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Abstract This paper proposes an approach to evaluate the availability and reliability of drone surveillance systems

using complementary modeling techniques. Resilient system architecture with drone and battery redundancy is

analyzed using two modeling strategies: (i) an analytical model based on Continuous-Time Markov Chains (CTMC),

which yields closed-form availability equations, and (ii) a numerical model employing Stochastic Petri Nets (SPN) to

handle more complex redundancy scenarios. Both models consider key factors such as battery charging/discharging

times, drone failure and repair rates, and replacement operations. Sensitivity analyses highlight battery-related

parameters as critical to system performance. Case studies show that optimizing component parameters can yield

up to 97% availability, while redundancy alone can provide 91%. Combined strategies can achieve up to 99.89%

availability. For long missions (30 hours), reliability analysis indicates that 15–20 redundant batteries and charging

times below 36 minutes are needed to maintain over 80% reliability. For shorter missions, discharge times over 144

minutes are beneficial. This integrated modeling approach provides a robust framework for dependability assessment,

guiding the design of resilient and cost-effective drone surveillance systems for mission-critical applications.

Keywords: Unmanned Aerial Vehicles, Drone Surveillance Systems, Continuous-Time Markov Chains, Stochastic Petri

Nets, System Reliability, Availability Analysis

1 Introduction

Aerial computing is a paradigm that integrates computing and

networking capabilities into the aerial environment, utilizing

platforms such as Unmanned Aerial Vehicles (UAVs) and

High Altitude Platforms (HAPs). This approach leverages

aerial systems’ mobility, flexibility, and broad coverage to

provide computation, communication, and storage services,

particularly in areas where traditional ground-based infras-

tructure may be inadequate or impractical. Advancements

in wireless communication, miniaturized sensors, and edge

computing technologies have facilitated the development of

various applications, including environmental monitoring, dis-

aster response, and real-time data processing in smart cities.

The growing adoption of UAV technologies across various

sectors has revealed important challenges, particularly the

energy limitations in small drones, which affect operational

duration. This limitation directly impacts mission effective-

ness and raises concerns regarding reliability in continuous

surveillance applications. These challenges have prompted

advancements in systems engineering and energy manage-

ment strategies. For drone surveillance systems, assessing

metrics such as reliability and availability is essential for

system development, as failures may lead to security vulner-

abilities, data loss, and compromised monitoring capabili-

ties. As a result, research efforts have increasingly focused

on optimizing power management strategies, enhancing bat-

tery technologies, and refining operational methodologies to

improve overall system performance in critical monitoring

applications.

In surveillance contexts, system uptime is critical for main-

taining continuous monitoring capabilities and ensuring pub-

lic safety in smart cities. Evaluating key performance indi-

cators such as Mean Time Between Failures (MTBF) and

Mean Time to Repair (MTTR) provides insights into system

robustness. Additionally, considering external factors, in-

cluding weather variables and network reliability, enhances

the understanding of operational constraints. Implementing

redundancy mechanisms and systematic maintenance proto-

cols can improve system resilience, addressing the challenge

of maintaining consistent surveillance coverage in dynamic

environments.

The scientific community has increased efforts to enhance

UAV systems’ robustness and operational efficiency in re-

sponse to existing challenges. Recent research has examined

various innovative approaches. For instance, Kotikalpudi

et al. [2020] investigated algorithmic redundancy to address

reliability issues in small drones, providing an alternative

to traditional hardware redundancy. Brito et al. [2021] em-

ployed advanced modeling techniques, including Stochastic

Petri Nets and Reliability Block Diagrams, to assess availabil-

ity in UAV networks, yielding insights into system perfor-

mance across different scenarios. Additionally, Kharchenko

et al. [2022] developed a framework to classify UAVs as

Reliable Service Systems, focusing on their performance and
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availability, thereby contributing to a comprehensive under-

standing of these systems.

While these studies provide valuable insights, they often do

not address the detailed interactions between UAV compo-

nents and their operational dependencies. Machida and An-

drade Machida and Andrade [2021]; Watanabe and Machida

[2022] analyzed availability, performance, and power con-

sumption in drone systems using fog and edge computing

paradigms. They employed three different computing modes

and a stochastic Petri net model to calculate system avail-

ability. However, this study focused primarily on network

link and computational process failures and did not consider

factors such as average time to failure and repair of the drone,

loading and unloading times, or general availability assess-

ment models that include systems with redundancy mecha-

nisms.

This work addresses the need to enhance availability and re-

liability in UAV surveillance systems as their deployment

expands in smart city applications. Existing research has

broadly focused on system-level challenges; this approach

specifically examines operational dynamics and analyzes how

key parameters—such as battery management, component

redundancy, and system configuration—impact performance

metrics. The study employs complementary modeling tech-

niques, combining Continuous-TimeMarkov Chains (CTMC)

for analytical insights with Stochastic Petri Nets (SPN) for

numerical evaluation of redundancy scenarios. A sensitiv-

ity analysis is conducted to identify components that signif-

icantly influence system behavior, providing direction for

targeted improvements. The resulting modeling framework

offers guidance for developing resilient UAV systems opti-

mized for sustained operation in challenging environments

and extended missions. The methodology aims to maximize

system uptime in mission-critical surveillance applications by

integrating strategic redundancy mechanisms with optimized

maintenance policies.

This work provides three key contributions to UAV surveil-

lance system dependability analysis:

• Analytical CTMC Framework: We propose a

Continuous-Time Markov Chain model that pro-

vides closed-form availability expressions (Equation 7)

for UAV surveillance systems, incorporating battery

charge/discharge rates, hardware failure/repair rates, and

drone swap operations. This enables direct mathematical

analysis and supports rapid sensitivity assessments.

• Numerical SPN Extension: We develop complemen-

tary Stochastic Petri Net models to evaluate complex

redundancy mechanisms, addressing state space explo-

sion limitations of analytical methods while representing

systems with multiple interdependent components and

redundancy strategies.

• Performance Assessment: We conduct sensitivity anal-

ysis identifying critical system components, plus three

case studies evaluating: (i) component optimization

strategies, (ii) redundancy implementation, and (iii) in-

tegrated approaches achieving up to 99.89% availability

for long-duration missions.

Note: This paper extends our previous work presented at the

Latin American Dependable Computing Conference (LADC)

[Lins et al., 2024]. The current version includes significant

enhancements: (i) incorporation of a CTMCmodel for analyt-

ical availability analysis, (ii) expanded methodology section

with detailed coverage of both analytical and numerical ap-

proaches, (iii) comprehensive background section covering

UAV surveillance systems, and (iv) more extensive case stud-

ies with sensitivity analysis and reliability evaluation over

extended mission durations.

