Characterization of the Mobile User Profile Based on Sentiments and Network Usage Attributes

Authors

DOI:

https://doi.org/10.5753/jisa.2022.2520

Keywords:

Future Mobile Networks, Sentiment Analysis, User Profile, Association Rules, Frequent Item-set Mining

Abstract

Providing resources to meet user needs in futuristic mobile networks is still challenging since the network resources like spectrum and base stations do not increase in the same proportion as the accelerated growth of network traffic. Because of this, human/user behavior attributes can assist resource management in dealing with these challenges, which pick up aspects of how the user impacts the usage of mobile networks, such as network usage, the content of interest, urban mobility routines, social networks, and sentiment. A user profile is a combination of user/human behavior attributes. Such profiles are expected to be a knowledge for softwarization enablers to improve the management of future wireless networks fully. Nevertheless, the correlation between human sentiment and wireless and mobile network usage has not been deeply investigated in the literature about the mobile user profile. This work aims to define the user profile using a transfer learning approach for the sentiment classification of WhatsApp messages. A real-life experiment was conducted to collect users' attributes, namely the WhatsApp messages and network usage.
A new data analysis methodology is proposed that consists of a frequent item-set pattern mining (FP-Growth) based on Association Rules, the Chi-squared statistical test, and descriptive statistics. This methodology assesses the correlation between sentiment and network usage in a profound way. Results show that the users participating in the experiment form three groups. The first group, with 55.6% of the users, contains users who present a strong relation between negative sentiment and low network usage and also a strong relation between positive sentiment and high network usage. The second group contains 25.9% of the users and is composed of userswho present a strong relation between positive sentiment and high network usage. The third group contains 18.5% of the users for whom the correlation between sentiment and network usage is still statistical significant, but the strength of this relation is much more weak then in the other two groups. Thus, 81.5% of the users (the first two groups) present a strong relation between user sentiment captured from WhatsApp messages and the network traffic generated by them.

Downloads

Download data is not yet available.

References

Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., and Flinck, H. (2018). Network slicing and softwarization: A survey on principles, enabling technologies, and solutions. IEEE Communications Surveys Tutorials, 20(3):2429– 2453. DOI: 10.1109/COMST.2018.2815638. URL: https://doi.org/10.1109/COMST.2018.2815638

Akabane, A. T., Immich, R., Madeira, E. R. M., and Villas, L. A. (2018). imob: An intelligent urban mobility management system based on vehicular social networks. In IEEE Vehicular Networking Conference (VNC), pages 1–8. DOI: 10.1109/VNC.2018.8628436.URL: https://doi.org/10.1109/VNC.2018.8628436

Akabane, A. T., Immich, R., Pazzi, R. W., Madeira, E. R. M., and Villas, L. A. (2019). Exploiting vehicular social networks and dynamic clustering to enhance urban mobility management. Sensors, 19(16):3558. DOI: 10.3390/s19163558. URL: https://doi.org/10.3390/s19163558

Awwad, A. M. A. (2021). Visual emotion-aware cloud localization user experience framework based on mobile location services. International Journal of Interactive Mobile Technologies, 15(14). DOI: 10.3991/ijim.v15i14.20061. URL: https://doi.org/10.3991/ijim.v15i14.20061

Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V., Rangel Pardo, F. M., Rosso, P., and Sanguinetti, M. (2019). SemEval-2019 task 5: Multilingual detection of hate speech against immigrants and women in twitter. In Proceedings of the 13th International Workshop on Semantic Evaluation, pages 54–63, Minneapolis, Minnesota, USA. Association for Computational Linguistics. DOI: 10.18653/v1/S19-2007. URL: https://doi.org/10.18653/v1/S19-2007

Boot, A. B., Sang, E. T. K., Dijkstra, K., and Zwaan, R. A. (2019). How character limit affects language usage in tweets. Palgrave Communications, 5(1):76. DOI: 10.1057/s41599-019-0280-3. URL: https://doi.org/10.1057/s41599-019-0280-3

Bouras, C., Kollia, A., and Papazois, A. (2017). Sdn nfv in 5g: Advancements and challenges. In 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), pages 107–111. DOI: 10.1109/ICIN.2017.7899398. URL: https://doi.org/10.1109/ICIN.2017.7899398

