CANCEL: A feature engineering method for churn prediction in a privacy-preserving context
DOI:
https://doi.org/10.5753/jisa.2024.3874Keywords:
Churn Prediction, Privacy Preservation, Edge Computing, Mobile App UsageAbstract
This paper proposes a solution for predicting churn with privacy preservation by using edge computing. With the increasing popularity of smartphones, users are becoming more demanding regarding mobile app usage. Installing and removing an app are frequent routines and the ease of uninstallation can facilitate churn, which is customer abandonment. Companies seek to minimize churn since the cost of acquiring new customers is much higher than retaining current ones. To predict possible abandonment, organizations are increasingly adopting artificial intelligence (AI) techniques. Nevertheless, customers are becoming more concerned about their data privacy. In this context, we propose a technique called CANCEL, which creates attributes based on users' temporal behavior, with edge computing to predict churn locally, without transmitting users' data. The paper presents the evaluation of CANCEL in comparison to baseline solutions, the development of a mobile app integrated with the proposed method and deployed as an edge computing solution.
Downloads
References
Bertens, P., Guitart, A., and Periáñez, Á. (2017). Games and big data: A scalable multi-dimensional churn prediction model. In 2017 IEEE Conference on Computational Intelligence and Games (CIG), pages 33-36. DOI: 10.1109/CIG.2017.8080412.
Bharathi S, V., Pramod, D., and Raman, R. (2022). An ensemble model for predicting retail banking churn in the youth segment of customers. Data, 7(5). DOI: 10.3390/data7050061.
Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., Ramage, D., Segal, A., and Seth, K. (2017). Practical secure aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS '17, page 1175–1191, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3133956.3133982.
Capanema, C. G. S., Silva, F. A., Silva, T. R. B., and Loureiro, A. A. (2021). Dcluster: Geospatial analytics with poi identification. Journal of Information and Data Management, 12(2). DOI: 10.5753/jidm.2021.1952.
Coimbra, G. T., Santos, V. H. R., Maia, P. A., Silva, L. O., Souza, R. P., Silva, F. A., and Silva, T. R. B. (2023). Previsão de churn na borda: uma solução com atributos temporais e preservação de privacidade. In Anais do XV Simpósio Brasileiro de Computação Ubíqua e Pervasiva, pages 121-130. SBC. Available online [link].
Forbes Insights (2011). Bringing 20/20 foresight to marketing. Available online [link].
Fox, G., van der Werff, L., Rosati, P., Takako Endo, P., and Lynn, T. (2022). Examining the determinants of acceptance and use of mobile contact tracing applications in brazil: An extended privacy calculus perspective. Journal of the Association for Information Science and Technology, 73(7):944-967. DOI: 10.1002/asi.24602.
Gupta, S., Lehmann, D. R., and Stuart, J. A. (2004). Valuing customers. Journal of marketing research, 41(1):7-18. DOI: 10.1509/jmkr.41.1.7.25084.
Haddadi, S. J., Mohammadi, M. O., Bahrami, M., Khoeini, E., Beygi, M., and Khoshkar, M. H. (2022). Customer churn prediction in the iranian banking sector. In 2022 International Conference on Applied Artificial Intelligence (ICAPAI), pages 1-6. DOI: 10.1109/ICAPAI55158.2022.9801574.
Jagad, C., Jain, C., Thakore, D., Naik, O., and Sawant, V. (2023). Federated Machine Learning-Based Bank Customer Churn Prediction, chapter 6. CRC Press. DOI: 10.1201/9781003390220-6.
Jain, H., Khunteta, A., and Srivastava, S. (2020). Churn prediction in telecommunication using logistic regression and logit boost. Procedia Computer Science, 167:101-112. DOI: 10.1016/j.procs.2020.03.187.
Kavyarshitha, Y., Sandhya, V., and Deepika, M. (2022). Churn prediction in banking using ml with ann. In 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), pages 1191-1198. DOI: 10.1109/ICICCS53718.2022.9788456.