This paper is organized as follows. Section 2 reviews recent

related work; Section 3 provides an overview of the concepts

of evaluation, reliability, availability, Petri nets, and sensi-

tivity analysis relevant to this study; Section 4 outlines the

methodology employed in this research. Detailed analytical

and numerical models for availability and reliability are pre-

sented in Section 5. Section 6 examines three case studies

that assess the impact of component time improvements, re-

dundancy in drones and batteries, and their combination on

system availability and reliability. The paper concludes in

Section 7, summarizing the results and discussing potential

directions for future research.

2 Related work

Recently, modeling systems and services that use drones has

gained prominence. These studies range from drone swarm

coordination to the development of optimized flight routes.

A growing body of research focuses on evaluating the relia-

bility and availability of these systems, including the use of

redundancies to improve such metrics.

Aerial computing has emerged as an innovative paradigm that

combines aerial radio access networks and edge computing to

overcome limitations in traditional systems. A comprehensive

computing architecture was proposed by Pham et al. Pham

et al. [2022], encompassing low-altitude, high-altitude, and

satellite platforms, and integrating enabling technologies such

as AI, big data, and energy refilling. Their work highlighted

potential applications in smart cities, factories, and grids,

while addressing challenges like energy efficiency, resource

management, and security. Building on this concept, a hierar-

chical aerial computing framework using UAVs and HAPs

was introduced in Jia et al. [2023], providing Mobile Edge

Computing (MEC) services for IoT devices and optimizing

data offloading using matching game theory and heuristic

algorithms.

In the context of surveillance, a systematic review by the

authors in Gohari et al. [2022] examined drone applications

in smart cities, including transportation, environmental mon-

itoring, infrastructure inspection, object detection, disaster

response, and data collection. The study emphasized the po-

tential of rotary-wing drones equipped with cameras to deliver

efficient, sustainable solutions through integration with tech-

nologies such as IoT, AI, and machine learning, while also

noting that the field is still in early stages.

To address reliability concerns in small UAVs, Kotikalpudi

et al. Kotikalpudi et al. [2020] explored limitations arising
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from the impracticality of hardware redundancy due to size,

weight, and power constraints. Drawing parallels with sys-

tems like the Boeing 777’s triple-redundant control, they

proposed a “redundant algorithmic approach” that uses mul-

tiple fault detection and isolation (FDI) algorithms running

in parallel. While this provides valuable insights for algorith-

mic redundancy, it does not address the modeling of physical

redundancies such as additional batteries or drones.

An alternative focus on UAV reliability was presented by

Petritoli et al. Petritoli et al. [2017, 2018], who emphasized

optimizing maintenance activities by tracking reliability met-

rics assigned to each subsystem. Their method supports the

optimization of maintenance intervals and associated costs.

Nonetheless, their approach does not incorporate redundancy

mechanisms or availability modeling that could further en-

hance system dependability.

Several researchers have also explored mathematical model-

ing techniques to analyze UAV reliability. Zaitseva et al. Za-

itseva et al. [2020] and the work in Rusnak et al. [2019]

represented UAV fleets using logical structure-functions in-

terpreted via reliability block diagrams. While their mod-

els addressed availability, reliability, and critical states, they

lacked the capability to model essential operational features

such as battery discharge, spare UAV and battery availability,

and switchover time from a failed drone to a replacement.

For evaluating trade-offs between availability, performance,

and energy, Machida and colleagues Machida and Andrade

[2021]; Watanabe and Machida [2022] examined three com-

puting strategies in image-processing drones: onboard pro-

cessing, fog offloading, and collaborative load balancing.

Their work employed stochastic Petri nets to model system

availability but did not consider drone hardware failure/re-

covery rates, loading and unloading durations, or redundancy-

aware availability modeling.

Maccarthy MacCarthy [2019] developed an analytical

stochastic model for K-out-of-N UAV systems based on

Markov chains. The model incorporates parameters such as

total fleet size, number of active drones, average repair time

(charging duration), and average failure time (flight duration).

While insightful, this work employs simplified assumptions

and does not capture complex component interdependencies.

Brito et al. Brito et al. [2021] addressed availability and re-

liability in distributed UAV systems using Stochastic Petri

Nets and Reliability Block Diagrams. Their sensitivity analy-

sis identified critical availability-affecting components, espe-

cially cloud servers. Although they provided a robust global

system analysis emphasizing redundancy to ensure continuity,

detailed modeling of drone-specific operations was limited.

Energy-related constraints in UAV systems have also received

attention. A cross-layer optimization approach was explored

in Lin et al. [2019] to balance system throughput and energy

efficiency in UAV-IoT networks. The study optimized param-

eters like speed, altitude, and MAC frame size. Similarly, Li

et al. Li et al. [2020] proposed an energy-conscious strategy

involving drone replacement based on battery level monitor-

ing. Though promising, these studies do not assess how such

strategies affect service availability or reliability in detail.

In disaster response scenarios, Mishra et al. Mishra et al.

[2020] developed a deep learning-enhanced drone surveil-

lance system for search and rescue missions. Their dataset

supported human action detection (e.g., waving). A stochas-

tic surveillance model for energy-aware UAV operation was

proposed in Hosseinalipour et al. [2021], using random walks

and inspection policies to minimize long-term energy use

while ensuring drones return for recharging.

A broader reliability perspective was offered in Xing and

Johnson [2023], which reviewed modeling and analysis tech-

niques for UAV reliability in mission-critical contexts. The

review discussed k-out-of-n models, failure mode and effects

analysis, and phased-mission models, and also considered

communication reliability and mission-abort scenarios.

More recent efforts focus on formal modeling of UAV op-

erations. Moghadasi et al. Moghadasi et al. [2023] mod-

eled wildfire-monitoring drone swarms using PRISM for for-

mal verification. Their model incorporated leader-follower

roles and continuous rotation of drones toward incident zones.

López et al. Lopez and Akundi [2023] used Model-Based Sys-

tems Engineering and SysML tools to construct detailed UAV

surveillance scenarios, particularly for monitoring armored

vehicles.

In communication-focused applications, Falcão et al. Falcão

et al. [2023] proposed a continuous-timeMarkov chain model

with a virtual resource scaling scheme for ultra-reliable low-

latency communications using UAVs. Their model balances

onboard computational resource use against UAV physical

limitations.

In summary, the reviewed literature reveals diverse ap-

proaches to modeling the reliability, availability, and per-

formance of UAV systems. This work advances the field by

modeling component-level interactions using complementary

analytical and numerical techniques—namely, Continuous-

TimeMarkov Chains and Stochastic Petri Nets. These models

support the evaluation of UAV system behavior under varying

operational and redundancy configurations.

The approach specifically assesses the impact of physical

redundancies—such as spare drones and batteries—on ser-

vice recovery. It incorporates detailed factors like battery

charge/discharge durations, mean time between failures, mean

time to repair, and drone handover timing. The geographic

distance between the command base and surveillance zones is

also modeled. Sensitivity analysis identifies the most influen-

tial components, offering guidance for targeted improvements

in system design to enhance availability and reliability.