Chan, C. A., Yan, M., Gygax, A. F., Li, W., Li, L., Chih-Lin, I., Yan, J., and Leckie, C. (2019). Big data driven predictive caching at the wireless edge. In 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pages 1–6. DOI: 10.1109/ICCW.2019.8756663. URL: https://doi.org/10.1109/ICCW.2019.8756663

Chen, M., Zhang, Y., Li, Y., Mao, S., and Leung, V. C. M. (2015). Emc: Emotion-aware mobile cloud computing in 5g. IEEE Network, 29(2):32–38. DOI: 10.1109/MNET.2015.7064900. URL: https://doi.org/10.1109/MNET.2015.7064900

Cho, H., Lai, C., Shih, T. K., and Chao, H. (2014). Integration of sdr and sdn for 5g. IEEE Access, 2:1196–1204. DOI: 10.1109/ACCESS.2014.2357435. URL: https://doi.org/10.1109/ACCESS.2014.2357435

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. (2020). Electra: Pre-training text encoders as discriminators rather than generators. URL: https://doi.org/10.48550/arXiv.2003.10555

Clement, J. (2019). Whatsapp - statistics and facts. Accessed 18 September 2019. Available at: [link]

Dahiya, S., Mohta, A., and Jain, A. (2020). Text classification based behavioural analysis of whatsapp chats. In 2020 5th International Conference on Communication and Electronics Systems (ICCES), pages 717–724. DOI: 10.1109/ICCES48766.2020.9137911. URL: https://doi.org/10.1109/ICCES48766.2020.9137911

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. DOI: 10.48550/arXiv.1810.04805. URL: https://doi.org/10.48550/arXiv.1810.04805

Díaz-Galiano, M. C., Vega, M. G., Casasola, E., Chiruzzo, L., Cumbreras, M. Á. G., Cámara, E. M., Moctezuma, D., Montejo-Ráez, A., Cabezudo, M. A. S., Tellez, E. S., Graff, M., and Miranda-Jiménez, S. (2019). Overview Characterization of the Mobile User Profile Based on Sentiments and Network Usage Attributes Morais et al. 2022 of TASS 2019: One more further for the global spanish sentiment analysis corpus. In Proceedings of the Iberian Languages Evaluation Forum co-located with 35th Conference of the Spanish Society for Natural Language Processing, IberLEF@SEPLN 2019, Bilbao, Spain, September 24th, 2019, volume 2421 of CEUR Workshop Proceedings, pages 550–560. CEUR-WS.org. Available at: [link]

dos Santos, R. P. and Lopes, G. R. (2019). Thematic series on social network analysis and mining. journal of internet services and applications. volume 10, pages 1–4. SpringerOpen. DOI: 10.1186/s13174-019-0113-z. URL: https://doi.org/10.1186/s13174-019-0113-z

dos Santos Neto, M. V., da Silva Amaral, A. D., da Silva, N. F. F., and da Silva Soares, A. (2020). Deep learning brasil - NLP at semeval-2020 task 9: Sentiment analysis of code-mixed tweets using ensemble of language models. In Proceedings of the Fourteenth Workshop on Semantic Evaluation, SemEval@COLING 2020, Barcelona (online), December 12-13, 2020, pages 1233–1238. International Committee for Computational Linguistics. DOI: 10.18653/v1/2020.semeval-1.164. URL: https://doi.org/10.18653/v1/2020.semeval-1.164

Eke, C. I., Norman, A. A., Shuib, L., and Nweke, H. F. (2019). A survey of user profiling: State-of-the-art, challenges, and solutions. IEEE Access, 7:144907–144924. DOI: 10.1109/ACCESS.2019.2944243. URL: https://doi.org/10.1109/ACCESS.2019.2944243

Erol-Kantarci, M. and Sukhmani, S. (2018). Caching and computing at the edge for mobile augmented reality and virtual reality (ar/vr) in 5g. In Zhou, Y. and Kunz, T., editors, Ad Hoc Networks, pages 169–177, Cham. Springer International Publishing. DOI: 10.1007/978-3-319-74439- 11. URL: https://doi.org/10.1007/978-3-319-74439-1_15

Furno, A., Naboulsi, D., Stanica, R., and Fiore, M. (2017). Mobile demand profiling for cellular cognitive networking. IEEE Transactions on Mobile Computing, 16(3):772– 786. DOI: 10.1109/TMC.2016.2563429. URL: https://doi.org/10.1109/TMC.2016.2563429

