Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing

Authors

DOI:

https://doi.org/10.5753/jisa.2024.4026

Keywords:

Edge Computing, Resource Management, Resource Allocation, Classification Models, Machine Learning, Task Priority

Abstract

The computational power of Internet of Things (IoT) devices is usually low, which makes it necessary to process data and extract relevant information on devices with higher processing capacity. Edge Computing emerged as a complementary solution to cloud computing, providing devices at the network edge with computational resources to handle the data processing and analysis that constrained IoT devices eventually cannot perform. This solution allows data processing closer to the IoT devices, reducing latency for IoT applications. However, the resource constraints of edge nodes, which have lower computational power than the cloud nodes, make resource allocation and processing massive requests challenging. This study proposes an edge resource allocation mechanism based on task priority and machine learning. The proposed approach efficiently allocates resources for IoT requests based on their task priorities while monitoring the resource consumption of edge nodes. This study evaluates the performance of different classification algorithms by using well-known metrics for classifying models. The most efficient classifier achieved an accuracy of 92% and a precision of 90%. The results indicate good performance when using this classifier in the evaluated approach. The proposed mechanism demonstrated that resource management can be done more efficiently with significantly lower resource utilization when compared to an allocation method based only on distance. The study tested different scenarios regarding the number of requests, edge nodes, and a proposed failure mechanism to schedule failed node tasks to functional nodes. This failure control mechanism is a significant contribution of the proposal. Therefore, the proposed method in this study can become a valuable tool for efficient resource management with reduced computational cost and efficient resource allocation.

Downloads

Download data is not yet available.

References

Aqib, M., Kumar, D., and Tripathi, S. (2022). Classification of edge applications using decision tree, k-nn, & svm classifier. In 2022 IEEE Students Conference on Engineering and Systems (SCES), pages 01-06. DOI: 10.1109/SCES55490.2022.9887690.

Araújo, G., Bezerra, S., and Rocha, A. (2023). Um classificador de prioridade de requisições para alocação de recursos na computação em borda. In Anais do XV Simpósio Brasileiro de Computação Ubíqua e Pervasiva, pages 131-140, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/sbcup.2023.230787.

Arena, F. and Pau, G. (2020). When edge computing meets iot systems: Analysis of case studies. China Communications, 17(10):50-63. DOI: 10.23919/JCC.2020.10.004.

Arowolo, M., Ogundokun, R., Misra, S., Jonathan, O., and Kadri, A. (2022). K-Nearest Neighbour Algorithm for Classification of IoT-Based Edge Computing Device, pages 161-179. DOI: 10.1007/978-3-030-80821-1_8.

Bayılmış, C., Ebleme, M. A., Ünal Çavuşoğlu, Küçük, K., and Sevin, A. (2022). A survey on communication protocols and performance evaluations for internet of things. Digital Communications and Networks, 8(6):1094-1104. DOI: 10.1016/j.dcan.2022.03.013.

Bhushan, S. and Mat, M. (2021). Priority-queue based dynamic scaling for efficient resource allocation in fog computing. In 2021 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), pages 1-6. DOI: 10.1109/SOLI54607.2021.9672442.

Bui, T. B., Sakr, A., Castrillón, J., and Schuster, R. (2021). Six-factors score-based match-making based on priority and preemption for resource allocation in edge computing. In 2021 IEEE International Conference on Edge Computing (EDGE), pages 44-50. DOI: 10.1109/EDGE53862.2021.00016.

Cheng, Z., Li, P., Wang, J., and Guo, S. (2015). Just-in-time code offloading for wearable computing. IEEE Transactions on Emerging Topics in Computing, 3(1):74-83. DOI: 10.1109/TETC.2014.2387688.

Costa, A., Rocha, A., Delicato, F., and Souza, J. (2020). Balanceamento de carga na borda da rede usando blockchain das coisas. In Anais do XII Simpósio Brasileiro de Computação Ubíqua e Pervasiva, pages 91-100, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/sbcup.2020.11215.

Dlamini, S. and Ventura, N. (2019). Resource management in fog computing: Review. In 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD), pages 1-7. DOI: 10.1109/ICABCD.2019.8851016.