3 Background

This section outlines fundamental concepts essential for eval-

uating drone surveillance systems. It introduces key depend-

ability metrics, stochastic modeling techniques, and analytical

frameworks that establish the foundation of the methodology

used in the evaluation process.
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3.1 Modeling for Dependability Evaluation

Dependability refers to a system’s ability to deliver its in-

tended service consistently, even when some components are

subject to failures. It is closely related to reliability, which

measures the probability that a system will function without

failure over a specified time interval t Avizienis et al. [2004].
Specifically, for a system that starts operation at time 0, re-
liability at time t quantifies the probability of uninterrupted
operation during the interval (0, t) Trivedi [2008]; Maciel

[2023]. Equation 1 defines reliability in mathematical terms:

R(t) = e
−

∫ t

0
λ(t′)dt′

, (1)

where λ(t′) is the instantaneous failure rate. When λ(t′) = λ
is constant, the Time to Failure (TTF) follows an exponential

distribution, and the reliability simplifies to R(t) = e−λt.

Another key metric is steady-state availability, which char-

acterizes a system’s ability to continue functioning despite

failures and subsequent repairs Trivedi [2008]. It can be

computed using the expected uptime and downtime as in

Equation 2, or using the Mean Time to Failure (MTTF) and

Mean Time To Repair (MTTR), as in Equation 3:

A = E[Uptime]
E[Uptime] + E[Downtime] , (2)

A = MTTF

MTTF + MTTR
. (3)

The MTTF can be derived as the integral of reliability over

time:

MTTF =
∫ ∞

0
R(t)dt. (4)

When TTF and TTR follow exponential distributions with

rates λ and µ respectively, availability becomes:

A = µ

µ + λ
. (5)

These fundamental relationships (Equations 1-3) provide the

theoretical foundation for the specific UAV system models

developed in Section 5, where reliability and availability ex-

pressions are derived for drone surveillance applications.

Modeling techniques are essential for analyzing systems that

are either complex or not yet implemented. State-based for-

malisms such as Continuous-Time Markov Chains (CTMCs)

and Stochastic Petri Nets (SPNs) have been widely adopted

for dependability evaluation Pereira et al. [2021]; Maciel et al.

[2022].

CTMCs offer a rigorous mathematical structure to model

systems where future states depend only on the current state

(the Markov property). They are especially useful for sys-

tems with exponentially distributed transition times due to

the memoryless property of the exponential distribution. In

UAV surveillance applications, CTMCs can model drone op-

erational states, failure states, battery depletion, and repair or

recharge events. These models allow closed-form analytical

expressions for performance metrics such as availability Ma-

ciel et al. [2018].

The state space of a CTMC encompasses all possible config-

urations of the system, with transitions governed by rates that

represent failure, repair, charging, or replacement events. An-

alytical solutions derived from CTMCs provide insights into

system behavior, enabling design optimization and trade-off

evaluations Maciel et al. [2022].

SPNs extend basic Petri Nets by associating firing times

with transitions, typically modeled using exponential distri-

butions. This study focuses on exponential firing times to

enable CTMC-based solutions from the underlying model

structure. Nevertheless, SPNs also support non-exponential

distributions, enhancing modeling flexibility for systems ex-

hibiting complex or state-dependent timing behavior Araujo

et al. [2013].

For large systems with high-dimensional state spaces that

would render CTMC modeling impractical, SPNs offer a

compact, intuitive, and modular representation. They support

numerical solution techniques that preserve model fidelity

while allowing performance evaluation even in complex re-

dundancy configurations.

3.2 Sensitivity Analysis Methods

Sensitivity analysis is used to determine how variations in

input parameters influence system performance, particularly

availability. Several techniques exist, including differential

sensitivity analysis, the One-at-a-Time (OAT) method, rela-

tive deviation methods, partial rank correlation coefficients,

and sensitivity indices Hamby [1995]. This work adopts the

Sensitivity Index (SI), which measures the percentage change

in an output metric due to variations in an input parameter.

Equation 6 defines the sensitivity index for a given param-

eter y, based on its maximum and minimum output values

obtained by varying it within a range Clemente et al. [2022]:

Sy = maxy − miny

maxy
. (6)

During the computation of Sy , other input parameters remain

fixed, enabling a clearer assessment of y’s influence. This
approach is useful for identifying which parameters most

strongly impact system performance, guiding targeted opti-

mization efforts.

For the CTMC-based analytical model, sensitivity analysis

can be performed through direct differentiation of the closed-

form availability expression concerning specific input param-

eters. This enables precise characterization of how parameter

changes affect availability and supports mathematical opti-

mization.

For the SPN-based numerical model, sensitivity analysis in-

volves varying one parameter at a time, solving the model

under each scenario, and observing the resulting changes in
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availability or reliability. This is particularly useful when

closed-form solutions are infeasible due to state space explo-

sion or complex system interactions.

Computational Considerations: While SPNs effectively

handle complex redundancy scenarios, their computational

requirements merit discussion. The current models, with

moderate redundancy levels (up to 20 spare batteries and 7

spare drones), maintain tractable state spaces suitable for nu-

merical solution. However, larger-scale deployments with

extensive UAV fleets could face computational limitations re-

quiring optimization strategies such as model decomposition,

approximate solution techniques, or hierarchical modeling

approaches. The Mercury tool employed for SPN evaluation

demonstrates good scalability for the presented scenarios, but

performance monitoring remains important for more complex

configurations. Future extensions to large-scale multi-drone

systems may benefit from hybrid modeling approaches com-

bining analytical tractability with numerical flexibility.

3.3 UAV Surveillance Systems

Evaluating the availability of UAV-based systems requires

models tailored to distinct system configurations and redun-

dancy mechanisms. CTMCs are well-suited for systems with

a single operational drone or minimal redundancy, offering

tractable analytical frameworks.

In contrast, SPNs are better suited for systems with extensive

redundancy and complex dependencies. They can manage

large state spaces without causing state-space explosions,

providing a robust basis for evaluating systems with multiple

spare drones and batteries.

This paper adopts a complementary modeling approach, ap-

plying CTMCs to derive analytical availability expressions

and using SPNs for detailed, numerically solvable models

in complex configurations. Both models address key opera-

tional aspects such as drone failures, hardware repairs, battery

discharge and recharge cycles, and drone replacement dynam-

ics.

By capturing these processes in a formal and structured way,

themodeling framework enables a comprehensive understand-

ing of UAV system behavior and supports the design of more

dependable drone surveillance systems operating in dynamic,

mission-critical environments.

4 Methodology

This section outlines the methodology employed to evaluate

the availability and reliability of drone surveillance systems.

