Evaluation of Trajectory and Destination Prediction Models: A Systematic Classification and Analysis of Methodologies and Recent Results

Authors

DOI:

https://doi.org/10.5753/jisa.2024.4041

Keywords:

Trajectories, Destinations, Predictions, Semantic Data, Contextual Data

Abstract

Predicting trajectories and destinations is of considerable relevance in the context of urban mobility, as it can be useful for suggesting detours, avoiding congestion, and optimizing people's commutes. Therefore, this research performs a classification and analysis of trajectory and destination prediction models in articles published from 2017 to 2023. These models were mapped considering: authors; the existence of more than one geographic scenario; the type of forecast; the use of semantic and contextual data; and description of the algorithms. The result consists of discussions of representative works, based on classification, with grouping of techniques. Furthermore, there is a focus on works that used contextual and/or semantic data, from which another framework was developed, specifying the titles of the articles, and whether the methodology involved the use of points or areas of interest, and a reference to how they were generated. This focus expands the previous framework, specifying the differences of a portion of published studies.

Downloads

Download data is not yet available.

References

Araújo, F. R. D., Rosário, D. L.; Machado, K., Cerqueira, E. C., and Villas, L. (2019). TEMMUS: A Mobility Predictor based on Temporal Markov Model with User Similarity. Simpósio Brasileiro De Redes De Computadores E Sistemas Distribuídos (SBRC). DOI: 10.5753/sbrc.2019.7389.

Barth, F., Funke, S., Jepsen, T. S., and C., P. (2020). Scalable unsupervised multi-criteria trajectory segmentation and driving preference mining. In Proceedings Of The 9th Acm Sigspatial International Workshop On Analytics For Big Geospatial Data. DOI: 10.1145/3423336.3429348.

Besse, P. C., Guillouet, B., Loube, J.-M., and Royer, F. (2018). Destination prediction by trajectory distribution-based model. IEEE Transactions On Intelligent Transportation Systems: A Publication Of The IEEE Intelligent Transportation Systems Council, 19:2470–2481. DOI: 10.1109/TITS.2017.2749413.

Bhuvaneswari, M., Jyothirbindhu, V., and Paramasivan, B. (2017). Statistical adaptive heuristic model supported driver intended destination and path prediction algorithm for vehicular ad hoc network. In 2017 International Conference On Algorithms, Methodology, Models And Applications In Emerging Technologies (ICAMMAET), pages 1-6. DOI: 10.1109/ICAMMAET.2017.8186749.

Chang, R., Luliang, T., Xue, Y., and Jed, L. (2022). Mapping Grade-Separated Junctions in Detail Using Crowdsourced Trajectory Data. IEEE Transactions On Intelligent Transportation Systems: A Publication Of The IEEE Intelligent Transportation Systems Council, 23:5552–5561. DOI: 10.1109/TITS.2021.3054910.

Chen, Z., Liu, H., Wang, Y., Duan, Z., and Chen, C. (2019). E-dam: Encoder-decoder with attention mechanism for city-scale taxi trajectory prediction. In Proceedings Of The 2019 3rd International Conference On Computer Science And Artificial Intelligence. DOI: 10.1145/3374587.3374610.

Choi, S., Kim, J., Yu, H., and Yeo, H. (2019). Real-time prediction of arterial vehicle trajectories: Anapplication to predictive route guidance for an emergency vehicles. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pages 4030-4036. DOI: 10.1109/ITSC.2019.8917122.

Dai, S., Li, L., and Li, Z. (2019). Modeling vehicle interactions via modified LSTM models for trajectory prediction. IEEE Access, 7:38287-38296. DOI: 10.1109/ACCESS.2019.2907000.

Druck, S., Carvalho, M. S., Câmara, G., and Monteiro, A. V. M. (2004). Análise espacial de dados geográficos. Available online [link].

Ebel, P., Gol, I. E., Lingenfelder, C., and Vogelsang, A. (2020). Destination prediction based on partial trajectory data. In 2020 IEEE Intelligent Vehicles Symposium (IV), pages 1149-1155. DOI: 10.48550/arXiv.2004.07473.

Fan, H. and Yao, W. (2017). A trajectory prediction method with sparsity data. In 2017 IEEE International Symposium On Parallel And Distributed Processing With Applications And 2017 IEEE International Conference On Ubiquitous Computing And Communications (ISPA/IUCC), pages 1261-1265. DOI: 10.1109/ISPA/IUCC.2017.00191.