Hong, C.-H. and Varghese, B. (2019). Resource management in fog/edge computing: A survey on architectures, infrastructure, and algorithms. ACM Comput. Surv., 52(5). DOI: 10.1145/3326066.

Hussain, F., Hassan, S. A., Hussain, R., and Hossain, E. (2020). Machine learning for resource management in cellular and iot networks: Potentials, current solutions, and open challenges. IEEE Communications Surveys & Tutorials, 22(2):1251-1275. DOI: 10.1109/COMST.2020.2964534.

Liu, X., Yu, J., Wang, J., and Gao, Y. (2020). Resource allocation with edge computing in iot networks via machine learning. IEEE internet of things journal, 7(4):3415 - 3426. DOI: 10.1109/JIOT.2020.2970110.

Madej, A., Wang, N., Athanasopoulos, N., Ranjan, R., and Varghese, B. (2020). Priority-based fair scheduling in edge computing. In 2020 IEEE 4th International Conference on Fog and Edge Computing (ICFEC), pages 39-48. DOI: 10.1109/ICFEC50348.2020.00012.

Martinez, I., Hafid, A. S., and Jarray, A. (2021). Design, resource management, and evaluation of fog computing systems: A survey. IEEE Internet of Things Journal, 8(4):2494-2516. DOI: 10.1109/JIOT.2020.3022699.

Rejeb, A., Rejeb, K., Simske, S., Treiblmaier, H., and Zailani, S. (2022). The big picture on the internet of things and the smart city: a review of what we know and what we need to know. Internet of Things, 19:100565. DOI: 10.1016/j.iot.2022.100565.

Rusman, J., Tahir, Z., and Salam, A. E. U. (2019). Fog computing concept implementation in work error detection system of the industrial machine using support vector machine (svm). In 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), pages 160-164. DOI: 10.1109/ISRITI48646.2019.9034597.

Sasaki, Y. and Yokotani, T. (2019). Performance evaluation of mqtt as a communication protocol for iot and prototyping. 4:21–29. Available online [link].

Scikit-Learn (2023). scikit-learn, machine learning in python. Available online [link].

Sharif, Z., Jung, L. T., and Ayaz, M. (2022). Priority-based resource allocation scheme for mobile edge computing. In 2022 2nd International Conference on Computing and Information Technology (ICCIT), pages 138-143. DOI: 10.1109/ICCIT52419.2022.9711641.

Sharif, Z., Jung, L. T., Razzak, I., and Alazab, M. (2023). Adaptive and priority-based resource allocation for efficient resources utilization in mobile-edge computing. IEEE Internet of Things Journal, 10(4):3079-3093. DOI: 10.1109/JIOT.2021.3111838.

Tran-Dang, H. and Kim, D.-S. (2018). An information framework for internet of things services in physical internet. IEEE Access, 6:43967-43977. DOI: 10.1109/ACCESS.2018.2864310.

Tran-Dang, H. and Kim, D.-S. (2021). Task priority-based resource allocation algorithm for task offloading in fog-enabled iot systems. In 2021 International Conference on Information Networking (ICOIN), pages 674-679. DOI: 10.1109/ICOIN50884.2021.9333992.

Wang, K., Tan, Y., Shao, Z., Ci, S., and Yang, Y. (2019). Learning-based task offloading for delay-sensitive applications in dynamic fog networks. IEEE Transactions on Vehicular Technology, 68(11):11399-11403. DOI: 10.1109/TVT.2019.2943647.

Wang, Z., Lv, T., and Chang, Z. (2022). Computation offloading and resource allocation based on distributed deep learning and software defined mobile edge computing. Computer Networks, 205:108732. DOI: 10.1016/j.comnet.2021.108732.

Yin, C., Li, T., Qu, X., and Yuan, S. (2020). An optimization method for resource allocation in fog computing. In 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), pages 821-828. DOI: 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00139.

Downloads

Published

2024-09-16

How to Cite

Araújo, G. A., Bezerra, S. F. da C., & da Rocha, A. R. (2024). Resource Allocation Based on Task Priority and Resource Consumption in Edge Computing. Journal of Internet Services and Applications, 15(1), 360–379. https://doi.org/10.5753/jisa.2024.4026

Issue

Section

Research article