation, and tem-
perature variations can significantly impact battery perfor-
mance, flight stability, and operational duration. Similarly,
communication link failures between drones and base stations
can affect coordination and mission execution.

Modeling Assumptions and Their Implications: The pro-
posed models adopt several fundamental assumptions that
affect their applicability: (i) Component Independence -
failures of different components (drones, batteries, communi-
cation systems) are assumed statistically independent, which
may not hold in practice where environmental stresses affect
multiple components simultaneously; (ii) Exponential Dis-
tributions - transition times follow exponential distributions,
providing the memoryless property essential for Markovian
analysis but potentially simplifying real component aging
and wear-out behaviors; (iii) Constant Failure Rates - the
models assume time-invariant failure rates, not accounting
for component degradation or maintenance effects that could
change failure patterns over operational lifetime. These as-
sumptions enable analytical tractability but may require val-
idation against empirical data for specific deployment con-
texts.

Coverage Implications: While this single-drone architec-
ture provides a foundation for dependability analysis, it in-
troduces coverage limitations that merit discussion. During
drone failures, battery discharge events, or swap operations,
the monitored area experiences temporary coverage gaps.
The proposed redundancy strategies aim to minimize these
gaps by reducing replacement times and increasing system
availability. However, the trade-off between battery redun-
dancy and drone redundancy presents interesting coverage
implications: while multiple spare batteries extend opera-
tional duration, multiple spare drones could achieve faster
area restoration after failures. Modern UAV surveillance
systems increasingly employ multi-drone configurations for
enhanced coverage, load balancing, and cooperative redun-
dancy. The current model focuses on service continuity rather
than spatial coverage, but the framework’s flexibility allows
for future extensions to address multi-drone scenarios where
coverage area and coordination become critical factors. Such
extensions would require modeling inter-drone coordination,
coverage overlap strategies, dynamic area allocation policies,
and communication protocols, which represent natural di-
rections for expanding this dependability framework toward
more realistic operational scenarios.

5.2 Availability Model

A CTMC model is developed to provide analytical insights
into the UAV flight system’s availability. It represents the in-
teractions between flying and backup drones and their power
sources.

Figure 3 illustrates the CTMC model. Table 1 describes the
parameters, and Table 2 provides detailed descriptions of
each system state.
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B= Aod + Ad
B2 = Apa + pa
B3 = Aa + pd
Ba = Ao + Aod
Bs = Abe + Ha
ar = B+ Aee
az =+ B
az = f3+ B4

g = [3Xbe + Abafld
1 = a1 Xve + Bapa
¢2 = B3Abe + Abdfd
¢3 = BAbe + Ma(Aba (8 + Aoc) + 26 Ac)

Figure 3. CTMC model of UAV flight system b4 = 6% + [33()\]” + 3)\bd) + /\bd(2>\bc + 3)\bd)
b5 = A2+ Aapta + 12
Table 1. Parameter Description for the CTMC Model 01 = a1 862N e + 26520 Abd + O Apeda
Parameter D.escription B2 = s dvatia + /\t2>c b5
Abd Battery discharge rate (1/h)
Abe Battery charge rate (1/h) This analytical expression (Equation 7) supports rapid evalu-
14d Drone repair rate (1/h) ation of system behavior under varied conditions, enabling
Ad Drone failure rate (1/h) parametric sensitivity analysis and direct computation of avail-
1 Drone swap rate (1/h) ability values for the case studies presented in Section 6. The

closed-form nature of this solution facilitates mathematical
optimization and provides insights into the relative impor-

Table 2. CTMC State Descriptions tance of different system parameters.

State Description

SO Drone operational with charged battery (primary 53  Availabilitv Redundant Model
operational state) . Yy

S1 Battery discharged, drone stopped, replacement To handle complexity from redundant components, a numer-

drone being prepared ical SPN model is used (Figure 4), constructed with Mer-
S2 Replacement drone deployed and operational (sec- cury [Maciel et al., 2017; Fernandes et al., 2012; Lins et al.,
ondary operational state) 2024]. It computes metrics such as downtime, uptime, and

S3  Primary drone failed, battery operational, replace-  steady-state availability.
ment being prepared

S4  Primary drone failed, battery depleted, system DR2
down

S5  Replacement drone operational, primary drone un-
der repair

S6  Both primary drone failed and replacement drone’s
battery depleted

S7 System restored to operational state after repairs
(tertiary operational state)

Dark-colored states (S0, S2, S7) indicate operational condi-
tions. Other states represent failure scenarios. The steady-
state availability, derived by solving the balance equations of
the CTMC model, is given by Equation 7:

O befta(20d2 + Boprady)

26202 + Npeptd (30 Xoc ApaAd + 01 1a) + Bapids
@) Figure 4. SPN Availability Model

Auav =

The SPN availability model extends the CTMC representa-
where auxiliary parameters are: tion to handle redundancy scenarios. Key places include: DU
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(drone operational - system providing service); DF (drone
failure state); BC (battery charge state); DR (drone repair
facility - also stores spare drones with initial marking indicat-
ing available redundant units, denoted as DN in case studies);
BR (battery recharge facility - also stores spare batteries with
initial marking indicating redundant battery units, denoted as
BN in case studies); and SF (system failure state). The model
allows multiple tokens in DR and BR to represent redundant
components. Transitions model operational events includ-
ing failure (DF), repair (DR, DR2), battery discharge (BD),
charging (BCG), drone swapping (DSW), and system failure
detection (TEO). Guard conditions ensure proper sequencing,
such as #SF = 0 preventing operations during system failure
states. See Table 3 for detailed transition definitions.

