The Impact of Federated Learning on Urban Computing

Authors

DOI:

https://doi.org/10.5753/jisa.2024.4006

Keywords:

Urban Computing, Federated Learning, Artificial Intelligence, Internet of Things

Abstract

In an era defined by rapid urbanization and technological advancements, this article provides a comprehensive examination of the transformative influence of Federated Learning (FL) on Urban Computing (UC), addressing key advancements, challenges, and contributions to the existing literature. By integrating FL into urban environments, this study explores its potential to revolutionize data processing, enhance privacy, and optimize urban applications. We delineate the benefits and challenges of FL implementation, offering insights into its effectiveness in domains such as transportation, healthcare, and infrastructure. Additionally, we highlight persistent challenges including scalability, bias mitigation, and ethical considerations. By pointing towards promising future directions such as advancements in edge computing, ethical transparency, and continual learning models, we underscore opportunities to enhance further the positive impact of FL in shaping more adaptable urban environments.

Downloads

Download data is not yet available.

References

Abdulla, N., Demirci, M., and Ozdemir, S. (2024). Smart meter-based energy consumption forecasting for smart cities using adaptive federated learning. Sustainable Energy, Grids and Networks, 38:101342. DOI: 10.1016/j.segan.2024.101342.

Abimannan, S., El-Alfy, E.-S. M., Hussain, S., Chang, Y.-S., Shukla, S., Satheesh, D., and Breslin, J. G. (2023). Towards federated learning and multi-access edge computing for air quality monitoring: Literature review and assessment. Sustainability, 15(18):13951. DOI: 10.3390/su151813951.

Abou El Houda, Z., Hafid, A. S., and Khoukhi, L. (2023). Mitfed: A privacy preserving collaborative network attack mitigation framework based on federated learning using sdn and blockchain. IEEE Transactions on Network Science and Engineering. DOI: 10.1109/TNSE.2023.3237367.

Agarwal, P., Sharma, S., and Matta, P. (2023). Federated learning in intelligent traffic management system. In 2023 Winter Summit on Smart Computing and Networks (WiSSCoN), pages 1-6. IEEE. DOI: 10.1109/WiSSCoN56857.2023.10133864.

Ahmed, L., Ahmad, K., Said, N., Qolomany, B., Qadir, J., and Al-Fuqaha, A. (2020). Active learning based federated learning for waste and natural disaster image classification. IEEE Access, 8:208518-208531. DOI: 10.1109/ACCESS.2020.3038676.

Ahmed, U., Lin, J. C.-W., and Srivastava, G. (2023). Semisupervised federated learning for temporal news hyperpatism detection. IEEE Transactions on Computational Social Systems. DOI: 10.1109/TCSS.2023.3247602.

Alessandretti, L., Natera Orozco, L. G., Saberi, M., Szell, M., and Battiston, F. (2023). Multimodal urban mobility and multilayer transport networks. Environment and Planning B: Urban Analytics and City Science, 50(8):2038-2070. DOI: 10.48550/arXiv.2111.02152.

Allam, Z., Bibri, S. E., Jones, D. S., Chabaud, D., and Moreno, C. (2022). Unpacking the ‘15-minute city’via 6g, iot, and digital twins: Towards a new narrative for increasing urban efficiency, resilience, and sustainability. Sensors, 22(4):1369. DOI: 10.3390/s22041369.

Almanifi, O. R. A., Chow, C.-O., Tham, M.-L., Chuah, J. H., and Kanesan, J. (2023). Communication and computation efficiency in federated learning: A survey. Internet of Things, 22:100742. DOI: 10.1016/j.iot.2023.100742.

Antunes, R. S., André da Costa, C., Küderle, A., Yari, I. A., and Eskofier, B. (2022). Federated learning for healthcare: Systematic review and architecture proposal. ACM Trans. Intell. Syst. Technol., 13(4). DOI: 10.1145/3501813.

Arfat, Y., Mittone, G., Colonnelli, I., D'Ascenzo, F., Esposito, R., and Aldinucci, M. (2023). Pooling critical datasets with federated learning. In 2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pages 329-337. IEEE. DOI: 10.1109/PDP59025.2023.00057.

Asad, M., Shaukat, S., Javanmardi, E., Nakazato, J., and Tsukada, M. (2023). A comprehensive survey on privacy-preserving techniques in federated recommendation systems. Applied Sciences, 13(10):6201. DOI: 10.3390/app13106201.

Badu-Marfo, G., Farooq, B., Mensah, D. O., and Al Mallah, R. (2023). An ensemble federated learning framework for privacy-by-design mobility behaviour inference in smart cities. Sustainable Cities and Society, 97:104703. DOI: 10.1016/j.scs.2023.104703.

Banabilah, S., Aloqaily, M., Alsayed, E., Malik, N., and Jararweh, Y. (2022). Federated learning review: Fundamentals, enabling technologies, and future applications. Information processing & management, 59(6):103061. DOI: 10.1016/j.ipm.2022.103061.

Bandyopadhyay, M., Rout, M., and Satapathy, S. C. (2021). Machine Learning Approaches for Urban Computing. Springer. DOI: 10.1007/978-981-16-0935-0.

Barcelona, C. (2023). Check barcelona. Available online [link] Accessed: 2023-12-13.

Belk, R. (2021). Ethical issues in service robotics and artificial intelligence. The Service Industries Journal, 41(13-14):860-876. DOI: 10.1080/02642069.2020.1727892.

