Micro-Chain: A Cluster Architecture for Managing NDN Microservices

Authors

DOI:

https://doi.org/10.5753/jisa.2024.3965

Keywords:

Information-Centric Networking, Network Functions Virtualization, Microservice Architecture, Node Cluster, Network Management

Abstract

Network Functions Virtualization (NFV) and Information-Centric Networking (ICN) are promising networking paradigms for the future of the Internet. Concurrently, microservice architecture offers an attractive alternative to monolithic architecture for software development. This work addresses a scenario composed of these concepts, where an ICN network must be deployed and managed using ICN microservices. In this scenario, ICN microservices must be created, connected, configured, and monitored at runtime, which is not trivial. To address these challenges, this work proposes Micro-Chain, an architecture for deploying, scaling, and linking ICN microservices. The architecture consists of four modules, relationships between them, and core operations. A Micro-Chain implementation is presented as proof of concept, which has a threshold-based scaling process and a placement method to minimize the number of hops for an ICN microservice chain. The evaluation assesses a scale-on-demand scenario in a cluster with three nodes. The results demonstrate that 1) the developed solution can scale on demand, 2) the communication overhead is 0.632%, and 3) the placement of microservices affects network performance.

Downloads

Download data is not yet available.

References

Abdollahi Vayghan, L., Saied, M. A., Toeroe, M., and Khendek, F. (2018). Deploying microservice based applications with kubernetes: Experiments and lessons learned. In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pages 970-973. DOI: 10.1109/CLOUD.2018.00148.

Aldaoud, M., Al-Abri, D., Awadalla, M., and Kausar, F. (2023). Leveraging icn and sdn for future internet architecture: A survey. Electronics, 12(7):1723. DOI: 10.3390/electronics12071723.

Alencar, D., Both, C., Antunes, R., Oliveira, H., Cerqueira, E., and Rosário, D. (2022). Dynamic microservice allocation for virtual reality distribution with qoe support. IEEE Transactions on Network and Service Management, 19(1):729-740. DOI: 10.1109/TNSM.2021.3076922.

Cerny, T., Abdelfattah, A. S., Bushong, V., Al Maruf, A., and Taibi, D. (2022). Microservice architecture reconstruction and visualization techniques: A review. In Proceedings of the IEEE International Conference on Service-Oriented System Engineering (SOSE 22), pages 39-48. DOI: 10.1109/SOSE55356.2022.00011.

Chowdhury, S. R., Salahuddin, M. A., Limam, N., and Boutaba, R. (2019). Re-architecting nfv ecosystem with microservices: State of the art and research challenges. IEEE Network, 33(3):168-176. DOI: 10.1109/MNET.2019.1800082.

Cziva, R. and Pezaros, D. P. (2017). Container network functions: Bringing nfv to the network edge. IEEE Communications Magazine, 55(6):24-31. DOI: 10.1109/MCOM.2017.1601039.

da Cruz, O. A. R., Pereira, C. E., da Silva, A. S., da Costa, J. P. J., Mendes, P., and de Freitas, E. P. (2024a). Dynamic deployment and control of an ndn network for military multi-uavs based surveillance applications. In 2024 International Conference on Unmanned Aircraft Systems (ICUAS), pages 1018-1025. DOI: 10.1109/ICUAS60882.2024.10556830.

da Cruz, O. A. R., Pereira, C. E., De Freitas, E. P., Mendes, P., do Rosário, D. L., Cerqueira, E. C., da Silva, A. A. S., and dos Anjos, J. C. S. (2024b). Micro-chain: Towards the use of ndn microservices. In Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing, pages 1099-1103. DOI: 10.1145/3605098.3636172.

Ding, Z., Wang, S., and Jiang, C. (2023). Kubernetes-oriented microservice placement with dynamic resource allocation. IEEE Transactions on Cloud Computing, 11(2):1777-1793. DOI: 10.1109/TCC.2022.3161900.

Dulal, S., Ali, N., Thieme, A. R., Yu, T., Liu, S., Regmi, S., Zhang, L., and Wang, L. (2022). Building a secure mhealth data sharing infrastructure over ndn. In Proceedings of the 9th ACM Conference on Information-Centric Networking, pages 114-124. DOI: 10.1145/3517212.3558091.

Dynerowicz, S. and Mendes, P. (2017). Named-data networking in opportunistic networks. In Proceedings of the ACM Information Centric Networking Conference. DOI: 10.1145/3125719.3132107.

ETSI (2014). Network Functions Virtualization (NFV); Architectural Framework. Available online [link].

Fang, P. and Wolf, T. (2023). Implementing virtual network functions in named data networking and web 3.0. In Proceedings of the International Conference on Computing, Networking and Communications (ICNC 23), pages 117-123. DOI: 10.1109/ICNC57223.2023.10074018.