The SPN availability expression is:

Ayav = P{#DU > 0} (8)

which computes the probability of having a token in DU,
derived via reachability graph and solved numerically.

5.4 Reliability Model

Reliability is modeled using an SPN with an Erlang-based
absorbing structure (Figure 5). The model captures system
transitions and applies a polyexponential Erlang distribution
to represent service downtime that, if unresolved, leads to
failure.

DR DSW bu

DF
DN ° DF

BCG BR

BN DR
BD

BC

#DR TI5
TI6
#DR

Figure 5. SPN Reliability Model

The SPN reliability model (Figure 5) incorporates the avail-
ability model structure with an additional Erlang-based ab-
sorbing subnet to capture time-dependent reliability. The core
model preserves the same place and transition structure as
the availability model, representing drone operations, fail-
ures, repairs, and redundancy. The key innovation is the
Erlang subnet comprising places EQ through E9 that models
the transition to irreversible system failure.

The subnet uses Erl(y =y, A = 1/3), where 8 = TTSF/y,
with y = 10 phases approximating determinism. When the
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system experiences downtime (no token in DU), a token en-
ters EQ and propagates sequentially through the Erlang phases.
If service is restored before reaching SF, fail-interrupt tran-
sitions TI0-TI6 with guard conditions (#DU > 0) remove
tokens from the Erlang subnet, representing successful re-
covery. If the token reaches SF, the system has experienced
an irreversible reliability failure. This structure enables cal-
culation of reliability over mission time by measuring the
probability that no token reaches SF within the specified du-
ration.

5.5 Integrated Modeling Approach

The CTMC and SPN models provide complementary perspec-
tives on UAV system dependability, with formal connections
that ensure consistency while addressing different analytical
needs. The CTMC model serves as the foundational analyti-
cal framework, capturing essential system behaviors through
states S0-S7 and providing closed-form availability expres-
sions (Equation 7). The SPN models extend this foundation
to handle complex redundancy scenarios and time-dependent
reliability analysis.

Model Correspondence: The fundamental connection be-
tween models lies in their shared representation of core system
behaviors. CTMC states SO, S2, and S7 (operational condi-
tions) correspond to tokens in SPN place DU, while failure
states map to the absence of tokens in DU and presence in
failure-related places (DF, BC). Transition rates in the CTMC
model directly correspond to SPN transition parameters:
Mg = 1/MTTBD, A\pe = 1/MTTBC, Ay = 1/MTTFD,
g = 1/MTTRD, and § = 1/MTTSD.

Model Validation through Consistency: For baseline
configurations (single drone, single battery), both models
yield equivalent availability results, confirming structural
consistency. The SPN availability expression Ayay =
P{#DU > 0} (Equation 8) reduces to the CTMC analyti-
cal result when redundancy parameters are set to zero. This
formal equivalence validates the modeling approach and pro-
vides confidence in the extended SPN results for redundancy
scenarios where analytical solutions become impractical.

These complementary approaches ensure accuracy and scala-
bility across different system configurations, enhancing the-
oretical understanding and practical deployment of resilient
drone surveillance systems.

6 Case Studies

This section presents a set of case studies designed to evaluate
the availability and reliability of UAV surveillance systems
under different configurations and operating conditions. The
analysis includes sensitivity analysis of key parameters, re-
dundancy evaluation, and integration of both strategies. Two
modeling approaches are adopted: Continuous-Time Markov
Chains (CTMC) and Stochastic Petri Nets (SPN). Results
are based on numerical analysis, focusing on battery-related
parameters and redundancy mechanisms.
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Table 3. Parameters Associated with Transitions

Transition Parameter Priority Guard Description

DF MTTFD 1 Time to drone failure (exp.)
DR MTTRD 1 Time to drone repair (exp.)
DR2 MTTRD 1 #DU >0 Redundant repair (exp.)

BD MTTBD 1 Battery discharge (exp.)

BCG MTTBC 1 #SF =0 Battery charge (exp.)

DSW MTTDS 1 #SF=0 Drone swap (exp.)

TEO TTSF 1 Time to system failure (Erlang)

TIO-TI6 * 1-2  Conditional Immediate transitions

6.1 Input Parameters

Case studies are conducted to analyze the impact of variations
in the redundant values of battery and drone components and
improvements in their operational parameters. A percentage
differencing technique is employed for this analysis. The
sensitivity analysis involves systematically varying one pa-
rameter at a time while keeping others fixed [Hamby, 1994;
Araujo et al., 2013]. Additionally, a sensitivity rating is cre-
ated to illustrate the impact of each parameter on the system’s
efficiency. This ranking is intended to identify which param-
eter significantly influences the system’s availability when it
reaches a steady state, as shown in Table 4.