Giraldo-Rodríguez, C., Fontenla-González, J., Pérez-Garrido, C., Mhiri, S., Gil-Castiñeira, F., and González-Castaño, F. J. (2015). Tsa: Terminal-supported 5g network optimization. In 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pages 209–216. DOI: 10.1109/WiMOB.2015.7347963. URL: https://doi.org/10.1109/WiMOB.2015.7347963

Han, J., Kamber, M., and Pei, J. (2012). Data mining concepts and techniques, third edition. Morgan Kaufmann Publishers. Available at: [link]

Hautamaki, V., Karkkainen, I., and Franti, P. (2004). Outlier detection using k-nearest neighbour graph. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., volume 3, pages 430–433 Vol.3. DOI: 10.1109/ICPR.2004.1334558. URL: https://doi.org/10.1109/ICPR.2004.1334558

Hayashida, T., Okumura, R., Mizutani, K., and Harada, H. (2019). Possibility of dynamic spectrum sharing system by vhf-band radio sensor and machine learning. In 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pages 1–6. DOI: 10.1109/DySPAN.2019.8935871. URL: https://doi.org/10.1109/DySPAN.2019.8935871

Hossain, N., Krumm, J., Gamon, M., and Kautz, H. (2020). Semeval-2020 task 7: Assessing humor in edited news headlines. DOI: 10.48550/arXiv.2008.00304. URL: https://doi.org/10.48550/arXiv.2008.00304

Jain, D., Garg, A., and Saraswat, M. (2019). Sentiment analysis using few short learning. In 2019 Fifth International Conference on Image Information Processing (ICIIP), pages 102–107. DOI: 10.1109/ICIIP47207.2019.8985855. URL: https://doi.org/ICIIP47207.2019.8985855

Joshi, S. (2019). Sentiment Analysis on WhatsApp Group Chat Using R, pages 47–55. Springer Singapore, Singapore. DOI: 10.1007/978-981-13-6347-45. URL: https://doi.org/10.1007/978-981-13-6347-4_5

Junior, A. B., F. da Silva, N. F., Rosa, T. C., and C. Junior, C. G. (2021). Sentiment analysis with genetic programming. Information Sciences. DOI: 10.1016/j.ins.2021.01.02. URL: https://doi.org/10.1016/j.ins.2021.01.025

Kabir, A., Iqbal, M., ul Abidin Jaffri, Z., Rathore, S. A., Kitindi, E. J., and Rehman, G. (2018). User aware edge caching in 5g wireless networks. In IJCSNS International Journal of Computer Science and Network Security, volume 18, pages 25–32. Accessed 10 January 2019. Available at: [link]

Karapanos, E., Teixeira, P., and Gouveia, R. (2016). Need fulfillment and experiences on social media: A case on facebook and whatsapp. Computers in Human Behavior, 55:888–897. DOI: 10.1016/j.chb.2015.10.015. URL: https://doi.org/10.1016/j.chb.2015.10.015

Komninos, A., Frengkou, A.-E., and Garofalakis, J. (2021). Hush now! context factors behind smartphone ringer mode changes. Pervasive and Mobile Computing, page 101332. DOI: 10.1016/j.pmcj.2021.101332. URL: https://doi.org/10.1016/j.pmcj.2021.101332

Krippendorff, K. (2011). Computing krippendorff’s alpha-reliability. Available at: [link]

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2020). Albert: A lite bert for selfsupervised learning of language representations. In International Conference on Learning Representations. DOI: 10.48550/arXiv.1909.11942. URL: https://doi.org/10.48550/arXiv.1909.11942

Leng, B., Liu, J., Pan, H., Zhou, S., and Niu, Z. (2015). Topic model based behaviour modeling and clustering analysis for wireless network users. In 2015 21st Asia-Pacific Conference on Communications (APCC), pages 410–415. DOI: 10.1109/APCC.2015.7412547. URL: https://doi.org/10.1109/APCC.2015.7412547

Li, L., Erfani, S., Chan, C. A., and Leckie, C. (2019). Multi-scale trajectory clustering to identify corridors in mobile networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM ’19, page 2253–2256, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3357384.3358157. URL: https://doi.org/10.1145/3357384.3358157

Li, S., Xu, L. D., and Zhao, S. (2018). 5g internet of things: A survey. Journal of Industrial Information Integration, 10:1–9. DOI: 10.1016/j.jii.2018.01.005. URL: https://doi.org/10.1016/j.jii.2018.01.005

Liu, B. (2012). Sentiment Analysis and Opinion Mining. Morgan and Claypool Publishers. DOI: 10.1007/978-3-031-02145-9. URL: https://doi.org/10.1007/978-3-031-02145-9

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692. DOI: 10.48550/arXiv.1907.11692. URL: https://doi.org/10.48550/arXiv.1907.11692.