A systematic approach is adopted, integrating analytical and

numerical modeling techniques to assess system performance

across diverse operational scenarios.

Figure 1 illustrates the proposed methodology. The process

begins with a comprehensive understanding of the target sys-

tem, including defining a baseline architecture and identifying

key dependability metrics. These inputs guide the develop-

ment of analytical (CTMC) and numerical (SPN) models,

each capturing distinct aspects of system behavior.

System Understanding

Define Metrics of Interest

Model Building

 Results Analysis

Validation

Yes

No

Satisfactory
Results?

Define Baseline System
Architecture

Sensitivity Rating Calculation and
Identification of Relevant

Components

Figure 1. Comprehensive methodology for drone surveillance system analy-

sis

Model validation ensures alignment with real-world behav-

ior. Sensitivity analysis identifies critical components and

parameters that influence performance. Findings from these

analyses lead to results and recommendations, highlighting

potential improvements and the effects of redundancy. The

methodology concludes with presenting interpretable out-

comes intended for stakeholders, including technical experts

and decision-makers.

4.1 System Understanding and Baseline Archi-

tecture

The initial phase involves a thorough examination of the tar-

get drone surveillance system. This step includes collecting

detailed information from manufacturers, literature, domain

experts, and observational studies. Relevant aspects such

as hardware specifications, operational parameters, failure

modes, and maintenance procedures are analyzed to develop

a grounded understanding of system behavior.

Based on this examination, a baseline system architecture

is defined to represent the minimum configuration required

for effective operation. For drone surveillance systems, this

typically includes a command base with an operator, com-

munication infrastructure, and at least one operational drone

with its power supply. The analysis also identifies opera-

tional scenarios and failure modes to be incorporated into the

models.

4.2 Define Metrics of Interest

Two principal dependability metrics are used to assess the

performance of drone surveillance systems. The first is steady-

state availability, which expresses the long-term probability

that the system is operational at any randomly chosen point in

time. This metric reflects the system’s capability to maintain

continuous surveillance.
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The second metric is reliability over mission time, represent-

ing the probability that the system remains fully operational

throughout the entire mission duration without experiencing

any interruptions. This is especially relevant for time-critical

surveillance operations.

From these primary metrics, additional measures can be de-

rived, including expected downtime, mean time between fail-

ures (MTBF), and the number of availability “nines” (e.g.,

99.9% corresponds to “three nines”).

4.3 Model Building

The proposed methodology adopts a dual modeling strat-

egy using Continuous-Time Markov Chains (CTMCs) and

Stochastic Petri Nets (SPNs). This combination enables both

analytical and numerical analysis of different system config-

urations.

The CTMC model describes the UAV flight system and its

associated components, capturing transitions between opera-

tional, failure, and recovery or repair states. It incorporates

essential parameters such as battery charging and discharg-

ing rates, drone failure and repair rates, and swapping rates

between active and backup drones.

This analytical approach allows for the derivation of closed-

form expressions for steady-state availability. These expres-

sions support symbolic differentiation and provide insights

into how system parameters affect performance. The CTMC

model is particularly effective for systems with limited redun-

dancy and well-defined behavior.

For systems with high levels of redundancy or complex in-

teractions that make CTMC modeling impractical, SPNs are

used. These models can be evaluated numerically using Mer-

cury [Maciel et al., 2017].

The SPN model preserves the fundamental behaviors rep-

resented in the CTMC model but allows for more flexible

modeling of redundancy, operational policies, and multiple

spare components. Its structure is compact and suitable for

managing large state spaces without incurring state explosion.

Erlang distributions are incorporated into the SPN to enhance

reliability modeling and to represent quasi-deterministic pro-

cesses. For instance, they enable modeling the declaration of

failure after a fixed duration of inactivity, better approximat-

ing real-world behavior than purely exponential models.

4.4 Validation

Model Validation Approach and Limitations: Before con-

ducting detailed analyses, the models undergo validation to

confirm that they accurately represent system behavior. This

includes checking internal consistency between CTMC and

SPN representations, analyzing model behavior under ex-

treme parameter values, and consulting domain experts to

validate assumptions. However, it is important to acknowl-

edge that the current validation is primarily theoretical and

based on expert knowledge rather than empirical data from

actual UAV operations.

This limitation reflects a common challenge in dependability

modeling where access to comprehensive failure data from

real-world UAV deployments is often restricted due to opera-

tional security, proprietary concerns, or the relative novelty

of large-scale drone surveillance systems. The inherent un-

certainties in drone behavior, component reliability under

varying conditions, and mission-specific factors necessitate

future empirical validation studies. When discrepancies are

found, models are refined through iterative improvements.

While this validation approach ensures internal model consis-

tency and expert-validated assumptions, empirical validation

with real UAV operational data remains a critical future re-

quirement to enhance confidence in the quantitative results

and their practical applicability.

4.5 Sensitivity Analysis

A central component of the methodology is sensitivity analy-

sis, which determines how variations in specific parameters

affect availability and reliability. The objective is to identify

the most influential parameters to guide optimization efforts.

This analysis is based on the Sensitivity Index (SI), defined

in Equation 6, which quantifies the percentage impact of a

parameter change on system performance. Each parameter

is varied individually, while others remain fixed, and the

resulting impact on availability or reliability is measured.

Scope and Limitations of Sensitivity Analysis: The cur-

rent sensitivity analysis focuses primarily on battery-related

parameters and drone operational characteristics, as these

emerged as the most influential factors in the baseline config-

uration. However, a comprehensive dependability assessment

would benefit from broader analysis encompassing additional

critical subsystems such as communication link reliability,

mechanical component degradation, software fault rates, and

sensor failures. While battery management dominates system

performance in the current architecture, other factors become

increasingly important in more complex operational environ-

ments. Future extensions should incorporate environmental

sensitivity (e.g., temperature effects on battery performance),

communication reliability parameters, and mechanical wear

factors to provide a more holistic view of system dependabil-

ity across diverse operational conditions.

For the CTMC model, sensitivity analysis is performed an-

alytically by differentiating the availability expression with

respect to each parameter. For the SPN model, numerical

methods are used to evaluate performance under varied pa-

rameter settings. The results are organized into a sensitivity

ranking, highlighting the components with the greatest im-

pact.

4.6 Analysis of Results

The final phase applies insights from sensitivity analysis to

conduct case studies focused on performance enhancement

strategies. Three main strategies are considered.

The first strategy involves optimizing component time pa-

rameters—such as battery discharge, recharge durations, and

drone swap times—to reduce unavailability. The second

strategy introduces redundancy mechanisms by adding spare

drones and batteries, increasing fault tolerance. The third
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strategy combines both approaches to achieve high perfor-

mance while balancing implementation costs.

Each case study evaluates performance across various pa-

rameter values or redundancy configurations. Results are

visualized to facilitate comparison and interpretation, with

emphasis on identifying cost-benefit trade-offs and practical

design implications.

