Data quantitative and qualitative study in Brazilian Open Data Portals
DOI:
https://doi.org/10.5753/jisa.2024.3980Keywords:
Open Data, Transparency, Open Knowledge, Ckan, Open InnovationAbstract
Open data is a concept attributed to sharing data with anyone, and in addition to being accessed, this data can be manipulated and redistributed. The optimized and interchangeable use of open data can lead to so-called open innovation, which can be understood as the crossing of information between different organizations, to generate more complete and innovative systems and solutions. Despite the clear benefit for society, there are major challenges highlighted in different studies for its implementation, such as the lack of promotion of open data, the lack of standardization in data availability, as well as the lack of complete and updated information, among others. This study uses an available reproducible methodology, to show, through different dimensions, the open data panorama in Brazil, which indicates that there are many opportunities for improvement, in categories such as standardization of data exposure and its licenses, update rate, and, due to the absence of some data, the lack of promotion of open data.
Downloads
References
(2023). Godi methodology. Available at: [link]. Accessed on: 2023-10-10.
Adje, K. D. C., Letaifa, A. B., Haddad, M., and Habachi, O. (2023). Smart city based on open data: A survey. IEEE Access, 11:56726-56748. DOI: 10.1109/ACCESS.2023.3283436.
AnacondaOrg (2023). Package categories. Available at: [link]. Accessed on: 2023-10-10.
Arbex, A. M. G. (2020). Como os dados abertos podem revolucionar as cidades. Available online [link].
Barbosa, L., Pham, K., Silva, C., Vieira, M. R., and Freire, J. (2014). Structured open urban data: Understanding the landscape. Big Data, 2(3):144-154. DOI: 10.1089/big.2014.0020.
Chen, L. and Jakubowicz, J. (2015). Inferring bike trip patterns from bike sharing system open data. In 2015 IEEE International Conference on Big Data (Big Data), pages 2898-2900. DOI: 10.1109/BigData.2015.7364115.
CKAN (2023). Available online [link]. Accessed on: 2023-10-10.
DESA, U. (2018). 68% of the world population projected to live in urban areas by 2050. Available online [link].
Domingue, J. et al. (2011). The Future Internet, volume 1. Springer. BOOK.
Federal, G. (2023a). "infraestrutura nacional de dados abertos". Available online [link]. Accessed on: 2023-09-12.
Federal, G. (2023b). "política de dados abertos". Available online [link]. Accessed on: 2023-09-12.
Foundation, O. K. (2023). What is open? [link].
Gharawi, M. A., Al Hamed, K. M., and Alneami, H. H. (2019). Compliance with open data principles: A longitudinal content analysis of the saudi’s national open data platform in 2016 and 2018. In 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT), pages 80-87. DOI: 10.1109/INFOCT.2019.8711298.
Guo, G., Khalil, J. M., Yan, D., and Sisiopiku, V. (2019). Realistic transport simulation: Tackling the small data challenge with open data. In 2019 IEEE International Conference on Big Data (Big Data), pages 4512-4519. DOI: 10.1109/BigData47090.2019.9006457.
Index, O. D. (2018). Open data index. Available online [link].
Janssen, M., Charalabidis, Y., and Zuiderwijk, A. (2012). Benefits, adoption barriers and myths of open data and open government. Information Systems Management, 29(4):258-268. DOI: 10.1080/10580530.2012.716740.
JupyterOrg (2023). Available online [link]. Accessed on: 2023-10-10.
JupyterOrg Community (2023). Content community. Available online [link]. Accessed on: 2023-10-10.
Kirstein, F. and Bohlen, V. (2022). IDS as a Foundation for Open Data Ecosystems, pages 225-240. Springer International Publishing, Cham. DOI: 10.1007/978-3-030-93975-5_14.
Machado, J. S., Farah, J. C., Gillet, D., and Rodríguez-Triana, M. J. (2019). Towards open data in digital education platforms. In 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), volume 2161-377X, pages 209-211. DOI: 10.1109/ICALT.2019.00048.
MatplotlibOrg (2023). Visualization with python. Available online [link]. Accessed on: 2023-10-10.
McDermott, P. (2010). Building open government. Government Information Quarterly, 27(4):401-413. Special Issue: Open/Transparent Government. DOI: 10.1016/j.giq.2010.07.002.
Nogueras-Iso, J., Lacasta, J., Ureña-Cámara, M. A., and Ariza-López, F. J. (2021). Quality of metadata in open data portals. IEEE Access, 9:60364-60382. DOI: 10.1109/ACCESS.2021.3073455.
PandasOrg (2023). Python data analysis library. Available online [link]. Accessed on: 2023-10-10.
Pareja-Lora, A., Blume, M., Lust, B. C., Chiarcos, C., Chiarcos, C., Pareja-Lora, A., Langendoen, D. T., Ide, N., Moran, S., Warburton, K., Wright, S. E., Trippel, T., Zinn, C., Simons, G., Bird, S., Ratner, N. B., MacWhinney, B., Blume, M., Flynn, S., Foley, C., Caldwell, T., Reidy, J., Masci, J., Lust, B. C., Barrière, I., Dye, C., Kang, C., and Rieger, O. (2019). Development of linguistic linked open data resources for collaborative data-intensive research in the language sciences: An introduction. In Development of Linguistic Linked Open Data Resources for Collaborative Data-Intensive Research in the Language Sciences, pages ix-xxi. DOI: 10.7551/mitpress/10990.001.0001.
PythonOrg (2023). Content community. Available online [link]. Accessed on: 2023-10-10.
Sokolovska, A. and Kocarev, L. (2018). Integrating technical and legal concepts of privacy. IEEE Access, 6:26543-26557. DOI: 10.1109/ACCESS.2018.2836184.
Zhang, C. and Yue, P. (2016). Spatial grid based open government data mining. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pages 192-193. DOI: 10.1109/IGARSS.2016.7729041.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Internet Services and Applications
This work is licensed under a Creative Commons Attribution 4.0 International License.