Belli, L., Cilfone, A., Davoli, L., Ferrari, G., Adorni, P., Di Nocera, F., Dall’Olio, A., Pellegrini, C., Mordacci, M., and Bertolotti, E. (2020). Iot-enabled smart sustainable cities: Challenges and approaches. Smart Cities, 3(3):1039-1071. DOI: 10.3390/smartcities3030052.

Beltrán, E. T. M., Pérez, M. Q., Sánchez, P. M. S., Bernal, S. L., Bovet, G., Pérez, M. G., Pérez, G. M., and Celdrán, A. H. (2023). Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges. IEEE Communications Surveys & Tutorials. DOI: 10.48550/arXiv.2211.08413.

Bharti, S. and Mcgibney, A. (2021). Privacy-aware resource sharing in cross-device federated model training for collaborative predictive maintenance. IEEE Access, 9:120367-120379. DOI: 10.1109/ACCESS.2021.3108839.

Bian, J., Shen, C., and Xu, J. (2023). Joint client assignment and uav route planning for indirect-communication federated learning. arXiv preprint arXiv:2304.10744. DOI: 10.48550/arXiv.2304.10744.

Bibri, S. E. and Allam, Z. (2022). The metaverse as a virtual form of data-driven smart cities: The ethics of the hyper-connectivity, datafication, algorithmization, and platformization of urban society. Computational Urban Science, 2(1):22. DOI: 10.1007/s43762-022-00050-1.

Bouacida, N. and Mohapatra, P. (2021). Vulnerabilities in federated learning. IEEE Access, 9:63229-63249. DOI: 10.1109/ACCESS.2021.3075203.

Brauneck, A., Schmalhorst, L., Kazemi Majdabadi, M. M., Bakhtiari, M., Völker, U., Baumbach, J., Baumbach, L., and Buchholtz, G. (2023). Federated machine learning, privacy-enhancing technologies, and data protection laws in medical research: scoping review. Journal of Medical Internet Research, 25:e41588. DOI: 10.2196/41588.

Brears, R. C. (2023). Optimising water resource management: Smart water solutions and success in barcelona. Available online [link] Accessed: 2023-12-13.

Brooker, J. (2022). In detroit, the USDA will open its first service center for urban agriculture. Available online [link] Accessed: 2023-12-13.

Campolo, C., Genovese, G., Singh, G., and Molinaro, A. (2023). Scalable and interoperable edge-based federated learning in iot contexts. Computer Networks, 223:109576. DOI: 10.1016/j.comnet.2023.109576.

Chellapandi, V. P., Nagaraj, Y., Supplee, J., Hernandez-Gonzalez, S., Borhan, H., and .Zak, S. H. (2024). Predictive control of diesel oxidation catalysts with federated learning in connected vehicles. In 2024 Forum for Innovative Sustainable Transportation Systems (FISTS), pages 1-6. IEEE. DOI: 10.1109/FISTS60717.2024.10485594.

Chen, H., Zhu, T., Zhang, T., Zhou, W., and Yu, P. S. (2023). Privacy and fairness in federated learning: on the perspective of tradeoff. ACM Computing Surveys, 56(2):1-37. DOI: 10.48550/arXiv.2306.14123.

Chen, M., Gündüz, D., Huang, K., Saad, W., Bennis, M., Feljan, A. V., and Poor, H. V. (2021). Distributed learning in wireless networks: Recent progress and future challenges. IEEE Journal on Selected Areas in Communications, 39(12):3579-3605. DOI: 10.48550/arXiv.2104.02151.

Chhikara, P., Tekchandani, R., Kumar, N., Guizani, M., and Hassan, M. M. (2021). Federated learning and autonomous uavs for hazardous zone detection and aqi prediction in iot environment. IEEE Internet of Things Journal, 8(20):15456-15467. DOI: 10.1109/JIOT.2021.3074523.

Chougule, A., Chamola, V., Hassija, V., Gupta, P., and Yu, F. R. (2023). A novel framework for traffic congestion management at intersections using federated learning and vertical partitioning. IEEE Transactions on Consumer Electronics. DOI: 10.1109/TCE.2023.3320362.

Dey, S. and Pal, S. (2022). Federated learning-based air quality prediction for smart cities using bgru model. In Proceedings of the 28th Annual International Conference on Mobile Computing And Networking, pages 871-873. DOI: 10.1145/3495243.3558267.

Dinh, T. T. (2019). Managing traffic congestion in a city: A study of singapore’s experiences. Research Gate, pages 1-10. Available online [link].

Duggineni, S. (2023). Data integrity and risk. Open Journal of Optimization, 12(2):25-33. DOI: 10.4236/ojop.2023.122003.

El Ouadrhiri, A. and Abdelhadi, A. (2022). Differential privacy for deep and federated learning: A survey. IEEE access, 10:22359-22380. DOI: 10.1109/ACCESS.2022.3151670.

Elhachmi, J. and Kobbane, A. (2022). A federated learning approach for water distribution networks monitoring. In 2022 9th International Conference on Wireless Networks and Mobile Communications (WINCOM), pages 1-6. DOI: 10.1109/WINCOM55661.2022.9966455.

Fachola, C., Tornaría, A., Bermolen, P., Capdehourat, G., Etcheverry, L., and Fariello, M. I. (2023). Federated learning for data analytics in education. Data, 8(2):43. DOI: 10.3390/data8020043.