Kilimci, Z. H. (2022). The effectiveness of homogeneous classifier ensembles on customer churn prediction in banking, insurance, and telecommunication sectors. International Journal of Computational and Experimental Science and Engineering, 8(3):77-84. DOI: 10.22399/ijcesen.1163929.
Li, J., Lu, H., Wang, C., Ma, W., Zhang, M., Zhao, X., Qi, W., Liu, Y., and Ma, S. (2021). A difficulty-aware framework for churn prediction and intervention in games. KDD '21, page 943–952, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3447548.3467277.
Lin, J., Keogh, E., Lonardi, S., and Chiu, B. (2003). A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, pages 2-11. DOI: 10.1145/882082.882086.
Maia, W., Silva, F., and Silva, T. (2020). Um estudo sobre a relação entre smartphones e dados demográficos. In Anais do IV Workshop de Computação Urbana, pages 302-315, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/courb.2020.12371.
Mammen, P. M. (2021). Federated learning: Opportunities and challenges. arXiv preprint arXiv:2101.05428. DOI: 10.48550/arXiv.2101.05428.
Milovšević, M., Živić, N., and Andjelković, I. (2017). Early churn prediction with personalized targeting in mobile social games. Expert Systems with Applications, 83:326-332. DOI: 10.1016/j.eswa.2017.04.056.
Moré, J. J. (2006). The levenberg-marquardt algorithm: implementation and theory. In Numerical Analysis: Proceedings of the Biennial Conference Held at Dundee, June 28-July 1, 1977, pages 105-116. Springer. DOI: 10.1007/BFb0067700.
Rahman, M. and Kumar, V. (2020). Machine learning based customer churn prediction in banking. In 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), pages 1196-1201. DOI: 10.1109/ICECA49313.2020.9297529.
Rajamohamed, R. and Manokaran, J. (2018). Improved credit card churn prediction based on rough clustering and supervised learning techniques. Cluster Computing, 21(1):65-77. DOI: 10.1007/s10586-017-0933-1.
Schlackl, F., Link, N., and Hoehle, H. (2022). Antecedents and consequences of data breaches: A systematic review. Information & Management, 59(4):103638. DOI: 10.1016/j.im.2022.103638.
Shokri, R. and Shmatikov, V. (2015). Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS '15, page 1310–1321, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/2810103.2813687.
Tan, F., Wei, Z., He, J., Wu, X., Peng, B., Liu, H., and Yan, Z. (2018). A blended deep learning approach for predicting user intended actions. In 2018 IEEE International Conference on Data Mining (ICDM), pages 487-496. DOI: 10.1109/ICDM.2018.00064.
Ueda, K. and Yamashita, N. (2010). On a global complexity bound of the levenberg-marquardt method. Journal of optimization theory and applications, 147:443-453. DOI: 10.1007/s10957-010-9731-0.
Verhelst, T. (2018). Churn prediction and causal analysis on telecom customer data. Available online [link].
Wang, A. X., Chukova, S. S., and Nguyen, B. P. (2023). Data-centric ai to improve churn prediction with synthetic data. In 2023 3rd International Conference on Computer, Control and Robotics (ICCCR), pages 409-413. DOI: 10.1109/ICCCR56747.2023.10194217.
Xiong, A., You, Y., and Long, L. (2019). L-rbf: A customer churn prediction model based on lasso + rbf. In 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages 621-626. DOI: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00121.
Yang, C., Shi, X., Jie, L., and Han, J. (2018). I know you'll be back: Interpretable new user clustering and churn prediction on a mobile social application. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD '18, page 914–922, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3219819.3219821.
Zaky, A., Ouf, S., and Roushdy, M. (2022). Predicting banking customer churn based on artificial neural network. In 2022 5th International Conference on Computing and Informatics (ICCI), pages 132-139. DOI: 10.1109/ICCI54321.2022.9756072.
Zhou, J., Yan, J.-f., Yang, L., Wang, M., and Xia, P. (2019). Customer churn prediction model based on lstm and cnn in music streaming. DEStech Transactions on Engineering and Technology Research, 5. Available online [link].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Internet Services and Applications
This work is licensed under a Creative Commons Attribution 4.0 International License.