M. Borges, V. C., Cardoso, K. V., Cerqueira, E., Nogueira, M., and Santos, A. (2015). Aspirations, challenges, and open issues for software-based 5g networks in extremely dense and heterogeneous scenarios. EURASIP Journal on Wireless Communications and Networking, 2015(1):164. DOI: 10.1186/s13638-015-0380-8. URL: https://doi.org/10.1186/s13638-015-0380-8

Malik, J. S., Goyal, P., and Sharma, M. (2010). A comprehensive approach towards data preprocessing techniques and association rules. Available at: [link]

Naboulsi, D., Fiore, M., Ribot, S., and Stanica, R. (2016). Large-scale mobile traffic analysis: A survey. IEEE Communications Surveys and Tutorials, 18(1):124–161. DOI: 10.1109/COMST.2015.2491361. URL: https://doi.org/10.1109/COMST.2015.2491361

Naboulsi, D., Stanica, R., and Fiore, M. (2014). Classifying call profiles in large-scale mobile traffic datasets. In IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, pages 1806–1814. DOI: 10.1109/INFOCOM.2014.6848119. URL: https://doi.org/10.1109/INFOCOM.2014.6848119

Neto, E. P., Silva, F. S. D., Schneider, L. M., Neto, A. V., and Immich, R. (2021). Seamless mano of multi-vendor sdn controllers across federated multi-domains. Computer Networks, 186:107752. DOI: 10.1016/j.comnet.2020.107752. URL: https://doi.org/10.1016/j.comnet.2020.107752

Nummenmaa, L., Hari, R., Hietanen, J. K., and Glerean, E. (2018). Maps of subjective feelings. Proceedings of the National Academy of Sciences, 115(37):9198–9203. DOI: 10.1073/pnas.1807390115. URL: https://doi.org/10.1073/pnas.1807390115

Patwa, P., Aguilar, G., Kar, S., Pandey, S., PYKL, S., Gambäck, B., Chakraborty, T., Solorio, T., and Das, A. (2020). Semeval-2020 task 9: Overview of sentiment analysis of code-mixed tweets. DOI: 10.18653/v1/2020.semeval1.100.URL: https://doi.org/10.18653/v1/2020.semeval1.100

Peltonen, E., Sharmila, P., Asare, K. O., Visuri, A., Lagerspetz, E., and Ferreira, D. (2020). When phones get personal: Predicting big five personality traits from application usage. Pervasive and Mobile Computing, 69:101269. DOI: 10.1016/j.pmcj.2020.101269. URL: https://doi.org/10.1016/j.pmcj.2020.101269

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L. (2018). Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237, New Orleans, Louisiana. Association for Computational Linguistics. DOI: 10.18653/v1/N18-1202. URL: https://doi.org/10.18653/v1/N18-1202

Qamar, Faizanand Hindia, M. H. D. N., Dimyati, K., Noordin, K. A., and Amiri, I. S. (2019). Interference management issues for the future 5g network: a review. Telecommunication Systems, 71(4):627–643. DOI: 10.1007/s11235-019-00578-4. URL: https://doi.org/10.1007/s11235-019-00578-4

Qiao, Y., Xing, Z., Fadlullah, Z. M., Yang, J., and Kato, N. (2018). Characterizing flow, application, and user behavior in mobile networks: A framework for mobile big data. IEEE Wireless Communications, 25(1):40–49. DOI: 10.1109/MWC.2018.1700186. URL: https://doi.org/10.1109/MWC.2018.1700186

Quan-Haase, A. and Young, A. L. (2010). Uses and gratifications of social media: A comparison of facebook and instant messaging. Bulletin of Science, Technology & Society, 30(5):350–361. DOI: 10.1177/0270467610380009. URL: https://doi.org/10.1177/0270467610380009