Farooq, U., Naseem, S., Mahmood, T., Li, J., Rehman, A., Saba, T., and Mustafa, L. (2024). Transforming educational insights: strategic integration of federated learning for enhanced prediction of student learning outcomes. The Journal of Supercomputing, pages 1-34. DOI: 10.1007/s11227-024-06087-9.

Fekri, M. N., Grolinger, K., and Mir, S. (2022). Distributed load forecasting using smart meter data: Federated learning with recurrent neural networks. International Journal of Electrical Power & Energy Systems, 137:107669. DOI: 10.1016/j.ijepes.2021.107669.

Ferrara, E. (2023). Fairness and bias in artificial intelligence: A brief survey of sources, impacts, and mitigation strategies. Sci, 6(1):3. DOI: 10.3390/sci6010003.

Fortini, P. M. and Davis Jr, C. A. (2018). Analysis, integration and visualization of urban data from multiple heterogeneous sources. In Proceedings of the 1st ACM SIGSPATIAL Workshop on Advances on Resilient and Intelligent Cities, pages 17-26. DOI: 10.1145/3284566.3284569.

Fu, X., Hopton, M. E., and Wang, X. (2021). Assessment of green infrastructure performance through an urban resilience lens. Journal of cleaner production, 289:125146. DOI: 10.1016/j.jclepro.2020.125146.

Gadekallu, T. R., Pham, Q.-V., Huynh-The, T., Bhattacharya, S., Maddikunta, P. K. R., and Liyanage, M. (2021). Federated learning for big data: A survey on opportunities, applications, and future directions. arXiv. DOI: 0.48550/arXiv.2110.04160.

Gamba, P. (2004). A collection of data for urban area characterization. In IGARSS 2004. 2004 IEEE international geoscience and remote sensing symposium, volume 1. IEEE. DOI: 10.1109/IGARSS.2004.1368947.

Government of Tokyo, Japan (2023). Tokyo Disaster Management Information System (TDIMS). Available online [link] Acessado em: 19/04/2024.

Green, J. L. (2023). Amsterdam's smart city program. Available online [link] Accessed: 2023-12-13.

Guendouzi, B. S., Ouchani, S., Assaad, H. E., and Zaher, M. E. (2023). A systematic review of federated learning: Challenges, aggregation methods, and development tools. Journal of Network and Computer Applications, page 103714. DOI: 10.1016/j.jnca.2023.103714.

Halegoua, G. (2020). Smart cities. MIT press. Book.

Hashem, I. A. T., Usmani, R. S. A., Almutairi, M. S., Ibrahim, A. O., Zakari, A., Alotaibi, F., Alhashmi, S. M., and Chiroma, H. (2023). Urban computing for sustainable smart cities: Recent advances, taxonomy, and open research challenges. Sustainability, 15(5):3916. DOI: 10.3390/su15053916.

Hazra, A., Rana, P., Adhikari, M., and Amgoth, T. (2023). Fog computing for next-generation internet of things: fundamental, state-of-the-art and research challenges. Computer Science Review, 48:100549. DOI: 10.1016/j.cosrev.2023.100549.

Herabad, M. G. (2023). Communication-efficient semi-synchronous hierarchical federated learning with balanced training in heterogeneous iot edge environments. Internet of Things, 21:100642. DOI: 10.1016/j.iot.2022.100642.

Hua, G., Zhu, L., Wu, J., Shen, C., Zhou, L., and Lin, Q. (2020). Blockchain-based federated learning for intelligent control in heavy haul railway. IEEE Access, 8:176830-176839. DOI: 10.1109/ACCESS.2020.3021253.

Huang, H., Yao, X. A., Krisp, J. M., and Jiang, B. (2021). Analytics of location-based big data for smart cities: Opportunities, challenges, and future directions. Computers, Environment and Urban Systems, 90:101712. DOI: 10.1016/j.compenvurbsys.2021.101712.

Huang, X., Huang, T., Gu, S., Zhao, S., and Zhang, G. (2024). Responsible federated learning in smart transportation: Outlooks and challenges. arXiv preprint arXiv:2404.06777. DOI: 10.48550/arXiv.2404.06777.

Imteaj, A., Thakker, U., Wang, S., Li, J., and Amini, M. H. (2021). A survey on federated learning for resource-constrained iot devices. IEEE Internet of Things Journal, 9(1):1-24. DOI: 10.1109/JIOT.2021.3095077.

Issa, W., Moustafa, N., Turnbull, B., Sohrabi, N., and Tari, Z. (2023). Blockchain-based federated learning for securing internet of things: A comprehensive survey. ACM Computing Surveys, 55(9):1-43. DOI: 10.1145/3560816.

Javidroozi, V., Shah, H., and Feldman, G. (2019). Urban computing and smart cities: Towards changing city processes by applying enterprise systems integration practices. IEEE Access, 7:108023-108034. DOI: 10.1109/ACCESS.2019.2933045.

Jia, J., Liu, J., Zhou, C., Tian, H., Dong, M., and Dou, D. (2023). Efficient asynchronous federated learning with sparsification and quantization. Concurrency and Computation: Practice and Experience, page e8002. DOI: 10.48550/arXiv.2312.15186.

Jiang, J. C., Kantarci, B., Oktug, S., and Soyata, T. (2020). Federated learning in smart city sensing: Challenges and opportunities. Sensors, 20(21):6230. DOI: 10.3390/s20216230.