The final step translates technical findings into intuitive visual-

izations and actionable recommendations. These include the

impact of parameter variations on availability and reliability,

comparative performance of different strategies, identifica-

tion of optimal configurations, and economic considerations.

This ensures that stakeholders at all levels—from system

designers to decision-makers—can interpret and apply the

results effectively to real-world implementations.

5 Architecture and Proposed Models

This section introduces the base architecture of a drone surveil-

lance system and presents models using Stochastic Petri Nets

(SPNs) and Continuous-Time Markov Chains (CTMCs) to

evaluate availability and reliability metrics. These comple-

mentary models incorporate redundancy mechanisms to opti-

mize and improve system performance.

5.1 System Architecture

Figure 2 presents the base architecture of a small drone

surveillance system. The system comprises an operator base

and a communication tower, enabling communication be-

tween the operator and the drones during surveillance mis-

sions. Traditional surveillance systems that rely on a single

drone suffer from single points of failure, potentially impact-

ing site security and critical services like intrusion detection

or fire alerting. The proposed architecture includes redun-

dant drones and energy sources (batteries) to address this

vulnerability.

1
2

3

Base

Target Area

Figure 2. Baseline Surveillance Architecture

Marking M1 in the figure shows the arrangement of drones

and spare batteries. At M2, a drone and battery are consumed

and deployed to replace a faulty or discharged unit. M3

captures the delay until the swap operation is completed.

Model Scope and Limitations: The architecture assumes

only one drone operates at a time and does not explicitly

model communication failures or adverse weather conditions.

While these simplifying assumptions facilitate tractable ana-

lytical modeling and provide valuable baseline insights, they

represent important limitations for real-world deployments.

Environmental factors such as wind, precipitation, and tem-

perature variations can significantly impact battery perfor-

mance, flight stability, and operational duration. Similarly,

communication link failures between drones and base stations

can affect coordination and mission execution.

Modeling Assumptions and Their Implications: The pro-

posed models adopt several fundamental assumptions that

affect their applicability: (i) Component Independence -

failures of different components (drones, batteries, communi-

cation systems) are assumed statistically independent, which

may not hold in practice where environmental stresses affect

multiple components simultaneously; (ii) Exponential Dis-

tributions - transition times follow exponential distributions,

providing the memoryless property essential for Markovian

analysis but potentially simplifying real component aging

and wear-out behaviors; (iii) Constant Failure Rates - the

models assume time-invariant failure rates, not accounting

for component degradation or maintenance effects that could

change failure patterns over operational lifetime. These as-

sumptions enable analytical tractability but may require val-

idation against empirical data for specific deployment con-

texts.

Coverage Implications: While this single-drone architec-

ture provides a foundation for dependability analysis, it in-

troduces coverage limitations that merit discussion. During

drone failures, battery discharge events, or swap operations,

the monitored area experiences temporary coverage gaps.

The proposed redundancy strategies aim to minimize these

gaps by reducing replacement times and increasing system

availability. However, the trade-off between battery redun-

dancy and drone redundancy presents interesting coverage

implications: while multiple spare batteries extend opera-

tional duration, multiple spare drones could achieve faster

area restoration after failures. Modern UAV surveillance

systems increasingly employ multi-drone configurations for

enhanced coverage, load balancing, and cooperative redun-

dancy. The current model focuses on service continuity rather

than spatial coverage, but the framework’s flexibility allows

for future extensions to address multi-drone scenarios where

coverage area and coordination become critical factors. Such

extensions would require modeling inter-drone coordination,

coverage overlap strategies, dynamic area allocation policies,

and communication protocols, which represent natural di-

rections for expanding this dependability framework toward

more realistic operational scenarios.

5.2 Availability Model

A CTMC model is developed to provide analytical insights

into the UAV flight system’s availability. It represents the in-

teractions between flying and backup drones and their power

sources.

Figure 3 illustrates the CTMC model. Table 1 describes the

parameters, and Table 2 provides detailed descriptions of

each system state.
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Figure 3. CTMC model of UAV flight system

Table 1. Parameter Description for the CTMC Model

Parameter Description

λbd Battery discharge rate (1/h)

λbc Battery charge rate (1/h)

µd Drone repair rate (1/h)

λd Drone failure rate (1/h)

δ Drone swap rate (1/h)

Table 2. CTMC State Descriptions

State Description

S0 Drone operational with charged battery (primary

operational state)

S1 Battery discharged, drone stopped, replacement

drone being prepared

S2 Replacement drone deployed and operational (sec-

ondary operational state)

S3 Primary drone failed, battery operational, replace-

ment being prepared

S4 Primary drone failed, battery depleted, system

down

S5 Replacement drone operational, primary drone un-

der repair

S6 Both primary drone failed and replacement drone’s

battery depleted

S7 System restored to operational state after repairs

(tertiary operational state)

Dark-colored states (S0, S2, S7) indicate operational condi-

tions. Other states represent failure scenarios. The steady-

state availability, derived by solving the balance equations of

the CTMC model, is given by Equation 7:

AUAV = δλbcµd(α2δφ2 + β2µdφ1)
α2δ2θ2 + λbcµd(α3δλbcλbdλd + θ1µd) + β2µ3

dφ3
(7)

where auxiliary parameters are:

β = λbd + λd

β2 = λbd + µd

β3 = λd + µd

β4 = λbc + λbd

β5 = λbc + µd

α1 = β + λbc

α2 = β + β5

α3 = β3 + β4

α4 = β3λbc + λbdµd

φ1 = α1λbc + β4µd

φ2 = β3λbc + λbdµd

φ3 = βλ2
bc + λbd(λbd(δ + λbc) + 2δλbc)

φ4 = β2
3 + β3(λbc + 3λbd) + λbd(2λbc + 3λbd)

φ5 = λ2
d + λdµd + µ2

d

θ1 = α1ββ2λbc + 2ββ2δλbd + δλbcφ4

θ2 = α4λbdµd + λ2
bcφ5

This analytical expression (Equation 7) supports rapid evalu-

ation of system behavior under varied conditions, enabling

parametric sensitivity analysis and direct computation of avail-

ability values for the case studies presented in Section 6. The

closed-form nature of this solution facilitates mathematical

optimization and provides insights into the relative impor-

tance of different system parameters.

5.3 Availability Redundant Model

To handle complexity from redundant components, a numer-

ical SPN model is used (Figure 4), constructed with Mer-

cury [Maciel et al., 2017; Fernandes et al., 2012; Lins et al.,

2024]. It computes metrics such as downtime, uptime, and

steady-state availability.

