Using Electric Vehicle Driver’s Driving Mode for Trip Planning and Routing
DOI:
https://doi.org/10.5753/jisa.2024.3805Keywords:
Driving range, Energy consumption estimation, Electric vehicles, Range prediction, Recommender architectureAbstract
With the increasing adoption of electric vehicles worldwide, some limitations have emerged in their usage. The main limitations include low autonomy and a scarcity of charging points. In this work, we describe a software architecture for planning a stop at charging stations along a trip, by prediction of battery charge to be spent along the path. We describe the main components of this architecture and evaluate regression methods for the car consumption prediction module. We also use a real dataset built from an electric vehicle usage to validate the architecture concept and its viability analyzing multiple linear regression machine learning models. To further validate the architecture, we make comparisons between simulated and a real trips.
Downloads
References
Adedeji, B. P. (2023). Electric vehicles survey and a multifunctional artificial neural network for predicting energy consumption in all-electric vehicles. Results in Engineering, 19:101283. DOI: 10.1016/j.rineng.2023.101283.
Adedeji, B. P. and Kabir, G. (2023). A feedforward deep neural network for predicting the state-of-charge of lithium-ion battery in electric vehicles. Decision Analytics Journal, 8:100255. DOI: 10.1016/j.dajour.2023.100255.
Aiyitibieke, N., Wang, W., Wu, N., Sun, Y., Li, X., and Sun, Y. (2019). An empirical study on high-risk driving behavior to urban-scale pattern in china. IEEE Access, 7:43654-43665. DOI: 10.1109/ACCESS.2019.2906930.
Akl, M. M., Ahmed, A. A., and Rashad, E. E. M. (2019). A wide component sizing and performance assessment of electric drivetrains for electric vehicles. In 2019 21st International Middle East Power Systems Conference (MEPCON), pages 834-839. IEEE. DOI: 10.1109/MEPCON47431.2019.9008195.
Alanazi, F. (2023). Electric vehicles: Benefits, challenges, and potential solutions for widespread adaptation. Applied Sciences, 13(10). DOI: 10.3390/app13106016.
Ali, I. and Naushad, M. (2022). A study to investigate what tempts consumers to adopt electric vehicles. World Electric Vehicle Journal, 13(2):26. DOI: 10.3390/wevj13020026.
Alpaydin, E. (2020). Introduction to machine learning. MIT press. Book.
ANATEL (2022). Anatel - infraestrutura. Available online [link], Accessed 7 January 2022.
Arabie, P., Hubert, L., and De Soete, G. (1996). Clustering and classification. World Scientific. Book.
Bailey, C., Jones, B., Clark, M., Buck, R., and Harper, M. (2022). Electric vehicle autonomy: Realtime dynamic route planning and range estimation software. In 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), pages 2696-2701. DOI: 10.1109/ITSC55140.2022.9922244.
Bolovinou, A., Bakas, I., Amditis, A., Mastrandrea, F., and Vinciotti, W. (2014). Online prediction of an electric vehicle remaining range based on regression analysis. In 2014 IEEE International Electric Vehicle Conference (IEVC), pages 1-8. IEEE. DOI: 10.1109/IEVC.2014.7056167.
Chandran, V., Patil, C. K., Karthick, A., Ganeshaperumal, D., Rahim, R., and Ghosh, A. (2021). State of charge estimation of lithium-ion battery for electric vehicles using machine learning algorithms. World Electric Vehicle Journal, 12(1). DOI: 10.3390/wevj12010038.
Chen, M.-S., Hwang, C.-P., Ho, T.-Y., Wang, H.-F., Shih, C.-M., Chen, H.-Y., and Liu, W. K. (2019a). Driving behaviors analysis based on feature selection and statistical approach: a preliminary study. The Journal of Supercomputing, 75(4):2007-2026. DOI: 10.1007/s11227-018-2618-9.
Chen, S., Sun, W., Li, Y., and Shi, L. (2019b). On the relationship between energy consumption and driving behavior of electric vehicles based on statistical features. In 2019 Chinese Control Conference (CCC), pages 3782-3787. DOI: 10.23919/ChiCC.2019.8866414.
Chen, W., Lin, Y., and Chen, W. (2019c). Comparisons of machine learning algorithms for driving behavior recognition using in-vehicle can bus data. In 2019 Joint 8th International Conference on Informatics, Electronics Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision Pattern Recognition (icIVPR), pages 268-273. DOI: 10.1109/ICIEV.2019.8858531.
