Anomaly Detection in Cloud-native B5G Systems using Observability and Machine Learning COTS Solutions

Authors

DOI:

https://doi.org/10.5753/jisa.2023.3551

Keywords:

Observability, 5G Systems, Metrics, Log Processing, Machine Learning, COTS

Abstract

The advent of B5G networks has revolutionized the telecommunications landscape by transitioning hardware resources to software components, predominantly running on cloud-­based infrastructures. However, this ‘softwarization’ extends across the radio access, transport, and core networks, introducing complex challenges in real-time network management. In this context of the ‘softwarization’, it is imperative to make the behavior of B5G systems readily observable for effective management and fault diagnosis. This article presents a comprehensive empirical investigation of observability within a B5G system, specifically focusing on its radio access and core networks. The study enhances the system’s observability by combining advanced metric analysis and log parsing. Our method integrates Commercial Off­-The-­Shelf machine learning algorithms to diagnose anomalies and automate failure tasks. Besides that, our evaluation of the Cloud­-Native Observability Tools services revealed a significant memory footprint, accounting for 86% of the total memory usage and 22% overall CPU utilization. The findings also highlight that our approach mitigates the issue of non-­standardization in log data, thereby facilitating proactive failure anticipation. This study can aggregate significant value for developing automated, self­healing B5G network systems.

Downloads

Download data is not yet available.

References

3GPP (2017). Study on New Radio Access Technology; Radio Access Architecture and Interfaces (Release 14). Technical report, 3GPP. Available online [link].

3GPP (2020). 5G; System architecture for the 5G System (5GS) (3GPP TS 23.501 version 16.6.0 Release 16). Technical report, 3GPP. Available online [link].

Abdulghaffar, A. et al. (2021). Modeling and Evaluation of Software Defined Networking Based 5G Core Network Architecture. IEEE Access, 9:10179-10198. DOI: 10.1109/ACCESS.2021.3049945.

Cardoso, K. V. et al. (2020). A Softwarized Perspective of the 5G Networks. arXiv preprint. DOI: 10.48550/arXiv.2006.10409.

Chen, B. and Jiang, Z. M. J. (2021). A Survey of Software Log Instrumentation. ACM Comput. Surv., 54(4). DOI: 10.1145/3448976.

Doan, M. and Zhang, Z. (2020). Deep Learning in 5G Wireless Networks - Anomaly Detections. In Proceedings of 29th Wireless and Optical Communications Conference (WOCC). DOI: 10.1109/WOCC48579.2020.9114924.

Duong, V. B. and Kim, Y. (2023). A Design of Service Mesh Based 5G Core Network Using Cilium. In Proceedings of International Conference on Information Networking, volume 2023-January, pages 25-28. IEEE Computer Society. DOI: 10.1109/ICOIN56518.2023.10049044.

Esteves, T. et al. (2021). CAT: Content-Aware Tracing and Analysis for Distributed Systems. In Proceedings of the 22nd International Middleware Conference, page 223–235. Association for Computing Machinery. DOI: 10.1145/3464298.3493396.

Fida, M., Ahmed, A. H., Dreibholz, T., Ocampo, A. F., Elmokashfi, A., and Michelinakis, F. I. (2023). Bottleneck identification in cloudified mobile networks based on distributed telemetry. IEEE Transactions on Mobile Computing, (01):1-18. DOI: 10.1109/TMC.2023.3312051.

Finke, T. et al. (2021). Autoencoders for unsupervised anomaly detection in high energy physics. Journal of High Energy Physics, 2021. DOI: 10.1007/JHEP06(2021)161.

Free5GC (2023). Open source 5G core network based on 3GPP R15. Available online [link]. Accessed on: 2023-07-09.

Gatev, R. (2021). Observability: Logs, Metrics, and Traces, pages 233-252. Apress, Berkeley, CA. DOI: 10.1007/978-1-4842-6998-5.

Gizchina (2021). The number of 5G users worldwide will reach 2.6 billion in five years. Available online [link]. Accessed: 2023-09-09.

Gomez Blanco, D. (2023). Adopting Open Observability Standards Across Your Organization, pages 217-229. Apress, Berkeley, CA. DOI: 10.1007/978-1-4842-9075-0.

Hakiri, A. et al. (2022). Techniques for Realizing Secure, Resilient and Differentiated 5G Operations. In Proceedings of 14th IFIP Wireless and Mobile Networking Conference (WMNC), pages 113-117. DOI: 10.23919/WMNC56391.2022.9954310.

Hung, M.-H. et al. (2022). A SDN Controller Monitoring Architecture for 5G Backhaul Networks. In Proceedings of 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS), pages 1-4. DOI: 10.23919/APNOMS56106.2022.9919988.

Joda, R. et al. (2022). The internet of senses: Building on semantic communications and edge intelligence. IEEE Network, pages 1-9. DOI: 10.1109/MNET.107.2100627.

