Towards a Decentralized Blockchain-Based Resource Monitoring Solution For Distributed Environments




Blockchain, Decentralized Monitoring, Distributed Systems, Distributed Monitoring, Smart Contracts, Hyperledger Fabric


The increasing number of connected users and devices to Cloud, Fog, and Edge environments encouraged the creation of many applications and services in the most varied areas and domains. Such services are highly distributed on top of heterogeneous infrastructures that require real-time monitoring. The monitoring process may be considered a complex task since it requires experienced users and robust cloud-based solutions to support the most varied needs in such scenarios. The main problem relies on the centralization of the monitoring approaches for cloud-centric solutions that represent a central point of failure in end-to-end communication, compromising the application's security and performance in case of high latency or downtime. In this context, blockchain networks enable exciting features such as decentralization, immutability, and traceability with higher security levels. This work is towards a blockchain-based and decentralized resource monitoring solution for distributed environments. The proposed solution integrates blockchain technology to continuously monitor, store, and safely broadcast Operating System performance counters in a highly decentralized fashion. The results demonstrated that a blockchain-based monitoring tool based on Smart Contract is feasible and that it may serve as an entry point for varied solutions for monitoring, security, scheduling, and so on.


Download data is not yet available.


Alcarria, R., Bordel, B., Robles, T., Martín, D., and Manso-Callejo, M.-'A. (2018). A blockchain-based authorization system for trustworthy resource monitoring and trading in smart communities. Sensors, 18(10):3561. DOI: 10.3390/s18103561.

Anagnostopoulos, C. and Kolomvatsos, K. (2019). An intelligent, time-optimized monitoring scheme for edge nodes. Journal of Network and Computer Applications, 148:102458. DOI: 10.1016/j.jnca.2019.102458.

Anjos, J. C. S. d., Matteussi, K. J., Orlandi, F. C., Barbosa, J. L. V., Silva, J. S., Bittencourt, L. F., and Geyer, C. F. R. (2023). A survey on collaborative learning for intelligent autonomous systems. ACM Comput. Surv. Just Accepted. DOI: 10.1145/3625544.

Aste, T., Tasca, P., and Di Matteo, T. (2017). Blockchain technologies: The foreseeable impact on society and industry. Computer, 50(9):18-28. Available online [link].

Bhutta, M. N. M., Khwaja, A. A., Nadeem, A., Ahmad, H. F., Khan, M. K., Hanif, M. A., Song, H., Alshamari, M., and Cao, Y. (2021). A survey on blockchain technology: Evolution, architecture and security. IEEE Access, 9:61048-61073. DOI: 10.1109/ACCESS.2021.3072849.

Cash, M. and Bassiouni, M. (2018). Two-tier permission-ed and permission-less blockchain for secure data sharing. In 2018 IEEE International Conference on Smart Cloud (SmartCloud), pages 138-144. DOI: 10.1109/SmartCloud.2018.00031.

Chih-Chen Wang, Yung-Mu Chen, Cheng-Hao Weng, and Tein-Yaw Chung (2006). An overlay resource monitor system. In 2006 8th International Conference Advanced Communication Technology, volume 3, pages 5 pp.-1879. DOI: 10.1109/ICACT.2006.206358.

De Souza, P. R. R., Matteussi, K. J., Veith, A. D. S., Zanchetta, B. F., Leithardt, V. R. Q., Murciego, A. L., De Freitas, E. P., Anjos, J. C. S. D., and Geyer, C. F. R. (2020). Boosting big data streaming applications in clouds with burstflow. IEEE Access, 8:219124-219136. DOI: 10.1109/ACCESS.2020.3042739.

Deng, X., Li, K., Wang, Z., Li, J., and Luo, Z. (2022). A survey of blockchain consensus algorithms. In 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS), pages 188-192. DOI: 10.1109/ICBCTIS55569.2022.00050.

Dos Anjos, J. C., Gross, J. L., Matteussi, K. J., González, G. V., Leithardt, V. R., and Geyer, C. F. (2021a). An algorithm to minimize energy consumption and elapsed time for iot workloads in a hybrid architecture. Sensors, 21(9):2914. DOI: 10.3390/s21092914.

Dos Anjos, J. C. S., Gross, J. L. G., Matteussi, K. J., González, G. V., Leithardt, V. R. Q., and Geyer, C. F. R. (2021b). An algorithm to minimize energy consumption and elapsed time for iot workloads in a hybrid architecture. Sensors, 21(9). DOI: 10.3390/s21092914.

Farina, M. D., dos Anjos, J. C., and de Freitas, E. P. (2023). Real-time auto calibration for heterogeneous wireless sensor networks. Journal of Internet Services and Applications, 14(1):1-9. DOI: 10.5753/jisa.2023.2739.

Framingham, M. (2019). The growth in connected iot devices is expected to generate 79.4zb of data in 2025. Available online [link].

Golosova, J. and Romanovs, A. (2018). The advantages and disadvantages of the blockchain technology. In 2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), pages 1-6. DOI: 10.1109/AIEEE.2018.8592253.

Gu, W., Li, J., and Tang, Z. (2021). A survey on consensus mechanisms for blockchain technology. In 2021 International Conference on Artificial Intelligence, Big Data and Algorithms (CAIBDA), pages 46-49. DOI: 10.1109/CAIBDA53561.2021.00017.

GUPTA, M. (2017). Blockchain IBM Limited Edition. John Wiley & Sons, Inc. Book.