Jiang, X., Zhao, S., Jacobson, G., Jana, R., Hsu, W.-L., Talasila, M., Aftab, S. A., Chen, Y., and Borcea, C. (2021). Federated meta-location learning for fine-grained location prediction. In 2021 IEEE International Conference on Big Data (Big Data), pages 446-456. IEEE. DOI: 10.1109/BigData52589.2021.9671447.

Jin, G., Liang, Y., Fang, Y., Huang, J., Zhang, J., and Zheng, Y. (2023). Spatio-temporal graph neural networks for predictive learning in urban computing: A survey. arXiv preprint arXiv:2303.14483. DOI: 10.48550/arXiv.2303.14483.

Juarez, M. and Korolova, A. (2023). “you can’t fix what you can’t measure”: Privately measuring demographic performance disparities in federated learning. In Workshop on Algorithmic Fairness through the Lens of Causality and Privacy, pages 67-85. PMLR. DOI: 10.48550/arXiv.2206.12183.

Kaginalkar, A., Kumar, S., Gargava, P., and Niyogi, D. (2021). Review of urban computing in air quality management as smart city service: An integrated iot, ai, and cloud technology perspective. Urban Climate, 39:100972. DOI: 10.1016/j.uclim.2021.100972.

Keirstead, J. and Shah, N. (2013). The changing role of optimization in urban planning. Optimization, simulation, and control, pages 175-193. DOI: 10.1007/978-1-4614-5131-0_11.

Khan, L. U., Yaqoob, I., Tran, N. H., Kazmi, S. A., Dang, T. N., and Hong, C. S. (2020). Edge-computing-enabled smart cities: A comprehensive survey. IEEE Internet of Things Journal, 7(10):10200-10232. DOI: 10.1109/JIOT.2020.2987070.

Khan, Z., Pervez, Z., and Ghafoor, A. (2014). Towards cloud based smart cities data security and privacy management. In 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, pages 806-811. IEEE. DOI: 10.1109/UCC.2014.131.

Kim, H., Choi, H., Kang, H., An, J., Yeom, S., and Hong, T. (2021). A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities. Renewable and Sustainable Energy Reviews, 140:110755. DOI: 10.1016/j.rser.2021.110755.

Kovacs-Györi, A., Ristea, A., Havas, C., Mehaffy, M., Hochmair, H. H., Resch, B., Juhasz, L., Lehner, A., Ramasubramanian, L., and Blaschke, T. (2020). Opportunities and challenges of geospatial analysis for promoting urban livability in the era of big data and machine learning. ISPRS International Journal of Geo-Information, 9(12):752. DOI: 10.3390/ijgi9120752.

Lee, C. A., Chow, K., Chan, H. A., and Lun, D. P.-K. (2023). Decentralized governance and artificial intelligence policy with blockchain-based voting in federated learning. Frontiers in Research Metrics and Analytics, 8:1035123. DOI: 10.3389/frma.2023.1035123.

Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y.-C., Yang, Q., Niyato, D., and Miao, C. (2020). Federated learning in mobile edge networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 22(3):2031-2063. DOI: 10.1109/COMST.2020.2986024.

Lister, P. (2023). Opening up smart learning cities-building knowledge, interactions and communities for lifelong learning and urban belonging. In International Conference on Human-Computer Interaction, pages 67-85. Springer. DOI: 10.1007/978-3-031-34609-5_5.

Liu, L., Tian, Y., Chakraborty, C., Feng, J., Pei, Q., Zhen, L., and Yu, K. (2023). Multilevel federated learning based intelligent traffic flow forecasting for transportation network management. IEEE Transactions on Network and Service Management. DOI: 10.1109/TNSM.2023.3280515.

Liu, Y., James, J., Kang, J., Niyato, D., and Zhang, S. (2020a). Privacy-preserving traffic flow prediction: A federated learning approach. IEEE Internet of Things Journal, 7(8):7751-7763. DOI: 10.1109/JIOT.2020.2991401.

Liu, Y., Nie, J., Li, X., Ahmed, S. H., Lim, W. Y. B., and Miao, C. (2020b). Federated learning in the sky: Aerial-ground air quality sensing framework with uav swarms. IEEE Internet of Things Journal, 8(12):9827-9837. DOI: 10.1109/JIOT.2020.3021006.

Loukil, F., Ghedira-Guegan, C., Boukadi, K., and Benharkat, A.-N. (2021). Privacy-preserving iot data aggregation based on blockchain and homomorphic encryption. Sensors, 21(7):2452. DOI: 10.3390/s21072452.

Luusua, A., Ylipulli, J., Foth, M., and Aurigi, A. (2023). Urban ai: understanding the emerging role of artificial intelligence in smart cities. AI & society, 38(3):1039-1044. DOI: 10.1007/s00146-022-01537-5.

Lyu, L., Yu, H., Ma, X., Chen, C., Sun, L., Zhao, J., Yang, Q., and Philip, S. Y. (2022). Privacy and robustness in federated learning: Attacks and defenses. IEEE transactions on neural networks and learning systems. DOI: 10.48550/arXiv.2012.06337.

Ma, C., Li, J., Ding, M., Yang, H. H., Shu, F., Quek, T. Q., and Poor, H. V. (2020). On safeguarding privacy and security in the framework of federated learning. IEEE network, 34(4):242-248. DOI: 10.1109/MNET.001.1900506.

Madni, H. A., Umer, R. M., and Foresti, G. L. (2023). Federated learning for data and model heterogeneity in medical imaging. In International Conference on Image Analysis and Processing, pages 167-178. Springer. DOI: 10.48550/arXiv.2308.00155.