Table 4. Sensitivity Ranking

Parameter Ranking Sensitivity index
MTTBD/\pq 15 5.69 x 1071
MTTBC [\ 2nd 5.40 x 1071

MTTSD/§ 3rd 6.60 x 1073
MTTFD/\g 4t 5.30 x 107°
MTTRD/ g 5th 3.51 x 107°

Critical Parameter Analysis: Table 4 reveals that bat-
tery discharge times (MTTBD/)\;4) and charging times
(MTTBC/\;,.) have the greatest impact on system availabil-
ity, with sensitivity indices of 0.569 and 0.540 respectively.
The third most important factor is drone replacement times
(MTTSD/6) with a sensitivity index of 0.0066. Notably,
drone failure and repair parameters show minimal sensitivity
(< 0.0001), indicating that battery management dominates
system performance. To improve availability, systems en-
gineers and designers should prioritize: (1) reducing MT-
TBC through higher efficiency battery chargers, (2) extending
MTTBD with greater capacity batteries, and (3) minimizing
MTTSD with more agile drone deployment systems.

Table 5. Parameter Values for the CTMC Model

Parameter Value (rate)
Abd 2.00 x 10°
Abe 5.00 x 1071
Ihd 5.00 x 10~ 1
A 2.00 x 1072

) 6.00 x 10°

Table 6. Parameter Values for the SPN Model

Parameter Values (Hours)
TTSF 5.00 x 1072
Y 1.00 x 107
MTTBC 2.00 x 109
MTTBD 5.00 x 10~ T
MTTFD 5.03 x 103
MTTRD 2.00 x 10°
MTTSD 1.60 x 102

For the CTMC analysis, input parameter values are provided
in rate format as amounts per hour. Specifically, \yq denotes
the rate of 2 battery discharges per hour, A\, indicates 0.5
charges per hour, p4 refers to 0.5 repairs per hour, \; repre-
sents 0.0002 failures per hour, and ¢ signifies 6 UAV changes
per hour.

6.2 UAYV Base Analysis

This case study utilizes the analytical Continuous-Time
Markov Chain (CTMC) model and the Stochastic Petri Net
(SPN) model to evaluate the potential impacts on system
availability due to improvements in the times of certain com-
ponents used as parameters in the models. The baseline pa-
rameter values for the CTMC model are presented in rate
format in Table 5. In contrast, in time format, the SPN model
parameter values are detailed in Table 6.

The analysis began by varying the value of A4, followed
by Ape, and finally §, while keeping A\,q and A, fixed at
enhanced values. The values of A4 and p4 (repair and failure
rates of the UAV) were not evaluated in this study, as their
impact on system availability is considered minimal relative
to other factors.

Figure 6 presents the time improvement graphs derived from
the CTMC analysis. Figure 6a displays the graph illustrat-
ing MTT time improvements of \;4, showing the effect of
changes in flight or unloading time on system availability.
The baseline system of the UAV flight demonstrates an avail-
ability of 34% with )4 set at 30 minutes of flight or unloading
time. With an increase in this time to 180 minutes, the avail-
ability improves to 84%.

Similarly, Figure 6b presents the battery charging time im-
provement graph, demonstrating the impact of changes in
charging time on the system availability. An improvement
0f 90% is achieved for 30 minutes of charging, considering a
discharge time of 180 minutes.
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Figure 6. Impact of Time Parameters on UAV System Availability

In Figure 6¢, an availability of 97% was achieved with
a UAV changeover time of less than 1.30 minutes, while
the unload and load times were set at 180 and 30 minutes,
respectively.

The SPN model analysis yielded results that align with those
from the CTMC model, indicating a significant impact of
battery discharge time, charging time, and drone swap time
on system availability. The consistency between the two
models supports the validity of the analysis and enhances the
reliability of the recommendations for system improvement.

6.3 Redundant UAV Scenarios

In this analysis, the objective is to evaluate the impact of re-
dundancy mechanisms on system availability, specifically the
use of N unmanned aerial vehicles (UAVs) and battery redun-
dancy. However, modeling systems with these redundancy
mechanisms using continuous-time Markov chain (CTMC)
models or analytical equations presents challenges related
to state explosion. This complexity hinders comprehension
of the CTMC and complicates manual calculations of the
analytical equations.

To address this challenge, a stochastic Petri net (SPN) model
is employed to model systems with redundancy mechanisms,

Lins et al. 2025

----- Availability Baseline

1.00
0.90 —
> e TR B o |
E 080 - — B K KR
s B ro oS T %o I 0o B oS T %%
] 2o oSS T 0% B 00 B o T %%
& 070 oo sos s o oo B oo R
aQ oS ote oo Jos JR Soo SR S oSl 6
= 0.60 - oo oo oot oo S s ot
= 0. ook 2000 T % B oo R oS %!
oS o 0% B %o N v oo B 2o % B o0 % I %0 %4
A KRS ! %!
S 050 - s s I
< oS 0S I oo B Oo o IS0 ST %% B %% B 0% B o
| 1S 0o T ool B oo S0 S T %% B 0% % B %% B o
0.40
0.30 RN [X5q = o8- RS = B R = k- &

BN
(a) Availability by the number of batteries with basic operating mode MTT parameters