Gupta, M. K., Dwivedi, R. K., Sharma, A., Farooq, M., and S, B. R. (2023). Performance evaluation of blockchain platforms. In 2023 International Conference on IoT, Communication and Automation Technology (ICICAT), pages 1-6. DOI: 10.1109/ICICAT57735.2023.10263700.

Haber, S. and Stornetta, W. S. (1991). How to time-stamp a digital document. Journal of Cryptology, 3. DOI: 10.1007/BF00196791.

Hauser, C. B. and Wesner, S. (2018). Reviewing cloud monitoring: Towards cloud resource profiling. In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pages 678-685. DOI: 10.1109/CLOUD.2018.00093.

Helebrandt, P., Bellus, M., Ries, M., Kotuliak, I., and Khilenko, V. (2018). Blockchain adoption for monitoring and management of enterprise networks. In 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pages 1221-1225. IEEE. DOI: 10.1109/IEMCON.2018.8614960.

Hyperledger (2022a). Hyperledger caliper project. Available at: [link].

Hyperledger (2022b). Hyperledger whitepaperpaper metrics. Available at: [link].

Hyperledger (2023). Hyperledger fabric docs. Available online [link]Accessed: 2023-11-01.

Ismail, L., Hameed, H., AlShamsi, M., AlHammadi, M., and AlDhanhani, N. (2019). Towards a blockchain deployment at uae university: Performance evaluation and blockchain taxonomy. In Proceedings of the 2019 International Conference on Blockchain Technology, ICBCT 2019, page 30–38, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3320154.3320156.

Košt’ál, K., Helebrandt, P., Belluš, M., Ries, M., and Kotuliak, I. (2019). Management and monitoring of iot devices using blockchain. Sensors, 19(4):856. DOI: 10.3390/s19040856.

Liang, X., Zhao, Y., Zhang, D., Wu, J., and Zhao, Y. (2021). Sbhps: A high performance consensus algorithm for blockchain. In 2021 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), pages 6-11. DOI: 10.1109/HPBDIS53214.2021.9658348.

Matteussi, K. J., dos Anjos, J. C. S., Leithardt, V. R. Q., and Geyer, C. F. R. (2022). Performance evaluation analysis of spark streaming backpressure for data-intensive pipelines. Sensors, 22(13). DOI: 10.3390/s22134756.

Melnik, E. and Safronenkova, I. (2023). Ontological approach to the organization of computing in distributed monitoring systems with mobile components based on a distributed ledger. In Interactive Collaborative Robotics: 8th International Conference, ICR 2023, Baku, Azerbaijan, October 25–29, 2023, Proceedings, page 300–310, Berlin, Heidelberg. Springer-Verlag. DOI: 10.1007/978-3-031-43111-1_27.

Moschou, K., Theodouli, A., Terzi, S., Votis, K., Tzovaras, D., Karamitros, D., and Diamantopoulos, S. (2020). Performance evaluation of different hyperledger sawtooth transaction processors for blockchain log storage with varying workloads. In 2020 IEEE International Conference on Blockchain (Blockchain), pages 476-481. DOI: 10.1109/Blockchain50366.2020.00069.

Salama, R., Al-Turjman, F., Altrjman, C., Kumar, S., and Chaudhary, P. (2023). A comprehensive survey of blockchain-powered cybersecurity- a survey. In 2023 International Conference on Computational Intelligence, Communication Technology and Networking (CICTN), pages 774-777. DOI: 10.1109/CICTN57981.2023.10141282.

Samaniego, M. and Deters, R. (2017). Internet of smart things - iost: Using blockchain and clips to make things autonomous. In 2017 IEEE International Conference on Cognitive Computing (ICCC), pages 9-16. DOI: 10.1109/IEEE.ICCC.2017.9.

Sharma, P. K., Chen, M., and Park, J. H. (2018). A software defined fog node based distributed blockchain cloud architecture for iot. IEEE Access, 6:115-124. DOI: 10.1109/ACCESS.2017.2757955.

Ward, J. and Barker, A. (2014). Observing the clouds: a survey and taxonomy of cloud monitoring. Journal of Cloud Computing, 3. DOI: 10.1186/s13677-014-0024-2.

Xu, C., Wang, K., and Guo, M. (2017). Intelligent resource management in blockchain-based cloud datacenters. IEEE Cloud Computing, 4(6):50-59. DOI: 10.1109/MCC.2018.1081060.

Yahaya, S. W., Lotfi, A., Mahmud, M., and Adama, D. A. (2021). A centralised cloud-based monitoring system for older adults in a community. In 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 2439-2443. DOI: 10.1109/SMC52423.2021.9659087.

Yang, Y., Liu, M., Zhou, Q., Zhou, H., and Wang, R. (2019). A blockchain based data monitoring and sharing approach for smart grids. IEEE Access, pages 1-1. DOI: 10.1109/ACCESS.2019.2952687.

Zhang, L., Li, Y., Qiu, B., Zhang, J., and Liang, W. (2021). Design of communication power centralized remote monitoring system based on big data technology. pages 46-49. DOI: 10.1109/ECIE52353.2021.00017.

Zou, Y., Peng, T., Wang, G., Luo, E., and Xiong, J. (2023). Blockchain-assisted multi-keyword fuzzy search encryption for secure data sharing. Journal of Systems Architecture, 144:102984. DOI: 10.1016/j.sysarc.2023.102984.




How to Cite

Dos Passos, R. B., Matteussi, K. J., Dos Anjos, J. C. S., & Geyer, C. F. R. (2024). Towards a Decentralized Blockchain-Based Resource Monitoring Solution For Distributed Environments. Journal of Internet Services and Applications, 15(1), 1–13.



Research article