Mahtta, R., Fragkias, M., Güneralp, B., Mahendra, A., Reba, M., Wentz, E. A., and Seto, K. C. (2022). Urban land expansion: The role of population and economic growth for 300+ cities. Npj Urban Sustainability, 2(1):5. DOI: 10.1038/s42949-022-00048-y.

ManchesterTWP (2023). Citizen portal. Available online [link] Accessed: 2023-12-13.

McGill, E., Coulby, C., Dam, D., Bellos, A., McCormick, R., and Patterson, K. (2023). Canadian covid-19 outbreak surveillance system: implementation of national surveillance during a global pandemic. Canadian Journal of Public Health, 114(3):358-367. DOI: 10.17269/s41997-023-00766-5.

Medina-Salgado, B., Sanchez-DelaCruz, E., Pozos-Parra, P., and Sierra, J. E. (2022). Urban traffic flow prediction techniques: A review. Sustainable Computing: Informatics and Systems, 35:100739. DOI: 10.1016/j.suscom.2022.100739.

Moallemi, E. A., Bertone, E., Eker, S., Gao, L., Szetey, K., Taylor, N., and Bryan, B. A. (2021). A review of systems modelling for local sustainability. Environmental Research Letters, 16(11):113004. DOI: 10.1088/1748-9326/ac2f62.

Mohammadreza Shekofteh, M. J. G. and Yazdi, J. (2020). A methodology for leak detection in water distribution networks using graph theory and artificial neural network. Urban Water Journal, 17(6):525-533. DOI: 10.1080/1573062X.2020.1797832.

Mora, A., Bujari, A., and Bellavista, P. (2024). Enhancing generalization in federated learning with heterogeneous data: A comparative literature review. Future Generation Computer Systems. DOI: 10.1016/j.future.2024.03.027.

Mora, H., Peral, J., Ferrandez, A., Gil, D., and Szymanski, J. (2019). Distributed architectures for intensive urban computing: a case study on smart lighting for sustainable cities. IEEE Access, 7:58449-58465. DOI: 10.1109/ACCESS.2019.2914613.

Moshawrab, M., Adda, M., Bouzouane, A., Ibrahim, H., and Raad, A. (2023). Reviewing federated machine learning and its use in diseases prediction. Sensors, 23(4):2112. DOI: 10.3390/s23042112.

Mothukuri, V., Parizi, R. M., Pouriyeh, S., Huang, Y., Dehghantanha, A., and Srivastava, G. (2021). A survey on security and privacy of federated learning. Future Generation Computer Systems, 115:619-640. DOI: 10.1016/j.future.2020.10.007.

Moubayed, A., Sharif, M., Luccini, M., Primak, S., and Shami, A. (2021). Water leak detection survey: Challenges & research opportunities using data fusion & federated learning. IEEE Access, 9:40595-40611. DOI: 10.1109/ACCESS.2021.3064445.

Mozaffari, H. and Houmansadr, A. (2022). E2fl: Equal and equitable federated learning. arXiv preprint arXiv:2205.10454. DOI: 10.48550/arXiv.2205.10454.

Nanda, S. and Berruti, F. (2021). Municipal solid waste management and landfilling technologies: a review. Environmental chemistry letters, 19(2):1433-1456. DOI: 10.1007/s10311-020-01100-y.

Neo, E. X., Hasikin, K., Mokhtar, M. I., Lai, K. W., Azizan, M. M., Razak, S. A., and Hizaddin, H. F. (2022). Towards integrated air pollution monitoring and health impact assessment using federated learning: a systematic review. Frontiers in Public Health, 10:851553. DOI: 10.3389/fpubh.2022.851553.

NetzDesign (2023). Automated waste collecting system. Available online [link] Accessed: 2023-12-13.

Nguyen, D. C., Pham, Q.-V., Pathirana, P. N., Ding, M., Seneviratne, A., Lin, Z., Dobre, O., and Hwang, W.-J. (2022). Federated learning for smart healthcare: A survey. ACM Computing Surveys (Csur), 55(3):1-37. DOI: 10.48550/arXiv.2111.08834.

Nguyen, T. and Thai, M. T. (2023). Preserving privacy and security in federated learning. IEEE/ACM Transactions on Networking. DOI: 10.48550/arXiv.2202.03402.

of Justice, N. I. (2023). Program profile: Predictive policing model in los angeles - calif. Available online [link] Accessed: 2023-12-13.

Ooms, W., Caniëls, M. C., Roijakkers, N., and Cobben, D. (2020). Ecosystems for smart cities: tracing the evolution of governance structures in a dutch smart city initiative. International Entrepreneurship and Management Journal, 16:1225-1258. DOI: 10.1007/s11365-020-00640-7.

Pagano, T. P., Loureiro, R. B., Lisboa, F. V., Peixoto, R. M., Guimarães, G. A., Cruz, G. O., Araujo, M. M., Santos, L. L., Cruz, M. A., Oliveira, E. L., et al. (2023). Bias and unfairness in machine learning models: a systematic review on datasets, tools, fairness metrics, and identification and mitigation methods. Big data and cognitive computing, 7(1):15. DOI: 10.3390/bdcc7010015.