----- Availability Baseline
1.00 -
0.90 —
0.80 —
0.70 —
0.60 —
0.50 —
0.40 —
0.30 T

|
XX
X
XX
|
202

ol

A

>
25
R

2%
XA

=
ool
<7
3
XX

-
o

XA
39
KX

ST
RRRKA

%4
o
3
%
o
R
o
o2¢
o
oo

R
XXX

225
ol
<z

]

X
0
L

ot
2
X

K
IR

<7
X
X X

X

-
R
2
X
5
X

T
XK

,.
X

2

R

7
R
e
%
-
X

2

X
2
2o

e
X

TILRLS
ofelotole

5%
7
X
%2
X
e
X
2
XX

,v
<X
o
R
-
R
X
R
o
2024
o
bo%s
<z
X

o
X

52
%3
X
%
%
%
3

-
2
X

o
R
e

XK

00,
0%
>

S0
XK

0%
X
o3
<z
%%
%
X
7
X

X

2
3
3
3

1
9%

X
KL
:.0

X

XK

003
<X
X

o2

2
%
50
X

%

T
:.0

.
X
tote!

52

X

.
o8
SO0
boteel
2
otee
<z
202
<
%%
o
<
X
o
-
o
%90,
R
0
R

-~z
X

AVAILABILITY

3
R
R
2K

2
<X
00
7
8

,‘
0%
X

%
X
X

o
X
—
000
3
o

x5

b2
%09
XX

%

TLIKS
oitetoly

K
R

X
oo
ALK
IR
5
XX
9000
et
5059
6%
o
%058
Diteds
Lo
KL

:
%
o
¢

.
<
3
5
<&
<3
<4
o

.
02020
g
o
.
o

DN

(b) Availability by number of UAVs with basic operating mode MTT parameters
Figure 7. Effect of redundancy mechanisms on system availability

such as the UAV flight system availability model. SPNs
are numerical models that can be evaluated through software
simulation. For this study, the Mercury tool [Maciel et al.,
2017] is utilized to assess the model. The input parameters
of the SPNs are provided in terms of mean time-to-failure
(MTTF) values, as outlined in Table 6.

The plot in Figure 7a illustrates the progression of over-
all system availability achieved through redundancy applied
specifically to the battery component (BN). Utilizing eight
backup batteries results in an availability of 85%. Keeping
the number of spare batteries constant at 8, the analysis then
varies the number of spare drones (DN), yielding an avail-
ability of 90% with four backup drones, as shown in Figure
7b.

These results demonstrate that while redundancy mechanisms
can significantly improve system availability, there is a limit
to the improvements achievable through redundancy alone.
Even with substantial spare batteries and drones, achieving
availabilities higher than 90% seems challenging, suggesting
additional strategies to enhance system performance further.

This third analysis combines the results of the previous
two studies by evaluating redundancy variations of spare
UAV components, incorporating improved load, unload,
and switchover time parameters. This combination aims to
achieve higher availability than the previous studies. The
enhanced time values utilized as input are outlined in Table 7.
However, integrating this data resulted in availability values
approaching 100%, complicating the differentiation between
larger redundancy numbers. Consequently, the availability
approach using the formula in Eq. 9 was adopted to quantify
the number of nines achieved.

#9s = —log;o(1 — A) ©
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Table 7. Improved Parameter Values for the SPN Model

Parameter  Value (hours)
MTTFD 5.00 x 103
MTTRD 2.00 x 10°
MTTBD 2.00 x 10°
MTTBC  5.00 x 1071
MTTDS 1.67 x 102

NB 1.00 x 10°

ND 1.00 x 10°

An analysis of the initial baseline configuration, incorporating
separate timing and redundancy improvements, indicated a
limitation in system availability, achieving a maximum avail-
ability of 97%. However, when redundancies were combined
with the previously enhanced parameters at their maximum
availability, the overall availability reached 99.58% with one
spare UAV and 99.32% with two spare batteries, as shown in
Figure 8. Additionally, employing seven redundant UAVs
achieved an availability 0f 99.89%. The availability stabilized
at 99.58% with four spare batteries. Reducing the number
of UAVs and spare batteries compared to the previous study
may lead to considerable cost savings in the overall budget
of a system with these specifications.
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Figure 8. Number of nines of availability values per number of BN and DN
redundancies with improved MTT parameters

6.4 UAYV Reliability Analysis

In addition to availability analysis, an investigation into sys-
tem reliability over extended mission durations was con-
ducted. This analysis is pertinent for surveillance missions
that require continuous operation for prolonged periods with-
out failure.

An evaluation was conducted using the SPN reliability model
to assess the influence of three critical factors on system
reliability over time: the number of redundant batteries (BN),
the Mean Time To Battery Charge (MTTBC), and the Mean
Time To Battery Discharge (MTTBD). The findings of this
analysis are illustrated in Figure 9.

Figure 9a illustrates the impact of the number of redundant
batteries on system reliability over a 30-hour mission. The re-
sults indicate that with 15-20 redundant batteries, the system
maintains reliability above 80% throughout most of the mis-
sion duration. In contrast, with 0-5 batteries, reliability drops
rapidly to below 20% within the first few hours. These find-
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Figure 9. UAV System Reliability: Time-Dependent Analysis for Mission
Planning

ings demonstrate battery redundancy’s critical importance for
long-duration surveillance missions.

