MEDAVET: Traffic Vehicle Anomaly Detection Mechanism based on spatial and temporal structures in vehicle traffic




Anomaly Detection, Vehicle Tracking, Computer Vision


Road traffic anomaly detection is vital for reducing the number of accidents and ensuring a more efficient and safer transportation system. In highways, where traffic volume and speed limits are high, anomaly detection is not only essential but also considerably more challenging, given the multitude of fast-moving vehicles, often observed from extended distances and diverse angles, occluded by other objects, and subjected to variations in illumination and adverse weather conditions. This complexity has meant that human error often limits anomaly detection, making the role of computer vision systems integral to its success. In light of these challenges, this paper introduces MEDAVET - a sophisticated computer vision system engineered with an innovative mechanism that leverages spatial and temporal structures for high-precision traffic anomaly detection on highways. MEDAVET is assessed in its object tracking and anomaly detection efficacy using the UA-DETRAC and Track 4 benchmarks and has its performance compared with that of an array of state-of-the-art systems. The results have shown that, when MEDAVET’s ability to delimit relevant areas of the highway, through a bipartite graph and the Convex Hull algorithm, is paired with its QuadTree-based spatial and temporal approaches for detecting occluded and stationary vehicles, it emerges as superior in precision, compared to its counterparts, and with a competitive computational efficiency.


Download data is not yet available.


Bae, S.-H. and Yoon, K.-J. (2018). Confidence-based data association and discriminative deep appearance learning for robust online multi-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(3):595-610. DOI: 10.1109/TPAMI.2017.2691769.

Bafghi, F. and Shoushtarian, B. (2020). Multiple-vehicle tracking in the highway using appearance model and visual object tracking. In 2020 International Conference on Machine Vision and Image Processing (MVIP), pages 1-6. DOI: 10.1109/MVIP49855.2020.9116905.

Bai, S., He, Z., Lei, Y., Wu, W., Zhu, C., Sun, M., and Yan, J. (2019). Traffic anomaly detection via perspective map based on spatial-temporal information matrix. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. Available online [link].

Bernardin, K. and Stiefelhagen, R. (2008). Evaluating multiple object tracking performance: The clear mot metrics. EURASIP Journal on Image and Video Processing, 246309:1-10. DOI:

Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B. (2016). Simple online and realtime tracking. In 2016 IEEE international conference on image processing (ICIP), pages 3464-3468. IEEE. DOI: 10.48550/arXiv.1602.00763.

Bochinski, E., Eiselein, V., and Sikora, T. (2017). High-speed tracking-by-detection without using image information. In 2017 14th IEEE international conference on advanced video and signal based surveillance (AVSS), pages 1-6. IEEE. DOI: 10.1109/AVSS.2017.8078516.

Djenouri, Y., Belhadi, A., Chen, H.-C., and Lin, J. C.-W. (2022). Intelligent deep fusion network for urban traffic flow anomaly identification. Computer Communications, 189:175-181. DOI: 10.1016/j.comcom.2022.03.021.

Fan, Q., Brown, L., and Smith, J. (2016). A closer look at faster r-cnn for vehicle detection. In 2016 IEEE intelligent vehicles symposium (IV), pages 124-129. IEEE. DOI: 10.1109/IVS.2016.7535375.

Ferrante, G. S., Rodrigues, F. M., Andrade, F. R., Goularte, R., and Meneguette, R. I. (2021). Understanding the state of the art in animal detection and classification using computer vision technologies. In 2021 IEEE International Conference on Big Data (Big Data), pages 3056-3065. Ieee. DOI: 10.1109/BigData52589.2021.9672049.

Ge, D.-y., Yao, X.-f., Xiang, W.-j., and Chen, Y.-p. (2023). Vehicle detection and tracking based on video image processing in intelligent transportation system. Neural Computing and Applications, 35(3):2197-2209. DOI: 10.1007/s00521-022-06979-y.

Gomides, T. S., Robson, E., Meneguette, R. I., de Souza, F. S., and Guidoni, D. L. (2022). Predictive congestion control based on collaborative information sharing for vehicular ad hoc networks. Computer Networks, 211:108955. DOI: 10.1016/j.comnet.2022.108955.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 2961-2969. DOI: 10.1109/ICCV.1995.466933.

Hou, X., Wang, Y., and Chau, L.-P. (2019). Vehicle tracking using deep sort with low confidence track filtering. In 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pages 1-6. IEEE. DOI: 10.1109/AVSS.2019.8909903.

Huk, K. and Kurowski, M. (2022). Innovations and new possibilities of vehicle tracking in transport and forwarding. Wireless Networks, 28(1):481-491. DOI: 10.1007/s11276-021-02623-0.

Li, Y., Wu, J., Bai, X., Yang, X., Tan, X., Li, G., Wen, S., Zhang, H., and Ding, E. (2020). Multi-granularity tracking with modularlized components for unsupervised vehicles anomaly detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 2501-2510. DOI: 10.1109/MVIP49855.2020.9116905.

Liu, B., Han, C., Liu, X., and Li, W. (2023). Vehicle artificial intelligence system based on intelligent image analysis and 5g network. International Journal of Wireless Information Networks, 30(1):86-102. DOI: 10.1007/s10776-021-00535-6.

Lowe, G. (2004). Sift-the scale invariant feature transform. Int. J, 2(91-110):2. Available online [link].