Delnevo, G., Di Lena, P., Mirri, S., Prandi, C., and Salomoni, P. (2019). On combining big data and machine learning to support eco-driving behaviours. Journal of Big Data, 6(1):64. DOI: 10.1186/s40537-019-0226-z.
dos Reis, M., Teixeira, F., and Marques-Neto, H. (2023). Utilizando o modo de dirigir do motorista de veículo elétrico para o planejamento e roteirização de viagem. In Anais do VII Workshop de Computação Urbana, pages 15-28, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/courb.2023.740.
Eberly, L. E. (2007). Multiple linear regression. Topics in Biostatistics, pages 165-187. DOI: 10.1007/978-1-59745-530-5_9.
Fugiglando, U., Massaro, E., Santi, P., Milardo, S., Abida, K., Stahlmann, R., Netter, F., and Ratti, C. (2018). Driving behavior analysis through can bus data in an uncontrolled environment. IEEE Transactions on Intelligent Transportation Systems, 20(2):737-748. DOI: 10.1109/TITS.2018.2836308.
Gönül, "O., Duman, A. C., and Güler, "O. (2021). Electric vehicles and charging infrastructure in turkey: An overview. Renewable and Sustainable Energy Reviews, 143:110913. DOI: 10.1016/j.rser.2021.110913.
Gorner, M. (2020). Electric vehicles: Analysis - tracking report: June 2020. Accessed 19 July 2020.
Goujon, A., Haghighi, H., and Amine Hamri, M. E. (2022). Impact of eco-driving on energy consumption of an electric vehicle. In 2022 7th International Conference on Environment Friendly Energies and Applications (EFEA), pages 1-6. DOI: 10.1109/EFEA56675.2022.10063838.
Halonen, T., Romero, J., and Melero, J. (2004). GSM, GPRS and EDGE performance: evolution towards 3G/UMTS. John Wiley & Sons. Book.
Hong, J., Wang, Z., Chen, W., Wang, L.-Y., and Qu, C. (2020). Online joint-prediction of multi-forward-step battery soc using lstm neural networks and multiple linear regression for real-world electric vehicles. Journal of Energy Storage, 30:101459. DOI: 10.1016/j.est.2020.101459.
Huang, Y., Zhu, L., Sun, R., Yi, J., Liu, L., and Luan, T. H. (2020). Save or waste: Real data based energy-efficient driving. IEEE Access, 8:133936-133950. DOI: 10.1109/ACCESS.2020.3007508.
Hucho, W. and Ahmed, S. (1998). Aerodynamics of Road Vehicles: From Fluid Mechanics to Vehicle Engineering. Legendary Women. Society of Automotive Engineers. Book.
Jia, S., Hui, F., Li, S., Zhao, X., and Khattak, A. J. (2020). Long short-term memory and convolutional neural network for abnormal driving behaviour recognition. IET Intelligent Transport Systems, 14(5):306-312. DOI: 10.1049/iet-its.2019.0200.
Kocaarslan, I., Zehir, M. A., Uzun, E., Uzun, E. C., Korkmaz, M. E., and Cakiroglu, Y. (2022). High-fidelity electric vehicle energy consumption modelling and investigation of factors in driving on energy consumption. In 2022 4th Global Power, Energy and Communication Conference (GPECOM), pages 227-231. DOI: 10.1109/GPECOM55404.2022.9815789.
Krishnamurthy, V., Nezafati, K., Bae, J., Gursoy, E., Zhong, M., and Singh, V. (2019). Classification of driving behavior events utilizing kinematic classification and machine learning for down sampled time series data. In 2019 IEEE International Conference on Big Data (Big Data), pages 3789-3796. DOI: 10.1109/BigData47090.2019.9005982.
Lebrouhi, B., Khattari, Y., Lamrani, B., Maaroufi, M., Zeraouli, Y., and Kousksou, T. (2021). Key challenges for a large-scale development of battery electric vehicles: A comprehensive review. Journal of Energy Storage, 44:103273. DOI: 10.1016/j.est.2021.103273.
Li, H. and Kang, H. (2020). Research on user behavior prediction and profiling method based on trajectory information. Automatic Control and Computer Sciences, 54(5):456-465. DOI: 10.3103/S0146411620050065.
Liu, J., Shi, P., and Fan, J. (2022). Electric vehicle energy consumption model based on working condition recognition and k-means cluster analysis. In 2022 International Conference on Manufacturing, Industrial Automation and Electronics (ICMIAE), pages 130-134. DOI: 10.1109/ICMIAE57032.2022.00032.