Figure 9b illustrates the relationship between battery charg-
ing time and system reliability during a 2-hour mission. An
inverse relationship between MTTBC and reliability is ob-
served. With an MTTBC of 18 minutes, system reliability
begins at 100%, declines to approximately 40% within 30
minutes, and reaches zero by the end of the 2 hours. The
curves for different MTTBC values remain closely aligned,
indicating that once charging time exceeds a threshold of
around 18 minutes, additional increases in charging time re-
sult in diminishing returns for short-duration missions.

Figure 9c demonstrates the effect of battery discharge time
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on system reliability during a 2-hour mission. There is a
direct relationship between MTTBD and reliability. With
an MTTBD of 180 minutes, the system maintains reliability
above 60% throughout the entire 2-hour period. In contrast,
with a 36-minute MTTBD, reliability decreases dramatically,
falling below 20% after just 1 hour of operation. These results
highlight the importance of high-capacity batteries or power
consumption optimization to maintain system reliability dur-
ing surveillance operations.

6.5 Discussion of Results

The evaluation methodology aims to assess UAV systems’
availability and reliability through the combined application
of Continuous-Time Markov Chains (CTMC) and Stochas-
tic Petri Nets (SPN). The sensitivity analysis indicated that
battery-related parameters, specifically discharge and charge
times, are critical factors influencing system performance,
with the drone swap rate also playing a significant role. While
this battery-centric focus reflects the dominant failure modes
in the baseline system architecture, future comprehensive de-
pendability assessments should consider broader subsystem
interactions including communication reliability, mechanical
degradation, and environmental factors.

The three case studies collectively demonstrate that different
improvement strategies offer varying degrees of enhancement
to system availability:

1. Component time optimization can achieve up to 97%
availability through improvements in battery discharge time,
charging time, and drone swap time.

2. Redundancy mechanisms can reach approximately
90% availability with eight backup batteries and four backup
drones.

3. Combined approach can achieve availability values
approaching three nines (99.9%) by integrating optimized
component times with strategic redundancy.

The reliability analysis further emphasizes the importance of
battery management and redundancy for maintaining system
performance during extended missions. For long-duration
operations (30 hours), maintaining 15-20 redundant batter-
ies ensures reliability above 80%, while optimizing battery
charging time to less than 36 minutes and using batteries with
discharge times above 144 minutes substantially improves
system reliability during shorter missions.

Economic Feasibility and Cost Implications: While the
technical results demonstrate substantial availability improve-
ments through redundancy strategies, the economic feasi-
bility of implementing such configurations requires careful
consideration. For instance, achieving 99.89% availability
with seven redundant UAVs and 20 spare batteries repre-
sents a significant capital investment compared to baseline
configurations. The cost-effectiveness of redundancy strate-
gies depends on several factors including mission criticality,
downtime costs, component pricing, and operational budgets.
High-availability configurations may be justified for criti-
cal surveillance applications (e.g., disaster response, security
monitoring) where service interruptions have severe conse-
quences, but may be economically impractical for routine
monitoring tasks.
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A preliminary cost-benefit analysis suggests that component
optimization strategies (achieving 97% availability) offer su-
perior cost-effectiveness compared to extensive redundancy
for many applications. The diminishing returns observed with
additional battery redundancy beyond four units indicates op-
timal resource allocation points that balance performance with
investment. Future work should incorporate economic models
that consider component costs, maintenance expenses, mis-
sion value, and downtime penalties to provide stakeholders
with quantitative cost-benefit guidance for different availabil-
ity targets and operational contexts.

These findings provide valuable guidelines for designing more
robust and reliable drone surveillance systems. They enable
engineers to make informed decisions about component selec-
tion, system configuration, and resource allocation to achieve
desired performance levels while effectively managing costs.

7 Conclusions and Future Work

This study presents an integrated approach for evaluating
the availability and reliability of UAV surveillance systems,
combining analytical modeling via Continuous-Time Markov
Chains (CTMC) with numerical simulation using Stochastic
Petri Nets (SPN). The methodology includes detailed sensi-
tivity analyses to identify critical parameters and evaluate the
effectiveness of performance improvement strategies.

The CTMC model enabled closed-form analysis of system
availability, revealing that battery discharge rate (\pq) and
charging rate (\p.) are the most influential parameters, fol-
lowed by the drone swap rate (§). The SPN model comple-
mented the analytical approach by supporting evaluation of
redundancy strategies and providing both steady-state avail-
ability and time-dependent reliability metrics.

Three case studies were conducted to explore enhancement
strategies. First, component time optimization improved
availability up to 97.08% without requiring redundancy. Sec-
ond, redundancy analysis showed availability gains of ap-
proximately 91% using eight spare batteries and four UAVs,
although this configuration was insufficient to reach very high
availability levels. Third, a combined strategy achieved up to
99.89% availability with seven redundant UAVs and 99.58%
with four spare batteries, demonstrating diminishing returns
for battery redundancy.

The reliability analysis demonstrated that for 30-hour mis-
sions, maintaining reliability above 80% requires 15-20 re-
dundant batteries. For shorter missions, optimizing charging
times below 36 minutes and using batteries with discharge
times above 144 minutes significantly improves reliability.

These results provide design guidance for UAV systems, help-
ing engineers prioritize improvements that maximize perfor-
mance while managing cost.