DSW

DF

DR

DF
DN

DR

BCG

BN

BR

BC

BD

DU

DR2

Figure 4. SPN Availability Model

The SPN availability model extends the CTMC representa-

tion to handle redundancy scenarios. Key places include: DU
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(drone operational - system providing service); DF (drone

failure state); BC (battery charge state); DR (drone repair

facility - also stores spare drones with initial marking indicat-

ing available redundant units, denoted as DN in case studies);

BR (battery recharge facility - also stores spare batteries with

initial marking indicating redundant battery units, denoted as

BN in case studies); and SF (system failure state). The model

allows multiple tokens in DR and BR to represent redundant

components. Transitions model operational events includ-

ing failure (DF), repair (DR, DR2), battery discharge (BD),

charging (BCG), drone swapping (DSW), and system failure

detection (TE0). Guard conditions ensure proper sequencing,

such as #SF = 0 preventing operations during system failure

states. See Table 3 for detailed transition definitions.

The SPN availability expression is:

AUAV = P{#DU > 0} (8)

which computes the probability of having a token in DU,

derived via reachability graph and solved numerically.

5.4 Reliability Model

Reliability is modeled using an SPN with an Erlang-based

absorbing structure (Figure 5). The model captures system

transitions and applies a polyexponential Erlang distribution

to represent service downtime that, if unresolved, leads to

failure.
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Figure 5. SPN Reliability Model

The SPN reliability model (Figure 5) incorporates the avail-

ability model structure with an additional Erlang-based ab-

sorbing subnet to capture time-dependent reliability. The core

model preserves the same place and transition structure as

the availability model, representing drone operations, fail-

ures, repairs, and redundancy. The key innovation is the

Erlang subnet comprising places E0 through E9 that models

the transition to irreversible system failure.

The subnet uses Erl(γ = y, λ = 1/β), where β = TTSF/y,
with y = 10 phases approximating determinism. When the

system experiences downtime (no token in DU), a token en-

tersE0 and propagates sequentially through the Erlang phases.

If service is restored before reaching SF, fail-interrupt tran-

sitions TI0–TI6 with guard conditions (#DU > 0) remove

tokens from the Erlang subnet, representing successful re-

covery. If the token reaches SF, the system has experienced

an irreversible reliability failure. This structure enables cal-

culation of reliability over mission time by measuring the

probability that no token reaches SF within the specified du-

ration.

5.5 Integrated Modeling Approach

The CTMC and SPNmodels provide complementary perspec-

tives on UAV system dependability, with formal connections

that ensure consistency while addressing different analytical

needs. The CTMC model serves as the foundational analyti-

cal framework, capturing essential system behaviors through

states S0-S7 and providing closed-form availability expres-

sions (Equation 7). The SPN models extend this foundation

to handle complex redundancy scenarios and time-dependent

reliability analysis.

Model Correspondence: The fundamental connection be-

tweenmodels lies in their shared representation of core system

behaviors. CTMC states S0, S2, and S7 (operational condi-

tions) correspond to tokens in SPN place DU, while failure

states map to the absence of tokens in DU and presence in

failure-related places (DF, BC). Transition rates in the CTMC

model directly correspond to SPN transition parameters:

λbd = 1/MTTBD, λbc = 1/MTTBC, λd = 1/MTTFD,

µd = 1/MTTRD, and δ = 1/MTTSD.

Model Validation through Consistency: For baseline

configurations (single drone, single battery), both models

yield equivalent availability results, confirming structural

consistency. The SPN availability expression AUAV =
P{#DU > 0} (Equation 8) reduces to the CTMC analyti-

cal result when redundancy parameters are set to zero. This

formal equivalence validates the modeling approach and pro-

vides confidence in the extended SPN results for redundancy

scenarios where analytical solutions become impractical.

These complementary approaches ensure accuracy and scala-

bility across different system configurations, enhancing the-

oretical understanding and practical deployment of resilient

drone surveillance systems.

6 Case Studies

This section presents a set of case studies designed to evaluate

the availability and reliability of UAV surveillance systems

under different configurations and operating conditions. The

analysis includes sensitivity analysis of key parameters, re-

dundancy evaluation, and integration of both strategies. Two

modeling approaches are adopted: Continuous-Time Markov

Chains (CTMC) and Stochastic Petri Nets (SPN). Results

are based on numerical analysis, focusing on battery-related

parameters and redundancy mechanisms.
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Table 3. Parameters Associated with Transitions

Transition Parameter Priority Guard Description

DF MTTFD 1 Time to drone failure (exp.)

DR MTTRD 1 Time to drone repair (exp.)

DR2 MTTRD 1 #DU > 0 Redundant repair (exp.)

BD MTTBD 1 Battery discharge (exp.)

BCG MTTBC 1 #SF = 0 Battery charge (exp.)

DSW MTTDS 1 #SF = 0 Drone swap (exp.)

TE0 TTSF 1 Time to system failure (Erlang)

TI0–TI6 * 1–2 Conditional Immediate transitions

6.1 Input Parameters

Case studies are conducted to analyze the impact of variations

in the redundant values of battery and drone components and

improvements in their operational parameters. A percentage

differencing technique is employed for this analysis. The

sensitivity analysis involves systematically varying one pa-

rameter at a time while keeping others fixed [Hamby, 1994;

Araujo et al., 2013]. Additionally, a sensitivity rating is cre-

ated to illustrate the impact of each parameter on the system’s

efficiency. This ranking is intended to identify which param-

eter significantly influences the system’s availability when it

reaches a steady state, as shown in Table 4.

Table 4. Sensitivity Ranking

Parameter Ranking Sensitivity index

MTTBD/λbd 1st 5.69 × 10−1

MTTBC/λbc 2nd 5.40 × 10−1

MTTSD/δ 3rd 6.60 × 10−3

MTTFD/λd 4th 5.30 × 10−5

MTTRD/µd 5th 3.51 × 10−5

Critical Parameter Analysis: Table 4 reveals that bat-

tery discharge times (MTTBD/λbd) and charging times

(MTTBC/λbc) have the greatest impact on system availabil-

ity, with sensitivity indices of 0.569 and 0.540 respectively.

The third most important factor is drone replacement times

(MTTSD/δ) with a sensitivity index of 0.0066. Notably,

drone failure and repair parameters show minimal sensitivity

(< 0.0001), indicating that battery management dominates

system performance. To improve availability, systems en-

gineers and designers should prioritize: (1) reducing MT-

TBC through higher efficiency battery chargers, (2) extending

MTTBD with greater capacity batteries, and (3) minimizing

MTTSD with more agile drone deployment systems.