Liu, S., Wang, N., and Wang, X. (2019). Multi-factor influenced integrated driving behavior clustering analysis evaluation model. In 2019 International Conference on Computer, Information and Telecommunication Systems (CITS), pages 1-5. DOI: 10.1109/CITS.2019.8862028.
Mashkov, V. and Karova, M. (2023). Estimation of power consumption for an electric vehicle through variable parameter modelling. In 2023 International Conference Automatics and Informatics (ICAI), pages 119-124. DOI: 10.1109/ICAI58806.2023.10339079.
McKinsey (2023). O futuro da mobilidade no brasil: uma rota para eletrificação. Available online [link], Accessed 27 January 2023.
Noussan, M. (2020). Public EV charging in Italy: policies, business models and future scenarios. MDPI. Book.
Paul, D., Mo, H., Elsayed, S., and Chakrabortty, R. K. (2023). Predicting energy consumption of battery-operated electric vehicles: A comparative performance assessment. In 2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pages 1032-1036. DOI: 10.1109/IEEM58616.2023.10406558.
Ping, P., Qin, W., Xu, Y., Miyajima, C., and Takeda, K. (2019). Impact of driver behavior on fuel consumption: Classification, evaluation and prediction using machine learning. IEEE Access, 7:78515-78532. DOI: 10.1109/ACCESS.2019.2920489.
R, D., Venkateshkumar, M., and Kuppusamy, C. (2023). Driving range estimation using amrit for prognostics model of electric vehicles. In 2023 Innovations in Power and Advanced Computing Technologies (i-PACT), pages 1-6. DOI: 10.1109/i-PACT58649.2023.10434455.
Rodriguez, M. Z., Comin, C. H., Casanova, D., Bruno, O. M., Amancio, D. R., Costa, L. d. F., and Rodrigues, F. A. (2019). Clustering algorithms: A comparative approach. PloS one, 14(1):e0210236. DOI: 10.1371/journal.pone.0210236.
Sama, K., Morales, Y., Liu, H., Akai, N., Carballo, A., Takeuchi, E., and Takeda, K. (2020). Extracting human-like driving behaviors from expert driver data using deep learning. IEEE Transactions on Vehicular Technology, 69(9):9315-9329. DOI: 10.1109/TVT.2020.2980197.
Siami, M., Naderpour, M., and Lu, J. (2020). A mobile telematics pattern recognition framework for driving behavior extraction. IEEE Transactions on Intelligent Transportation Systems, pages 1-14. DOI: 10.1109/TITS.2020.2971214.
Stanton, N. A. and Allison, C. K. (2020). Driving towards a greener future: an application of cognitive work analysis to promote fuel-efficient driving. Cognition, Technology & Work, 22(1):125-142. DOI: 10.1007/s10111-019-00554-7.
Thorgeirsson, A. T., Scheubner, S., Fünfgeld, S., and Gauterin, F. (2021). Probabilistic prediction of energy demand and driving range for electric vehicles with federated learning. IEEE Open Journal of Vehicular Technology, 2:151-161. DOI: 10.1109/OJVT.2021.3065529.
Tiwary, A., Garg, S., and Mishra, S. (2022). Impact of driving behaviour on energy consumption of electric vehicle. In 2022 22nd National Power Systems Conference (NPSC), pages 872-877. DOI: 10.1109/NPSC57038.2022.10069293.
Tran, Q. T., Roose, L., Vichitpunt, C., Thongmai, K., and Noisopa, K. (2023). An improved method to estimate energy consumption for light duty electric vehicle based on road characteristics and ambient temperature. In 2023 Asia Meeting on Environment and Electrical Engineering (EEE-AM), pages 01-04. DOI: 10.1109/EEE-AM58328.2023.10395316.
Velandia Vargas, J. E., Seabra, J. E. A., Cavaliero, C. K. N., Walter, A. C. S., Souza, S. P., and Falco, D. G. (2020). The new neighbor across the street: An outlook for battery electric vehicles adoption in brazil. World Electric Vehicle Journal, 11(3). DOI: 10.3390/wevj11030060.
Warren, J., Lipkowitz, J., and Sokolov, V. (2019). Clusters of driving behavior from observational smartphone data. IEEE Intelligent Transportation Systems Magazine, 11(3):171-180. DOI: 10.1109/MITS.2019.2919516.
Wei, H., He, C., Li, J., and Zhao, L. (2022). Online estimation of driving range for battery electric vehicles based on soc-segmented actual driving cycle. Journal of Energy Storage, 49:104091. DOI: 10.1016/j.est.2022.104091.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Internet Services and Applications
This work is licensed under a Creative Commons Attribution 4.0 International License.