Meneguette, R. I. and Boukerche, A. (2017). A cooperative and adaptive resource scheduling for vehicular cloud. In 2017 IEEE Symposium on Computers and Communications (ISCC), pages 398-403. DOI: 10.1109/ISCC.2017.8024562.

Meneguette, R. I. and Boukerche, A. (2020). Vehicular clouds leveraging mobile urban computing through resource discovery. IEEE Transactions on Intelligent Transportation Systems, 21(6):2640-2647. DOI: 10.1109/TITS.2019.2939249.

Meneguette, R. I., Madeira, E. R. M., and Bittencourt, L. F. (2012). Multi-network packet scheduling based on vehicular ad hoc network applications. In 2012 8th international conference on network and service management (cnsm) and 2012 workshop on systems virtualiztion management (svm), pages 214-218. Available online [link].

Montanari, R. (2016). Detecção e classificação de objetos em imagens para rastreamento de veículos. PhD thesis, Universidade de São Paulo. Available online [link].

Munjal, B., Aftab, A. R., Amin, S., Brandlmaier, M. D., Tombari, F., and Galasso, F. (2020). Joint detection and tracking in videos with identification features. Image and Vision Computing, 100:103932. DOI: 10.1016/j.imavis.2020.103932.

Naphade, M., Chang, M.-C., Sharma, A., Anastasiu, D. C., Jagarlamudi, V., Chakraborty, P., Huang, T., Wang, S., Liu, M.-Y., Chellappa, R., et al. (2018). The 2018 nvidia ai city challenge. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pages 53-60. DOI: 10.1109/CVPRW.2018.00015.

NATIONS., U. (2020). Seventy-fourth session of the united nations general assembly: Improving global road safety. United Nations General Assembly. Available online [link].

of Health, S. D. (2018). Global status report on road safety 2018. WHO. Available online [link].

of Health, S. D. (2023). Global status report on road safety 2018. WHO. Available at: [link].

P, G. L., P, A., Vinayan, G., G, G., M, P., and H, A. S. (2023). Lucas kanade based optical flow for vehicle motion tracking and velocity estimation. In 2023 International Conference on Control, Communication and Computing (ICCC), pages 1-6. DOI: 10.1109/ICCC57789.2023.10165227.

Pawar, K. and Attar, V. (2021). Deep learning based detection and localization of road accidents from traffic surveillance videos. ICT Express. DOI: 10.1016/j.icte.2021.11.004.

Pereira, R. S., Lieira, D. D., Silva, M. A. C. d., Pimenta, A. H. M., da Costa, J. B. D., Rosário, D., Villas, L., and Meneguette, R. I. (2020). Reliable: Resource allocation mechanism for 5g network using mobile edge computing. Sensors, 20(19). DOI: 10.3390/s20195449.

Reynolds, D. A. (2009). Gaussian mixture models. Encyclopedia of biometrics, 741(659-663). Available online [link].

Santos, E. d. (2014). O uso de visão computacional para o controle de um manipulador robótico. B.S. thesis, Universidade Tecnológica Federal do Paraná. Available at: [link].

Shi, J. et al. (1994). Good features to track. In 1994 Proceedings of IEEE conference on computer vision and pattern recognition, pages 593-600. IEEE. DOI: 10.1109/CVPR.1994.323794.

Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2023). Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7464-7475. DOI: 10.48550/arXiv.2207.02696.

Wang, Z., Zheng, L., Liu, Y., Li, Y., and Wang, S. (2020). Towards real-time multi-object tracking. In European Conference on Computer Vision, pages 107-122. Springer. DOI: 10.48550/arXiv.1909.12605.

Wen, L., Du, D., Cai, Z., Lei, Z., Chang, M., Qi, H., Lim, J., Yang, M., and Lyu, S. (2015). DETRAC: A new benchmark and protocol for multi-object detection and tracking. arXiv CoRR, abs/1511.04136. DOI: 10.48550/arXiv.1511.04136.

Yu, C., Yang, J., Jiang, S., Zhang, Y., Li, H., and Du, L. (2022). Eccnet: Efficient chained centre network for real-time multi-category vehicle tracking and vehicle speed estimation. IET Intelligent Transport Systems, 16(11):1489-1503. DOI: 10.1049/itr2.12227.

Zhang, X., Zheng, Y., Zhao, Z., Liu, Y., Blumenstein, M., and Li, J. (2021a). Deep learning detection of anomalous patterns from bus trajectories for traffic insight analysis. Knowledge-Based Systems, 217:106833. DOI: 10.1016/j.knosys.2021.106833.

Zhang, Y., Wang, C., Wang, X., Zeng, W., and Liu, W. (2021b). Fairmot: On the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vision, 129(11):3069–3087. DOI: 10.1007/s11263-021-01513-4.

Zhao, Y. (2021). Good Practices and A Strong Baseline for Traffic Anomaly Detection. DOI: 10.48550/arXiv.2105.03827.




How to Cite

Reyna, A. R. H., Farfán, A. J. F., Filho, G. P. R., Sampaio, S., de Grande, R., Nakamura, L. H. V., & Meneguette, R. I. (2024). MEDAVET: Traffic Vehicle Anomaly Detection Mechanism based on spatial and temporal structures in vehicle traffic. Journal of Internet Services and Applications, 15(1), 25–38.



Research article