John, W. et al. (2017). Meeting the Observability Shallenges for VNFs in 5G Systems. In IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pages 1127-1130. DOI: 10.23919/INM.2017.7987445.

Kim, H. J. et al. (2022). Network Anomaly Detection based on Domain Adaptation for 5G Network Security. In Proceedings of International Conference on ICT Convergence, volume 2022-October, pages 976-980. IEEE Computer Society. DOI: 10.1109/ICTC55196.2022.9952454.

Klinkowski, M. and Jaworski, M. (2022). Planning of Optical Connections in 5G Packet-Optical xHaul Access Network. Applied Sciences, 12(3). DOI: 10.3390/app12031146.

Larsen, L. M. P., Checko, A., and Christiansen, H. L. (2019). A Survey of the Functional Splits Proposed for 5G Mobile Crosshaul Networks. IEEE Communications Surveys Tutorials, 21(1):146-172. DOI: 10.1109/COMST.2018.2868805.

Leliopoulos, P. and Drigas, A. (2023). Big data and data analytics in 5G mobile networks. Global Journal of Engineering and Technology Advances, 15:165-190. DOI: 10.30574/gjeta.2023.15.3.0114.

Li, B. et al. (2022). Enjoy your observability: an industrial survey of microservice tracing and analysis. Empirical Software Engineering, 27:1-28. DOI: 10.1007/s10664-021-10063-9.

O-RAN (2023). O-RAN ALLIANCE. Available online [link]. Accessed on em 01/02/2023.

OpenAirInterface (2023). Openairinterface 5G Wireless Implementation. Available online [link]. Accessed on:2023-07-09.

Polese, M. et al. (2023). Understanding o-ran: Architecture, interfaces, algorithms, security, and research challenges. Commun. Surveys Tuts., 25(2):1376–1411. DOI: 10.1109/COMST.2023.3239220.

Prathiba, S. B. et al. (2022). A Hybrid Deep Sensor Anomaly Detection for Autonomous Vehicles in 6G-V2X Environment. IEEE Transactions on Network Science and Engineering. DOI: 10.1109/TNSE.2022.3188304.

Raja, G. et al. (2022). AI-Empowered Trajectory Anomaly Detection and Classification in 6G-V2X. IEEE Transactions on Intelligent Transportation Systems. DOI: 10.1109/TITS.2022.3197446.

Saavedra, A. et al. (2018). WizHaul: On the Centralization Degree of Cloud RAN Next Generation Fronthaul. IEEE Transactions on Mobile Computing, 17(10):2452-2466. DOI: 10.1109/TMC.2018.2793859.

Scrocca, M. et al. (2020). The Kaiju Project: Enabling Event-Driven Observability. 14th ACM International Conference on Distributed and Event-Based Systems, pages 84-91. DOI: 10.1145/3401025.3401740.

Soldani, D. et al. (2023). eBPF: A New Approach to Cloud-Native Observability, Networking and Security for Current (5G) and Future Mobile Networks (6G and Beyond). IEEE Access. DOI: 10.1109/ACCESS.2023.3281480.

Statista (2023). 5G Networks Deployment World Map. Available online [link]. Accessed: 2023-09-09.

Sun, P. et al. (2020). Adaptive Rule Engine for Anomaly Detection in 5G Mobile Edge Computing. In Proceedings of the IEEE 20th International Conference on Software Quality, Reliability, and Security (QRS-C), pages 690-691. Institute of Electrical and Electronics Engineers Inc.. DOI: 10.1109/QRS-C51114.2020.00123.

Surantha, N. and Putra, N. A. (2022). Integrated SDN-NFV 5G Network Performance and Management-Complexity Evaluation. Future Internet, 14. DOI: 10.3390/fi14120378.

Tang, Q. et al. (2022). A Systematic Analysis of 5G Networks With a Focus on 5G Core Security. IEEE Access, 10:18298-18319. DOI: 10.1109/ACCESS.2022.3151000.

Yuan, Y. et al. (2022). Insight of Anomaly Detection with NWDAF in 5G. In Proceedings of the International Conference on Computer, Information and Telecommunication Systems (CITS). Institute of Electrical and Electronics Engineers Inc.. DOI: 10.1109/CITS55221.2022.9832914.

Zheng, Y. et al. (2022). Mahalanobis Distance and Pauta Criterion based Log Anomaly Detection Algorithm for 5G Mobile Network. In Proceedings of the IEEE 21st International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pages 1384-1389. DOI: 10.1109/TrustCom56396.2022.00195.

Downloads

Published

2023-12-13

How to Cite

Zanatta Bruno, G., B. Chaves Rodrigues, K., Vieira Cardoso, K., Luz Correa, S., & Bonato Both, C. (2023). Anomaly Detection in Cloud-native B5G Systems using Observability and Machine Learning COTS Solutions. Journal of Internet Services and Applications, 14(1), 189–199. https://doi.org/10.5753/jisa.2023.3551

Issue

Section

Research article