Pandya, S., Srivastava, G., Jhaveri, R., Babu, M. R., Bhattacharya, S., Maddikunta, P. K. R., Mastorakis, S., Piran, M. J., and Gadekallu, T. R. (2023). Federated learning for smart cities: A comprehensive survey. Sustainable Energy Technologies and Assessments, 55:102987. DOI: 10.1016/j.seta.2022.102987.

Pang, J., Huang, Y., Xie, Z., Li, J., and Cai, Z. (2021). Collaborative city digital twin for the covid-19 pandemic: A federated learning solution. Tsinghua science and technology, 26(5):759-771. DOI: 10.26599/TST.2021.9010026.

Park, S., Jung, S., Lee, H., Kim, J., and Kim, J.-H. (2021a). Large-scale water quality prediction using federated sensing and learning: A case study with real-world sensing big-data. Sensors, 21(4). DOI: 10.3390/s21041462.

Park, S., Jung, S., Lee, H., Kim, J., and Kim, J.-H. (2021b). Large-scale water quality prediction using federated sensing and learning: A case study with real-world sensing big-data. Sensors, 21(4):1462. DOI: 10.3390/s21041462.

Pfeiffer, K., Rapp, M., Khalili, R., and Henkel, J. (2023). Federated learning for computationally constrained heterogeneous devices: A survey. ACM Computing Surveys, 55(14s):1-27. DOI: 10.48550/arXiv.2307.09182.

Pillutla, K., Kakade, S. M., and Harchaoui, Z. (2022). Robust aggregation for federated learning. IEEE Transactions on Signal Processing, 70:1142-1154. DOI: 10.48550/arXiv.1912.13445.

Pokhrel, S. R. (2020). Federated learning meets blockchain at 6g edge: A drone-assisted networking for disaster response. In Proceedings of the 2nd ACM MobiCom workshop on drone assisted wireless communications for 5G and beyond, pages 49-54. DOI: 10.1145/3414045.3415949.

Qi, P., Chiaro, D., Guzzo, A., Ianni, M., Fortino, G., and Piccialli, F. (2023). Model aggregation techniques in federated learning: A comprehensive survey. Future Generation Computer Systems. DOI: 10.1016/j.future.2023.09.008.

Qi, Y., Hossain, M. S., Nie, J., and Li, X. (2021). Privacy-preserving blockchain-based federated learning for traffic flow prediction. Future Generation Computer Systems, 117:328-337. DOI: 10.1016/j.future.2020.12.003.

Qin, Y., Li, M., and Zhu, J. (2023). Privacy-preserving federated learning framework in multimedia courses recommendation. Wireless Networks, 29(4):1535-1544. DOI: 10.1007/s11276-021-02854-1.

Ray Chaudhury, B., Li, L., Kang, M., Li, B., and Mehta, R. (2022). Fairness in federated learning via core-stability. Advances in neural information processing systems, 35:5738-5750. DOI: 10.48550/arXiv.2211.02091.

Recovery, N. (2023). National disaster resilience (NDR). Available online [link] Accessed: 2023-12-13.

Rohmani, C. (2023). Interplay of marketing strategies, smart city development, and information systems: A comprehensive review. OSF Preprints, (8enru). DOI: 10.31219/osf.io/8enru .

Sabri, S. and Witte, P. (2023). Digital technologies in urban planning and urban management. Journal of Urban Management, 12(1):1-3. DOI: 10.1016/j.jum.2023.02.003.

Sacco, S., Di Martino, F., and Cerreta, M. (2023). Smart circular cities and stakeholders engagement: A literature review to explore the role of artificial intelligence. In International Conference on Computational Science and Its Applications, pages 239-258. Springer. DOI: 10.1007/978-3-031-37117-2_18.

Salh, A., Ngah, R., Audah, L., Kim, K. S., Abdullah, Q., Al-Moliki, Y. M., Aljaloud, K. A., and Talib, H. N. (2023). Energy-efficient federated learning with resource allocation for green iot edge intelligence in b5g. IEEE Access, 11:16353-16367. DOI: 10.1109/ACCESS.2023.3244099.

Sanchez, T. W., Shumway, H., Gordner, T., and Lim, T. (2023). The prospects of artificial intelligence in urban planning. International journal of urban sciences, 27(2):179-194. DOI: 10.1080/12265934.2022.2102538.

Sarmadi, A., Fu, H., Krishnamurthy, P., Garg, S., and Khorrami, F. (2023). Privacy-preserving collaborative learning through feature extraction. IEEE Transactions on Dependable and Secure Computing. DOI: 10.1109/TDSC.2023.3263507.

Sellami, M., Momvcilovi'c, T. B., Kuhn, P., and Balta, D. (2023). Interaction patterns for regulatory compliance in federated learning. CIISR, page 6. Available online [link].

sfpark (2013). Sfpark pilot program. Available online [link] Accessed: 2023-12-13.

Shami, M. R., Rad, V. B., and Moinifar, M. (2022). The structural model of indicators for evaluating the quality of urban smart living. Technological Forecasting and Social Change, 176:121427. DOI: 10.1016/j.techfore.2021.121427.

Shteyn, A., Kollnig, K., and Inverarity, C. (2023). Federated learning: an introduction. Available online [link].

Silvestri, S., Tricomi, G., Bassolillo, S. R., De Benedictis, R., and Ciampi, M. (2024). An urban intelligence architecture for heterogeneous data and application integration, deployment and orchestration. Sensors, 24(7):2376. DOI: 10.3390/s24072376.