Study Limitations and Future Research Priorities: While
this work provides valuable theoretical insights into UAV
system dependability, several limitations should be acknowl-
edged. The models primarily focus on battery-related param-
eters and single-drone operations, with validation based on
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theoretical consistency rather than empirical data from real de-
ployments. Environmental factors, communication failures,
and multi-drone coordination scenarios represent important
extensions beyond the current scope.

Future work will expand the model scope and explore new
strategies. Priority areas include: (i) empirical validation with
real UAV operational data to enhance model credibility; (ii)
modeling multi-drone missions with coordinated task execu-
tion to address coverage implications discussed in Section 5.1;
(iii) incorporating environmental conditions and communi-
cation reliability for realistic operational modeling; (iv) de-
veloping comprehensive economic models for cost-benefit
analysis of redundancy strategies; (v) expanding sensitivity
analysis to include mechanical, software, and communication
subsystems; (vi) evaluating computational optimization tech-
niques for large-scale UAV fleet modeling; and (vii) assessing
alternative energy sources and emerging battery technologies.
These extensions will enhance the framework’s practical ap-
plicability and support more comprehensive dependability
assessment for diverse UAV surveillance applications.

These directions aim to improve the dependability, efficiency,
and sustainability of UAV surveillance systems in real-world
scenarios, supporting applications in public safety, emergency
response, environmental monitoring, and infrastructure in-
spection.

Acknowledgements

The authors would like to thank the Brazilian government for the
financial support through the Fundagdo de Amparo a Ciéncia e Tec-
nologia de Pernambuco (FACEPE) and the Modeling of Distributed
and Concurrent Systems (MoDCS) group for helping to improve
this research.

Funding

This research was funded by Fundagdo de Amparo a Ciéncia e Tec-
nologia de Pernambuco (FACEPE), Brazil.

Authors’ Contributions

LL contributed to the conception of this study, performed the ex-
periments, and is the main contributor and writer of this manuscript.
EN contributed to the model development and validation. JD con-
tributed to the methodology design and sensitivity analysis. JA
contributed to the reliability modeling and case study analysis. PM
supervised the research, contributed to the theoretical framework,
and provided critical revisions. All authors read and approved the
final manuscript.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The datasets generated and/or analysed during the current study are
available from the corresponding author on reasonable request. The
Mercury modeling tool used in this study is publicly available at
https://www.modcs.org.

Lins et al. 2025

References

Araujo, J., Alves, V., Oliveira, D., Dias, P., Silva, B., and Ma-
ciel, P. (2013). An investigative approach to software aging
in android applications. In 2013 IEEE International Confer-
ence on Systems, Man, and Cybernetics, pages 1229-1234.
DOI: 10.1109/SMC.2013.213.

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C.
(2004). Basic concepts and taxonomy of dependable and
secure computing. /[EEE transactions on dependable and
secure computing, 1(1):11-33. DOI: 10.1109/tdsc.2004.2.

Brito, C., Silva, L., Callou, G., Nguyen, T. A., Min, D., Lee,
J.-W., and Silva, F. A. (2021). Offloading data through
unmanned aerial vehicles: a dependability evaluation. Elec-
tronics, 10(16):1916. DOI: 10.3390/electronics10161916.

Clemente, D., Pereira, P., Dantas, J., and Maciel, P. (2022).
Availability evaluation of system service hosted in private
cloud computing through hierarchical modeling process.
The Journal of Supercomputing, 78(7):9985-10024. DOI:
10.1007/s11227-021-04217-1.

Falcdo, M., Souza, C., Baliciro, A., and Dias, K. (2023).
Dynamic resource allocation for urlle in uav-enabled
multi-access edge computing. In 2023 Joint Euro-
pean Conference on Networks and Communications &
6G Summit (EuCNC/6G Summit), pages 293-298, Gote-
borg, Sweden. IEEE, IEEE. DOI: 10.1109/eucnc/6gsum-
mit58263.2023.10188346.

Fernandes, S., Tavares, E., Santos, M., Lira, V., and Maciel, P.
(2012). Dependability assessment of virtualized networks.
In 2012 IEEF international conference on communications
(ICC), pages 2711-2716, Ontario, Canada. IEEE, IEEE.
DOI: 10.1109/icc.2012.6363992.

Gohari, A., Ahmad, A. B., Rahim, R. B. A, Supa’at, A. S. M.,
Abd Razak, S., and Gismalla, M. S. M. (2022). Involve-
ment of surveillance drones in smart cities: A systematic
review. I[EEE Access, 10:56611-56628. DOI: 10.1109/AC-
CESS.2022.3177904.

Hamby, D. (1995). A comparison of sensitivity analy-
sis techniques. Health physics, 68(2):195-204. DOI:
10.1097/00004032-199502000-00005.

Hamby, D. M. (1994). A review of techniques for param-
eter sensitivity analysis of environmental models. Envi-
ronmental monitoring and assessment, 32:135-154. DOI:
10.1007/bf00547132.

Hosseinalipour, S., Rahmati, A., Eun, D. Y., and Dai, H.
(2021). Energy-aware stochastic uav-assisted surveil-
lance. IEEE Transactions on Wireless Communications,
20(5):2820-2837. DOI: 10.1109/TWC.2020.3044490.