Table 5. Parameter Values for the CTMC Model

Parameter Value (rate)

λbd 2.00 × 100

λbc 5.00 × 10−1

µd 5.00 × 10−1

λd 2.00 × 10−4

δ 6.00 × 100

Table 6. Parameter Values for the SPN Model

Parameter Values (Hours)

TTSF 5.00 × 10−2

y 1.00 × 101

MTTBC 2.00 × 100

MTTBD 5.00 × 10−1

MTTFD 5.03 × 103

MTTRD 2.00 × 100

MTTSD 1.60 × 10−2

For the CTMC analysis, input parameter values are provided

in rate format as amounts per hour. Specifically, λbd denotes

the rate of 2 battery discharges per hour, λbc indicates 0.5

charges per hour, µd refers to 0.5 repairs per hour, λd repre-

sents 0.0002 failures per hour, and δ signifies 6 UAV changes

per hour.

6.2 UAV Base Analysis

This case study utilizes the analytical Continuous-Time

Markov Chain (CTMC) model and the Stochastic Petri Net

(SPN) model to evaluate the potential impacts on system

availability due to improvements in the times of certain com-

ponents used as parameters in the models. The baseline pa-

rameter values for the CTMC model are presented in rate

format in Table 5. In contrast, in time format, the SPN model

parameter values are detailed in Table 6.

The analysis began by varying the value of λbd, followed

by λbc, and finally δ, while keeping λbd and λbc fixed at

enhanced values. The values of λd and µd (repair and failure

rates of the UAV) were not evaluated in this study, as their

impact on system availability is considered minimal relative

to other factors.

Figure 6 presents the time improvement graphs derived from

the CTMC analysis. Figure 6a displays the graph illustrat-

ing MTT time improvements of λbd, showing the effect of

changes in flight or unloading time on system availability.

The baseline system of the UAV flight demonstrates an avail-

ability of 34%with λbd set at 30 minutes of flight or unloading

time. With an increase in this time to 180 minutes, the avail-

ability improves to 84%.

Similarly, Figure 6b presents the battery charging time im-

provement graph, demonstrating the impact of changes in

charging time on the system availability. An improvement

of 90% is achieved for 30 minutes of charging, considering a

discharge time of 180 minutes.
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(a) Battery Runtime Optimization: Effect of Battery Discharge Time (MTTBD)
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(b) Charging Efficiency Analysis: Relationship Between Battery Charging

Time (MTTBC) and System Availability
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Figure 6. Impact of Time Parameters on UAV System Availability

In Figure 6c, an availability of 97% was achieved with

a UAV changeover time of less than 1.30 minutes, while

the unload and load times were set at 180 and 30 minutes,

respectively.

The SPN model analysis yielded results that align with those

from the CTMC model, indicating a significant impact of

battery discharge time, charging time, and drone swap time

on system availability. The consistency between the two

models supports the validity of the analysis and enhances the

reliability of the recommendations for system improvement.

6.3 Redundant UAV Scenarios

In this analysis, the objective is to evaluate the impact of re-

dundancy mechanisms on system availability, specifically the

use of N unmanned aerial vehicles (UAVs) and battery redun-

dancy. However, modeling systems with these redundancy

mechanisms using continuous-time Markov chain (CTMC)

models or analytical equations presents challenges related

to state explosion. This complexity hinders comprehension

of the CTMC and complicates manual calculations of the

analytical equations.

To address this challenge, a stochastic Petri net (SPN) model

is employed to model systems with redundancy mechanisms,
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Figure 7. Effect of redundancy mechanisms on system availability

such as the UAV flight system availability model. SPNs

are numerical models that can be evaluated through software

simulation. For this study, the Mercury tool [Maciel et al.,

2017] is utilized to assess the model. The input parameters

of the SPNs are provided in terms of mean time-to-failure

(MTTF) values, as outlined in Table 6.

The plot in Figure 7a illustrates the progression of over-

all system availability achieved through redundancy applied

specifically to the battery component (BN). Utilizing eight

backup batteries results in an availability of 85%. Keeping

the number of spare batteries constant at 8, the analysis then

varies the number of spare drones (DN), yielding an avail-

ability of 90% with four backup drones, as shown in Figure

7b.

These results demonstrate that while redundancy mechanisms

can significantly improve system availability, there is a limit

to the improvements achievable through redundancy alone.

Even with substantial spare batteries and drones, achieving

availabilities higher than 90% seems challenging, suggesting

additional strategies to enhance system performance further.

This third analysis combines the results of the previous

two studies by evaluating redundancy variations of spare

UAV components, incorporating improved load, unload,

and switchover time parameters. This combination aims to

achieve higher availability than the previous studies. The

enhanced time values utilized as input are outlined in Table 7.

However, integrating this data resulted in availability values

approaching 100%, complicating the differentiation between

larger redundancy numbers. Consequently, the availability

approach using the formula in Eq. 9 was adopted to quantify

the number of nines achieved.

#9s = − log10(1 − A) (9)
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Table 7. Improved Parameter Values for the SPN Model

Parameter Value (hours)

MTTFD 5.00 × 103

MTTRD 2.00 × 100

MTTBD 2.00 × 100

MTTBC 5.00 × 10−1

MTTDS 1.67 × 10−2

NB 1.00 × 100

ND 1.00 × 100

An analysis of the initial baseline configuration, incorporating

separate timing and redundancy improvements, indicated a

limitation in system availability, achieving a maximum avail-

ability of 97%. However, when redundancies were combined

with the previously enhanced parameters at their maximum

availability, the overall availability reached 99.58% with one

spare UAV and 99.32% with two spare batteries, as shown in

Figure 8. Additionally, employing seven redundant UAVs

achieved an availability of 99.89%. The availability stabilized

at 99.58% with four spare batteries. Reducing the number

of UAVs and spare batteries compared to the previous study

may lead to considerable cost savings in the overall budget

of a system with these specifications.
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Figure 8. Number of nines of availability values per number of BN and DN

redundancies with improved MTT parameters

6.4 UAV Reliability Analysis

In addition to availability analysis, an investigation into sys-

tem reliability over extended mission durations was con-

ducted. This analysis is pertinent for surveillance missions

that require continuous operation for prolonged periods with-

out failure.

An evaluation was conducted using the SPN reliability model

to assess the influence of three critical factors on system

reliability over time: the number of redundant batteries (BN),

the Mean Time To Battery Charge (MTTBC), and the Mean

Time To Battery Discharge (MTTBD). The findings of this

analysis are illustrated in Figure 9.

Figure 9a illustrates the impact of the number of redundant

batteries on system reliability over a 30-hour mission. The re-

sults indicate that with 15-20 redundant batteries, the system

maintains reliability above 80% throughout most of the mis-

sion duration. In contrast, with 0-5 batteries, reliability drops

rapidly to below 20% within the first few hours. These find-
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(b) Charging Cycle Impact: Correlation Between Battery Charging Time (MTTBC)

and System Reliability Degradation During Short-Term Operations
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(c) Discharge Performance Mapping: Effect of Battery Discharge Time (MTTBD)

on Operational Reliability Throughout Mission Timeline

Figure 9. UAV System Reliability: Time-Dependent Analysis for Mission

Planning

ings demonstrate battery redundancy’s critical importance for

long-duration surveillance missions.