Singh, B. (2023). Federated learning for envision future trajectory smart transport system for climate preservation and smart green planet: Insights into global governance and sdg-9 (industry, innovation and infrastructure). National Journal of Environmental Law, 6(2):6-17. Available online [link].

Singh, P., Singh, M. K., Singh, R., and Singh, N. (2022). Federated learning: Challenges, methods, and future directions. In Federated Learning for IoT Applications, pages 199-214. Springer. DOI: 10.48550/arXiv.1908.07873.

Son, T. H., Weedon, Z., Yigitcanlar, T., Sanchez, T., Corchado, J. M., and Mehmood, R. (2023). Algorithmic urban planning for smart and sustainable development: Systematic review of the literature. Sustainable Cities and Society, page 104562. DOI: 10.1016/j.scs.2023.104562.

Supriya, Y. and Gadekallu, T. R. (2023). Particle swarm-based federated learning approach for early detection of forest fires. Sustainability, 15(2):964. DOI: 10.3390/su15020964.

Syamala, M., Komala, C., Pramila, P., Dash, S., Meenakshi, S., and Boopathi, S. (2023). Machine learning-integrated iot-based smart home energy management system. In Handbook of Research on Deep Learning Techniques for Cloud-Based Industrial IoT, pages 219-235. IGI Global. DOI: 10.4018/978-1-6684-8098-4.ch013.

Tedeschini, B. C., Savazzi, S., Stoklasa, R., Barbieri, L., Stathopoulos, I., Nicoli, M., and Serio, L. (2022). Decentralized federated learning for healthcare networks: A case study on tumor segmentation. IEEE Access, 10:8693-8708. DOI: 10.1109/ACCESS.2022.3141913.

The World Air Quality Index project (2023). Copenhagen air pollution: Real-time air quality index. Available online [link] Accessed: 2023-12-13.

Unsworth, K., Forte, A., and Dilworth, R. (2014). Urban informatics: The role of citizen participation in policy making. Journal of Urban Technology, 21(4):1-5. DOI: 10.1080/10630732.2014.971527.

Vargas-Solar, G., Ghedira-Guégan, C., Espinosa-Oviedo, J. A., and Zechinelli-Martin, J.-L. (2023). Embracing diversity and inclusion: A decolonial approach to urban computing. In 2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA), pages 1-6. IEEE. DOI: 10.1109/AICCSA59173.2023.10479352.

Vellingiri, J., Kalaivanan, K., Gopinath, M., Gobinath, C., Subramaniam, P. R., and Rangarajan, S. (2023). Strategies for classifying water quality in the cauvery river using a federated learning technique. International Journal of Cognitive Computing in Engineering, 4:187-193. DOI: 10.1016/j.ijcce.2023.04.004.

village, H. (2023). Healthvillage.Fi. Available online [link] Accessed: 2023-12-13.

Vinita, L. J. and Vetriselvi, V. (2023). Federated learning-based misbehaviour detection on an emergency message dissemination scenario for the 6g-enabled internet of vehicles. Ad Hoc Networks, 144:103153. DOI: 10.1016/j.adhoc.2023.103153.

Wei, K., Li, J., Ma, C., Ding, M., Chen, W., Wu, J., Tao, M., and Poor, H. V. (2023). Personalized federated learning with differential privacy and convergence guarantee. IEEE Transactions on Information Forensics and Security. DOI: 10.1109/TIFS.2023.3293417.

Wen, J., Zhang, Z., Lan, Y., Cui, Z., Cai, J., and Zhang, W. (2023). A survey on federated learning: challenges and applications. International Journal of Machine Learning and Cybernetics, 14(2):513-535. DOI: 10.1007/s13042-022-01647-y.

Whaiduzzaman, M., Barros, A., Chanda, M., Barman, S., Sultana, T., Rahman, M. S., Roy, S., and Fidge, C. (2022). A review of emerging technologies for iot-based smart cities. Sensors, 22(23):9271. DOI: 10.3390/s22239271.

Wilbur, M., Samal, C., Talusan, J. P., Yasumoto, K., and Dubey, A. (2020). Time-dependent decentralized routing using federated learning. In 2020 IEEE 23rd International Symposium on Real-Time Distributed Computing (ISORC), pages 56-64. IEEE. DOI: 10.1109/ISORC49007.2020.00018.

Wong, K.-S., Nguyen-Duc, M., Le-Huy, K., Ho-Tuan, L., Do-Danh, C., and Le-Phuoc, D. (2023a). An empirical study of federated learning on iot-edge devices: Resource allocation and heterogeneity. arXiv preprint arXiv:2305.19831. DOI: 10.48550/arXiv.2305.19831.

Wong, R. Y., Chong, A., and Aspegren, R. C. (2023b). Privacy legislation as business risks: How gdpr and ccpa are represented in technology companies' investment risk disclosures. Proceedings of the ACM on Human-Computer Interaction, 7(CSCW1):1-26. DOI: 10.1145/3579515.

Wu, J., Dong, F., Leung, H., Zhu, Z., Zhou, J., and Drew, S. (2023). Topology-aware federated learning in edge computing: A comprehensive survey. ACM Computing Surveys. DOI: 10.1145/3659205.

Xavier, L. H., Ottoni, M., and Abreu, L. P. P. (2023). A comprehensive review of urban mining and the value recovery from e-waste materials. Resources, Conservation and Recycling, 190:106840. DOI: 10.1016/j.resconrec.2022.106840.

Xu, C. and Mao, Y. (2020). An improved traffic congestion monitoring system based on federated learning. Information, 11(7):365. DOI: 10.3390/info11070365.