Jia, Z., Wu, Q., Dong, C., Yuen, C., and Han, Z. (2023). Hi-
erarchical aerial computing for internet of things via coop-
eration of haps and vavs. IEEE Internet of Things Journal,
10(7):5676-5688. DOI: 10.1109/J1I0T.2022.3151639.

Kharchenko, V., Kliushnikov, I., Rucinski, A., Fesenko, H.,
and Illiashenko, O. (2022). Uav fleet as a dependable ser-
vice for smart cities: Model-based assessment and applica-
tion. Smart Cities, 5(3):1151-1178. DOI: 10.3390/smartci-
ties5030058.

Kotikalpudi, A., Danowsky, B. P., and Seiler, P. J. (2020).
Reliability analysis for small unmanned air vehicle with


https://www.modcs.org
https://doi.org/10.1109/SMC.2013.213
https://doi.org/10.1109/tdsc.2004.2
https://doi.org/10.3390/electronics10161916
https://doi.org/10.1007/s11227-021-04217-1
https://doi.org/10.1109/eucnc/6gsummit58263.2023.10188346
https://doi.org/10.1109/eucnc/6gsummit58263.2023.10188346
https://doi.org/10.1109/icc.2012.6363992
https://doi.org/10.1109/ACCESS.2022.3177904
https://doi.org/10.1109/ACCESS.2022.3177904
https://doi.org/10.1097/00004032-199502000-00005
https://doi.org/10.1007/bf00547132
https://doi.org/10.1109/TWC.2020.3044490
https://doi.org/10.1109/JIOT.2022.3151639
https://doi.org/10.3390/smartcities5030058
https://doi.org/10.3390/smartcities5030058

Drone Surveillance System Availability and Reliability: A Comprehensive
Analytical and Numerical Modeling Approach

algorithmic redundancy. In AI4A Scitech 2020 Forum,
page 0739, Orlando, Florida. IEEE. DOI: 10.2514/6.2020-
0739.

Li, Y., Hassairi, S., Satloff, T., Burns, E., Majgaard, C.-P.,
and Liang, C. (2020). Energy efficient strategy for unin-
terrupted mission execution via automatic drone replace-
ment. In 2020 IEEE International Systems Conference
(SysCon), pages 1-7, Montreal, Quebec. IEEE, IEEE. DOI:
10.1109/syscon47679.2020.9275880.

Lin, X., Su, G., Chen, B., Wang, H., and Dai, M.
(2019).  Striking a balance between system through-
put and energy efficiency for uav-iot systems. [EEE
Internet of Things Journal, 6(6):10519-10533. DOI:
10.1109/J10T.2019.2939823.

Lins, L., Nascimento, E., Dantas, J., Araujo, J., and Ma-
ciel, P. (2024). Stochastic modeling for assessing the re-
liability and availability of drone-based surveillance sys-
tems. In 2024 IEEE International Systems Conference
(SysCon), pages 1-8, Montreal, Quebec. IEEE, IEEE. DOI:
10.1109/syscon61195.2024.10553470.

Lopez, V. and Akundi, A. (2023). Modeling a uav
surveillance scenario-an applied mbse approach. In
2023 IEEE International Systems Conference (SysCon),
pages 1-8, Montreal, Quebec. IEEE, IEEE. DOI:
10.1109/SysCon53073.2023.10131074.

MacCarthy, J. (2019). The drone system ii: Availability
performance analysis and modeling. In INCOSE Inter-
national Symposium, volume 29, pages 910-921. Wiley
Online Library. DOI: 10.1002/j.2334-5837.2019.00643 .x.

Machida, F. and Andrade, E. (2021). Availability modeling
for drone image processing systems with adaptive offload-
ing. volume 2021-December, pages 93—-103. IEEE Com-
puter Society. DOI: 10.1109/PRDC53464.2021.00021.

Maciel, P., Dantas, J., Melo, C., et al. (2022). A survey on
reliability and availability modeling of edge, fog, and cloud
computing. Journal of Reliable Intelligent Environments,
8:227-245. DOL: 10.1007/s40860-021-00154-1.

Maciel, P., Matos, R., Silva, B., Figueiredo, J., Oliveira, D.,
Fé, 1., Maciel, R., and Dantas, J. (2017). Mercury: Perfor-
mance and dependability evaluation of systems with expo-
nential, expolynomial, and general distributions. In 2017
IEEE 22nd Pacific Rim international symposium on de-
pendable computing (PRDC), pages 50-57, Christchurch,
New Zealand. IEEE, IEEE. DOI: 10.1109/prdc.2017.16.

Maciel, P. R. M. (2023). Performance, reliability, and avail-
ability evaluation of computational systems, Volume II: Re-
liability, availability modeling, measuring, and data anal-
ysis, volume 2. CRC Press, Recife, Pernambuco. Book.

Maciel, R., Araujo, J., Dantas, J., Melo, C., Guedes, E., and
Maciel, P. (2018). Impact of a ddos attack on computer sys-
tems: An approach based on an attack tree model. In 2018
Annual IEEE International Systems Conference (SysCon),
pages 1-8. DOI: 10.1109/SYSCON.2018.8369611.

Mishra, B., Garg, D., Narang, P., and Mishra, V. (2020).
Drone-surveillance for search and rescue in natural dis-
aster.  Computer Communications, 156:1-10. DOI:
10.1016/j.comcom.2020.03.012.