Figure 9b illustrates the relationship between battery charg-

ing time and system reliability during a 2-hour mission. An

inverse relationship between MTTBC and reliability is ob-

served. With an MTTBC of 18 minutes, system reliability

begins at 100%, declines to approximately 40% within 30

minutes, and reaches zero by the end of the 2 hours. The

curves for different MTTBC values remain closely aligned,

indicating that once charging time exceeds a threshold of

around 18 minutes, additional increases in charging time re-

sult in diminishing returns for short-duration missions.

Figure 9c demonstrates the effect of battery discharge time
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on system reliability during a 2-hour mission. There is a

direct relationship between MTTBD and reliability. With

an MTTBD of 180 minutes, the system maintains reliability

above 60% throughout the entire 2-hour period. In contrast,

with a 36-minute MTTBD, reliability decreases dramatically,

falling below 20% after just 1 hour of operation. These results

highlight the importance of high-capacity batteries or power

consumption optimization to maintain system reliability dur-

ing surveillance operations.

6.5 Discussion of Results

The evaluation methodology aims to assess UAV systems’

availability and reliability through the combined application

of Continuous-Time Markov Chains (CTMC) and Stochas-

tic Petri Nets (SPN). The sensitivity analysis indicated that

battery-related parameters, specifically discharge and charge

times, are critical factors influencing system performance,

with the drone swap rate also playing a significant role. While

this battery-centric focus reflects the dominant failure modes

in the baseline system architecture, future comprehensive de-

pendability assessments should consider broader subsystem

interactions including communication reliability, mechanical

degradation, and environmental factors.

The three case studies collectively demonstrate that different

improvement strategies offer varying degrees of enhancement

to system availability:

1. Component time optimization can achieve up to 97%

availability through improvements in battery discharge time,

charging time, and drone swap time.

2. Redundancy mechanisms can reach approximately

90% availability with eight backup batteries and four backup

drones.

3. Combined approach can achieve availability values

approaching three nines (99.9%) by integrating optimized

component times with strategic redundancy.

The reliability analysis further emphasizes the importance of

battery management and redundancy for maintaining system

performance during extended missions. For long-duration

operations (30 hours), maintaining 15-20 redundant batter-

ies ensures reliability above 80%, while optimizing battery

charging time to less than 36 minutes and using batteries with

discharge times above 144 minutes substantially improves

system reliability during shorter missions.

Economic Feasibility and Cost Implications: While the

technical results demonstrate substantial availability improve-

ments through redundancy strategies, the economic feasi-

bility of implementing such configurations requires careful

consideration. For instance, achieving 99.89% availability

with seven redundant UAVs and 20 spare batteries repre-

sents a significant capital investment compared to baseline

configurations. The cost-effectiveness of redundancy strate-

gies depends on several factors including mission criticality,

downtime costs, component pricing, and operational budgets.

High-availability configurations may be justified for criti-

cal surveillance applications (e.g., disaster response, security

monitoring) where service interruptions have severe conse-

quences, but may be economically impractical for routine

monitoring tasks.

A preliminary cost-benefit analysis suggests that component

optimization strategies (achieving 97% availability) offer su-

perior cost-effectiveness compared to extensive redundancy

for many applications. The diminishing returns observed with

additional battery redundancy beyond four units indicates op-

timal resource allocation points that balance performance with

investment. Future work should incorporate economicmodels

that consider component costs, maintenance expenses, mis-

sion value, and downtime penalties to provide stakeholders

with quantitative cost-benefit guidance for different availabil-

ity targets and operational contexts.

These findings provide valuable guidelines for designingmore

robust and reliable drone surveillance systems. They enable

engineers to make informed decisions about component selec-

tion, system configuration, and resource allocation to achieve

desired performance levels while effectively managing costs.

7 Conclusions and Future Work

This study presents an integrated approach for evaluating

the availability and reliability of UAV surveillance systems,

combining analytical modeling via Continuous-Time Markov

Chains (CTMC) with numerical simulation using Stochastic

Petri Nets (SPN). The methodology includes detailed sensi-

tivity analyses to identify critical parameters and evaluate the

effectiveness of performance improvement strategies.

The CTMC model enabled closed-form analysis of system

availability, revealing that battery discharge rate (λbd) and

charging rate (λbc) are the most influential parameters, fol-

lowed by the drone swap rate (δ). The SPN model comple-

mented the analytical approach by supporting evaluation of

redundancy strategies and providing both steady-state avail-

ability and time-dependent reliability metrics.

Three case studies were conducted to explore enhancement

strategies. First, component time optimization improved

availability up to 97.08% without requiring redundancy. Sec-

ond, redundancy analysis showed availability gains of ap-

proximately 91% using eight spare batteries and four UAVs,

although this configuration was insufficient to reach very high

availability levels. Third, a combined strategy achieved up to

99.89% availability with seven redundant UAVs and 99.58%

with four spare batteries, demonstrating diminishing returns

for battery redundancy.

The reliability analysis demonstrated that for 30-hour mis-

sions, maintaining reliability above 80% requires 15–20 re-

dundant batteries. For shorter missions, optimizing charging

times below 36 minutes and using batteries with discharge

times above 144 minutes significantly improves reliability.

These results provide design guidance for UAV systems, help-

ing engineers prioritize improvements that maximize perfor-

mance while managing cost.

Study Limitations and Future Research Priorities: While

this work provides valuable theoretical insights into UAV

system dependability, several limitations should be acknowl-

edged. The models primarily focus on battery-related param-

eters and single-drone operations, with validation based on
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theoretical consistency rather than empirical data from real de-

ployments. Environmental factors, communication failures,

and multi-drone coordination scenarios represent important

extensions beyond the current scope.

Future work will expand the model scope and explore new

strategies. Priority areas include: (i) empirical validation with

real UAV operational data to enhance model credibility; (ii)

modeling multi-drone missions with coordinated task execu-

tion to address coverage implications discussed in Section 5.1;

(iii) incorporating environmental conditions and communi-

cation reliability for realistic operational modeling; (iv) de-

veloping comprehensive economic models for cost-benefit

analysis of redundancy strategies; (v) expanding sensitivity

analysis to include mechanical, software, and communication

subsystems; (vi) evaluating computational optimization tech-

niques for large-scale UAV fleet modeling; and (vii) assessing

alternative energy sources and emerging battery technologies.

These extensions will enhance the framework’s practical ap-

plicability and support more comprehensive dependability

assessment for diverse UAV surveillance applications.

These directions aim to improve the dependability, efficiency,

and sustainability of UAV surveillance systems in real-world

scenarios, supporting applications in public safety, emergency

response, environmental monitoring, and infrastructure in-

spection.
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