Raissi, F., Yangui, S., and Camps, F. (2019). Autonomous cars, 5g mobile networks and smart cities: Beyond the hype. In 2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pages 180–185. DOI: 10.1109/WETICE.2019.00046. URL: https://doi.org/10.1109/WETICE.2019.00046

Resende, G., Melo, P., Reis, J. C. S., Vasconcelos, M., Almeida, J., and Benevenuto, F. (2019). Analyzing textual (mis)information shared in whatsapp groups. In Proceedings of the ACM Conference on Web Science, WebSci’19, pages 225–234. DOI: 10.1145/3292522.3326029. URL: https://doi.org/10.1145/3292522.3326029

Rupavathy, N., Belinda, M., Nivedhitha, G., and Abhinaya, P. (2018). Whatsapp sentiment analysis. Journal of Computational and Theoretical Nanoscience, 15(11-12):3462– 3465. DOI: 10.1166/jctn.2018.7645. URL: https://doi.org/10.1166/jctn.2018.7645

Sakouhi, T. and Akaichi, J. (2021). Dynamic and multisource semantic annotation of raw mobility data using geographic and social media data. Pervasive and Mobile Computing, 71:101310. DOI: 10.1016/j.pmcj.2020.101310. URL: https://doi.org/10.1016/j.pmcj.2020.101310

Sharma, C., Bhageria, D., Scott, W., PYKL, S., Das, A., Chakraborty, T., Pulabaigari, V., and Gamback, B. (2020). SemEval-2020 task 8: Memotion analysis – the visuo-lingual metaphor!. DOI: 10.48550/arXiv.2008.03781. URL: https://doi.org/10.48550/arXiv.2008.03781

Singh, A. and Sharma, A. (2019). A multi-agent framework for context-aware dynamic user profiling for web personalization. In Software Engineering, pages 1–16, Singapore. Springer Singapore. DOI: 10.1007/978-981-10-8848-31. URL: https://doi.org/10.1007/978-981-10-8848-3_1

Souza, F., Nogueira, R., and Lotufo, R. (2019). Portuguese named entity recognition using bert-crf. arXiv preprint arXiv:1909.10649. DOI: 10.48550/arXiv.1909.1064. URL: https://doi.org/10.48550/arXiv.1909.10649

Srinivasan, M. and Murthy, S. R. (2019). Efficient spectrum slicing in 5g networks: An overlapping coalition formation approach. IEEE Transactions on Mobile Computing, pages 1–1. DOI: 10.1109/TMC.2019.2908903. URL: https://doi.org/10.1109/TMC.2019.2908903

Taleb, T., Mada, B., Corici, M., Nakao, A., and Flinck, H. (2017). Permit: Network slicing for personalized 5g mobile telecommunications. IEEE Communications Magazine, 55(5):88–93. DOI: 10.1109/MCOM.2017.1600947. URL: https://doi.org/10.1109/MCOM.2017.1600947

Tandon, G. and Chan, P. K. (2009). Tracking user mobility to detect suspicious behavior. In Proceedings of the 2009 SIAM International Conference on Data Mining (SDM). DOI: 10.1137/1.9781611972795.75. URL: https://doi.org/10.1137/1.9781611972795.75

Thuemmler, C., Paulin, A., Jell, T., and Lim, A. K. (2018). Information technology – next generation: The impact of 5g on the evolution of health and care services. In Latifi, S., editor, Information Technology - New Generations, pages 811–817, Cham. Springer International Publishing. DOI: 10.1007/978-3-319-54978-1100. URL: https://doi.org/10.1007/978-3-319-54978-1_100

Ullah, I. and Binbusayyis, A. (2022). Joint optimization of privacy and cost of in-app mobile user profiling and targeted ads. IEEE Access, 10:38664–38683. DOI: 10.1109/ACCESS.2022.3166152. URL: https://doi.org/10.1109/ACCESS.2022.3166152

Vamvakas, P., Tsiropoulou, E. E., and Papavassiliou, S. (2019). Dynamic spectrum management in 5g wireless networks: A real-life modeling approach. In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pages 2134–2142. DOI: 10.1109/INFO- COM.2019.8737443. URL: https://doi.org/10.1109/INFO- COM.2019.8737443