Xu, C., Qu, Y., Luan, T. H., Eklund, P. W., Xiang, Y., and Gao, L. (2022). An efficient and reliable asynchronous federated learning scheme for smart public transportation. IEEE Transactions on Vehicular Technology. DOI: 10.48550/arXiv.2208.07194.

Xu, J., Glicksberg, B. S., Su, C., Walker, P., Bian, J., and Wang, F. (2021). Federated learning for healthcare informatics. Journal of healthcare informatics research, 5:1-19. DOI: 10.1007/s41666-020-00082-4.

Xu, W., Yang, Z., Ng, D. W. K., Levorato, M., Eldar, Y. C., and Debbah, M. (2023). Edge learning for b5g networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing. IEEE journal of selected topics in signal processing, 17(1):9-39. DOI: 10.1109/JSTSP.2023.3239189.

Yang, F., Hua, Y., Li, X., Yang, Z., Yu, X., and Fei, T. (2022a). A survey on multisource heterogeneous urban sensor access and data management technologies. Measurement: Sensors, 19:100061. DOI: 10.1016/j.measen.2021.100061.

Yang, S., Zheng, W., Xie, M., and Zhang, X. (2022b). Research of federated learning application methods and social responsibility. IEEE Transactions on Big Data, pages 1-12. DOI: 10.1109/TBDATA.2022.3225688.

Yang, Z., Du, Y., Che, C., Wang, W., Mei, H., Zhou, D., and Yang, K. (2019). Energy-efficient joint resource allocation algorithms for mec-enabled emotional computing in urban communities. IEEE Access, 7:137410-137419. DOI: 10.1109/ACCESS.2019.2942391.

Yaseen, Z. M. (2022). The next generation of soil and water bodies heavy metals prediction and detection: New expert system based edge cloud server and federated learning technology. Environmental Pollution, 313:120081. DOI: 10.1016/j.envpol.2022.120081.

Yun, C., Shun, M., Junta, U., and Browndi, I. (2022). Predictive analytics: A survey, trends, applications, opportunities’ and challenges for smart city planning. International Journal of Computer Science and Information Technology, 23(56):226-231. Available online [link].

Žalik, K. R. and Žalik, M. (2023). A review of federated learning in agriculture. Sensors, 23(23):9566. DOI: 10.3390/s23239566.

Zeng, T., Guo, J., Kim, K. J., Parsons, K., Orlik, P., Di Cairano, S., and Saad, W. (2021). Multi-task federated learning for traffic prediction and its application to route planning. In 2021 IEEE intelligent vehicles symposium (IV), pages 451-457. IEEE. DOI: 10.1109/IV48863.2021.9575211.

Zhang, D. Y., Kou, Z., and Wang, D. (2020). Fairfl: A fair federated learning approach to reducing demographic bias in privacy-sensitive classification models. In 2020 IEEE International Conference on Big Data (Big Data), pages 1051-1060. IEEE. DOI: 10.1109/BigData50022.2020.9378043.

Zhang, H., Bosch, J., and Olsson, H. H. (2021). Real-time end-to-end federated learning: An automotive case study. In 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), pages 459-468. IEEE. DOI: 10.48550/arXiv.2103.11879.

Zhang, J., Yu, Z., Li, Y., and Wang, X. (2023). Uncovering bias in objective mapping and subjective perception of urban building functionality: A machine learning approach to urban spatial perception. Land, 12(7):1322. DOI: 10.3390/land12071322.

Zhao, J., Chang, X., Feng, Y., Liu, C. H., and Liu, N. (2022). Participant selection for federated learning with heterogeneous data in intelligent transport system. IEEE transactions on intelligent transportation systems, 24(1):1106-1115. DOI: 10.1109/TITS.2022.3149753.

Zhao, Y., Qu, Y., Xiang, Y., Chen, F., and Gao, L. (2024). Context-aware consensus algorithm for blockchain-empowered federated learning. IEEE Transactions on Cloud Computing. DOI: 10.1109/TCC.2024.3372814.

Zhao, Z., Mao, Y., Liu, Y., Song, L., Ouyang, Y., Chen, X., and Ding, W. (2023). Towards efficient communications in federated learning: A contemporary survey. Journal of the Franklin Institute, 360(12):8669-8703. DOI: 10.48550/arXiv.2208.01200.

Zheng, Y. (2019). Urban computing. MIT Press. Book.

Zheng, Y., Capra, L., Wolfson, O., and Yang, H. (2014). Urban computing: concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 5(3):1-55. DOI: 10.1145/2629592.

Zheng, Y., Liu, Y., Yuan, J., and Xie, X. (2011). Urban computing with taxicabs. In Proceedings of the 13th international conference on Ubiquitous computing, pages 89-98. DOI: 10.1145/2030112.2030126.

Zhu, Y., Liu, Y., James, J., and Yuan, X. (2021). Semi-supervised federated learning for travel mode identification from gps trajectories. IEEE Transactions on Intelligent Transportation Systems, 23(3):2380-2391. DOI: 10.1109/TITS.2021.3092015.

Downloads

Published

2024-09-21

How to Cite

Souza, J. R. F., Oliveira, S. Z. L. N., & Oliveira, H. (2024). The Impact of Federated Learning on Urban Computing. Journal of Internet Services and Applications, 15(1), 380–409. https://doi.org/10.5753/jisa.2024.4006

Issue

Section

Research article