Moghadasi, N., Kulkarni, A., Crayton, D., Grissom, R., Lam-
bert, J. H., and Feng, L. (2023). Formal methods in un-

Lins et al. 2025

manned aerial vehicle swarm control for wildfire detection
and monitoring. In 2023 IEEE International Systems Con-
ference (SysCon), pages 1-8, JW Marriot Parq Vancouver.
IEEE, IEEE. DOI: 10.1109/syscon53073.2023.10131075.

Pereira, P., Araujo, J., Melo, C., et al. (2021). Analytical
models for availability evaluation of edge and fog comput-
ing nodes. The Journal of Supercomputing, 77:9905-9933.
DOI: 10.1007/511227-021-03672-0.

Petritoli, E., Leccese, F., and Ciani, L. (2017). Re-
liability assessment of uav systems. In 4th IEEE
International Workshop on Metrology for AeroSpace,
MetroAeroSpace 2017 - Proceedings, pages 266-270. In-
stitute of Electrical and Electronics Engineers Inc.. DOI:
10.1109/MetroAeroSpace.2017.7999577.

Petritoli, E., Leccese, F., and Ciani, L. (2018). Reliability and
maintenance analysis of unmanned aerial vehicles. Sensors
(Switzerland), 18. DOI: 10.3390/s18093171.

Pham, Q.-V., Ruby, R., Fang, F., Nguyen, D. C., Yang, Z., Le,
M., Ding, Z., and Hwang, W.-J. (2022). Aerial Comput-
ing: A New Computing Paradigm, Applications, and Chal-
lenges. IEEE Internet of Things Journal, 9(11):8339-8363.
DOI: 10.1109/JI0T.2022.3160691.

Rusnak, P., Kvassay, M., Zaitseva, E., Kharchenko, V., and
Fesenko, H. (2019). Reliability assessment of heteroge-
neous drone fleet with sliding redundancy. In 2079 10th
International Conference on Dependable Systems, Ser-
vices and Technologies (DESSERT), pages 19-24. DOI:
10.1109/DESSERT.2019.8770031.

Trivedi, K. S. (2008). Probability & statistics with re-
liability, queuing and computer science applications.
John Wiley & Sons, Berlin, Germany. Available
at: https://onlinelibrary.wiley.com/doi/book/
10.1002/9781119285441.

Watanabe, K. and Machida, F. (2022). Availability analysis
of a drone system with proactive offloading for software
life-extension. In 2022 IEEE International Conference on
Omni-layer Intelligent Systems (COINS), pages 1-6. IEEE.
DOI: 10.1109/coins54846.2022.9854966.

Xing, L. and Johnson, B. W. (2023). Reliability the-
ory and practice for unmanned aerial vehicles. [EEE
Internet of Things Journal, 10(4):3548-3566. DOI:
10.1109/J10T.2022.3218491.

Zaitseva, E., Levashenko, V., Kvassay, M., and Kharchenko,
V. (2020). Reliability evaluation of heterogeneous drone
fleet by structure function based method. pages 4883—4889.
Research Publishing, Singapore. DOI: 10.3850/978-981-
14-8593-05145 — cd.


https://doi.org/10.2514/6.2020-0739
https://doi.org/10.2514/6.2020-0739
https://doi.org/10.1109/syscon47679.2020.9275880
https://doi.org/10.1109/JIOT.2019.2939823
https://doi.org/10.1109/syscon61195.2024.10553470
https://doi.org/10.1109/SysCon53073.2023.10131074
https://doi.org/10.1002/j.2334-5837.2019.00643.x
https://doi.org/10.1109/PRDC53464.2021.00021
https://doi.org/10.1007/s40860-021-00154-1
https://doi.org/10.1109/prdc.2017.16
https://doi.org/10.1109/SYSCON.2018.8369611
https://doi.org/10.1016/j.comcom.2020.03.012
https://doi.org/10.1109/syscon53073.2023.10131075
https://doi.org/10.1007/s11227-021-03672-0
https://doi.org/10.1109/MetroAeroSpace.2017.7999577
https://doi.org/10.3390/s18093171
https://doi.org/10.1109/JIOT.2022.3160691
https://doi.org/10.1109/DESSERT.2019.8770031
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119285441
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119285441
https://doi.org/10.1109/coins54846.2022.9854966
https://doi.org/10.1109/JIOT.2022.3218491
https://doi.org/10.3850/978-981-14-8593-0_5145-cd
https://doi.org/10.3850/978-981-14-8593-0_5145-cd

	Introduction
	Related work
	Background
	Modeling for Dependability Evaluation
	Sensitivity Analysis Methods
	UAV Surveillance Systems

	Methodology
	System Understanding and Baseline Architecture
	Define Metrics of Interest
	Model Building
	Validation
	Sensitivity Analysis
	Analysis of Results

	Architecture and Proposed Models
	System Architecture
	Availability Model
	Availability Redundant Model
	Reliability Model
	Integrated Modeling Approach

	Case Studies
	Input Parameters
	UAV Base Analysis
	Redundant UAV Scenarios
	UAV Reliability Analysis
	Discussion of Results

	Conclusions and Future Work