Veloso, A., Meira Jr, W., Carvalho, M. d., Pôssas, B., Parthasarathy, S., and Zaki, M. J. (2002). Mining frequent itemsets in evolving databases. In Proceedings of the 2002 SIAM International Conference on Data Mining, pages 494–510. SIAM. DOI: 10.1137/1.9781611972726.29. URL: https://doi.org/10.1137/1.9781611972726.29

Wagner Filho, J. A., Wilkens, R., Idiart, M., and Villavicencio, A. (2018). The brWaC corpus: A new open resource for brazilian portuguese. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), pages 4339–4344. Available at: [link]

Wang, C., Haider, F., Gao, X., You, X., Yang, Y., Yuan, D., Aggoune, H. M., Haas, H., Fletcher, S., and Hepsaydir, E. (2014). Cellular architecture and key technologies for 5g wireless communication networks. IEEE Communications Magazine, 52(2):122–130. DOI: 10.1109/MCOM.2014.6736752. URL: https://doi.org/10.1109/MCOM.2014.6736752

Wang, Y., Li, P., Jiao, L., Su, Z., Cheng, N., Shen, X. S., and Zhang, P. (2017). A data-driven architecture for personalized qoe management in 5g wireless networks. IEEE Wireless Communications, 24(1):102–110. DOI: 10.1109/MWC.2016.1500184WC. URL: https://doi.org/10.1109/MWC.2016.1500184WC

Wei, L., Hu, R. Q., Qian, Y., and Wu, G. (2014). Key elements to enable millimeter wave communications for 5g wireless systems. IEEE Wireless Communications, 21(6):136–143. DOI: 10.1109/MWC.2014.7000981.URL: https://doi.org/10.1109/MWC.2014.7000981

Wu, C., Chen, X., Zhu, W., and Zhang, Y. (2017). Socially-driven learning-based prefetching in mobile online social networks. IEEE/ACM Transactions on Networking, 25(4):2320–2333. DOI: 10.1109/TNET.2017.2681121. URL: https://doi.org/10.1109/TNET.2017.2681121

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., and Le, Q. V. (2020). Xlnet: Generalized autoregressive pretraining for language understanding. DOI: 10.48550/arXiv.1906.08237. URL: https://doi.org/10.48550/arXiv.1906.08237

Yousaf, F. Z., Bredel, M., Schaller, S., and Schneider, F. (2017). Nfv and sdn—key technology enablers for 5g networks. IEEE Journal on Selected Areas in Communications, 35(11):2468–2478. DOI: 10.1109/JSAC.2017.2760418.URL: https://doi.org/10.1109/JSAC.2017.2760418

Zhai, Y., Song, W., Liu, X., Liu, L., and Zhao, X. (2018). A chi-square statistics based feature selection method in text classification. In 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), pages 160–163. DOI: 10.1109/ICSESS.2018.8663882. URL: https://doi.org/10.1109/ICSESS.2018.8663882

Zhao, S., Li, S., Ramos, J., Luo, Z., Jiang, Z., Dey, A. K., and Pan, G. (2019). User profiling from their use of smartphone applications: A survey. Pervasive and Mobile Computing, 59:101052. DOI: 10.1016/j.pmcj.2019.101052. URL: https://doi.org/10.1016/j.pmcj.2019.101052

Zhao, S., Zhao, Y., Zhao, Z., Luo, Z., Huang, R., Li, S., and Pan, G. (2017). Characterizing a user from large-scale smartphone-sensed data. In Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers, UbiComp ’17, pages 482–487, New York, NY, USA. ACM. DOI: 10.1145/3123024.3124437. URL: https://doi.org/10.1145/3123024.3124437

Zheng, K., Yang, Z., Zhang, K., Chatzimisios, P., Yang, K., and Xiang, W. (2016). Big data-driven optimization for mobile networks toward 5g. IEEE Network, 30(1):44–51. DOI: 10.1109/MNET.2016.7389830. URL: https://doi.org/10.1109/MNET.2016.7389830

Downloads

Published

2022-12-27

How to Cite

Morais, L. P. de, Immich, R., Silva, N. F., Couto Rosa, T., & Borges, V. da C. M. (2022). Characterization of the Mobile User Profile Based on Sentiments and Network Usage Attributes. Journal of Internet Services and Applications, 13(1), 82–97. https://doi.org/10.5753/jisa.2022.2520

Issue

Section

Research article