Ghorab, A. and St-Hilaire, M. (2022). Sdn-based service function chaining framework for kubernetes cluster using ovs. In Proceedings of the 32nd International Telecommunication Networks and Applications Conference (ITNAC 22), pages 347-352. DOI: 0.1109/ITNAC55475.2022.9998380.

Kalafatidis, S., Demiroglou, V., Mamatas, L., and Tsaoussidis, V. (2022). Experimenting with an sdn-based ndn deployment over wireless mesh networks. In Proceedings of the IEEE International Conference on Computer Communications Workshops (INFOCOM WKSHPS 22), pages 1-6. DOI: 10.1109/INFOCOMWKSHPS54753.2022.9798224.

Kaur, K., Mangat, V., and Kumar, K. (2022). A review on virtualized infrastructure managers with management and orchestration features in nfv architecture. Computer Networks, 217:109281. DOI: 10.1016/j.comnet.2022.109281.

Khalid, A., Rehman, R. A., and Burhan, M. (2023). Cbilem: A novel energy aware mobility handling protocol for sdn based ndn-manets. Ad Hoc Networks, 140:103049. DOI: 10.1016/j.adhoc.2022.103049.

Lema, J. C., Neto, A., Silva, F., and Kofuji, S. (2019). Network function virtualization in content-centric networks. In Anais do X Workshop de Pesquisa Experimental da Internet do Futuro, pages 31-37, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/wpeif.2019.7696.

Mai, H. L., Aouadj, M., Doyen, G., Mallouli, W., de Oca, E. M., and Festor, O. (2019). Toward content-oriented orchestration: Sdn and nfv as enabling technologies for ndn. In 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pages 594-598. Available online [link].

Manias, D. M. and Shami, A. (2021). The need for advanced intelligence in nfv management and orchestration. IEEE Network, 35(1):365-371. DOI: 10.1109/MNET.011.2000373.

Marchal, X., Cholez, T., and Festor, O. (2018). $mu$ ndn: an orchestrated microservice architecture for named data networking. In Proceedings of the 5th ACM Conference on Information-Centric Networking, pages 12-23. DOI: 10.1145/3267955.3267961.

Nekovee, M., Sharma, S., Uniyal, N., Nag, A., Nejabati, R., and Simeonidou, D. (2020). Towards ai-enabled microservice architecture for network function virtualization. In 2020 IEEE Eighth International Conference on Communications and Networking (ComNet), pages 1-8. DOI: 10.1109/ComNet47917.2020.9306098.

Pallewatta, S., Kostakos, V., and Buyya, R. (2022). Qos-aware placement of microservices-based iot applications in fog computing environments. Future Generation Computer Systems, 131:121-136. DOI: 10.1016/j.future.2022.01.012.

Qi, J. and Wang, R. (2023). R2: A distributed remote function execution mechanism with built-in metadata. IEEE/ACM Transactions on Networking, 31(2):710-723. DOI: 10.1109/TNET.2022.3198467.

Rossi, F., Cardellini, V., and Presti, F. L. (2020). Hierarchical scaling of microservices in kubernetes. In 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), pages 28-37. DOI: 10.1109/ACSOS49614.2020.00023.

Singh, V. P. and Ujjwal, R. (2020). A walkthrough of name data networking: Architecture, functionalities, operations and open issues. Sustainable Computing: Informatics and Systems, 28:100419. DOI: 10.1016/j.suscom.2020.100419.

Velusamy, G. and Lent, R. (2022). Ai-based ground station-as-a-service for optimal cost-latency satellite data downloading. In GLOBECOM 2022 - 2022 IEEE Global Communications Conference, pages 2363-2368. DOI: 10.1109/GLOBECOM48099.2022.10001260.

Wang, X., Wang, X., and Li, Y. (2021). Ndn-based iot with edge computing. Future Generation Computer Systems, 115:397-405. DOI: 10.1016/j.future.2020.09.018.

Yilma, G. M., Yousaf, Z. F., Sciancalepore, V., and Costa-Perez, X. (2020). Benchmarking open source nfv mano systems: Osm and onap. Computer communications, 161:86-98. DOI: 10.1016/j.comcom.2020.07.013.

Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., claffy, k., Crowley, P., Papadopoulos, C., Wang, L., and Zhang, B. (2014). Named data networking. SIGCOMM Comput. Commun. Rev., 44(3). DOI: 10.1145/2656877.2656887.

Downloads

Published

2024-10-03

How to Cite

da Cruz, O. A. R., da Silva, A. A. S., Mendes, P. M., do Rosário, D. L., Cerqueira, E. C., dos Anjos, J. C. S., Pereira, C. E., & de Freitas, E. P. (2024). Micro-Chain: A Cluster Architecture for Managing NDN Microservices. Journal of Internet Services and Applications, 15(1), 424–437. https://doi.org/10.5753/jisa.2024.3965

Issue

Section

Research article