Firmino Júnior, J. B., Dutra, J., and Nobre, F. (2023). Classificação e análise de modelos de predição de trajetórias e de destinos - um mapeamento sistemático da literatura. In Anais do XV Simpósio Brasileiro de Computação Ubíqua e Pervasiva, pages 41-50, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/sbcup.2023.229831.

Froehlich, J. and Krumm, J. (2008). Route prediction from trip observations. In Society of Automotive Engineers (SAE) 2008 World Congress. DOI: 10.4271/2008-01-0201.

Fu, T.-Y. and Lee, W.-C. (2020). Trembr: Exploring Road Networks for Trajectory Representation Learning. ACM Transactions on Intelligent Systems and Technology, 11:1–25. DOI: 10.1145/3361741.

Gambs, S., Killijian, M.-O., and del Prado Cortez, M. N. (2012). Next place prediction using mobility markov chains. In Proceedings of the First Workshop on Measurement, Privacy, and Mobility - MPM ’12. DOI: 10.1145/2181196.2181199.

Graser, A., Jalali, A., Lampert J., Weißenfeld, A., and Janowicz, K. (2023). Deep Learning From Trajectory Data: a Review of Neural Networks and the Trajectory Data Representations to Train Them. Workshop on Big Mobility Data Analysis BMDA2023 in conjunction with EDBT/ICDT 2023. Available online [link].

Imai, R., Tsubouchi, K., Konishi, T., and Shimosaka, M. (2018). Early destination prediction with spatio-temporal user behavior patterns. In Proceedings Of The AcmOn Interactive, Mobile, Wearable And Ubiquitous Technologies, volume 1, pages 1-19. DOI: 10.1145/3161197.

Jiang, M., Li, C., Li, K., and Liu, H. (2022). Destination prediction based on virtual POI docks in dockless bike-sharing system. IEEE Transactions On Intelligent Transportation Systems: A Publication Of The IEEE Intelligent Transportation Systems Council, 23:2457–2470. DOI: 10.1109/TITS.2021.3099571.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Available online [link].

Krumm, J. and Horvitz, E. (2006). Inferring destinations from partial trajectories. In UbiComp 2006: The Eighth International Conference on Ubiquitous Computing. DOI: 10.1007/11853565_15.

Lassoued, Y., Monteil, J., Gu, Y., G., R., R., S., and M, M. (2017). A hidden markov model for route and destination prediction. In 2017 IEEE 20th International Conference On Intelligent Transportation Systems (ITSC), pages 1-6. DOI: 10.1109/ITSC.2017.8317888.

Leite da Silva, C., May Petry, L., and V., B. (2019). A survey and comparison of trajectory classification methods. In IEEE, editor, 8TH Brazilian Conference on Intelligent Systems (BRACIS), pages 788-793, Salvador, Brazil. DOI: 10.1109/BRACIS.2019.00141.

Liang, Y. and Zhao, Z. (2022). NetTraj: A network-based vehicle trajectory prediction modelwith directional representation and spatiotemporal attention mechanisms. IEEE Transactions On Intelligent Transportation Systems: A Publication Of the IEEE Intelligent Transportation Systems Council, 23:14470–14481. DOI: 10.48550/arXiv.2106.11175.

Liu, L., Qiu, Z., Li, G., Wang, Q., Ouyang, W., and Lin, L. (2019). Contextualized spatial–temporal network for taxi origin-destination demand prediction. IEEE Transactions on Intelligent Transportation Systems., 20:3875-3887. DOI: 10.48550/arXiv.1905.06335.

Ma, W. and Xie, H. (2021). Research on prediction algorithm of vehicle trajectory in front based on driving intention classification. In 2021 4TH International Conference on Data Science and Information Technology. DOI: 10.1145/3478905.3478977.

Ning, F. (2021). Prediction and detection of urban trajectory using data mining and deep neural network. In 2021 International Conference on Big Data Analysis and Computer Science (BDACS), pages 39-46. DOI: 10.1109/BDACS53596.2021.00017.

Qiao, S., Han, N., J., W., Li, R. H., Gutierrez, L. A., and Wu, X. (2018). Predicting long-term trajectories of connected vehicles via the prefix-projection technique. IEEE transactions on intelligent transportation systems, 19:2305–2315. DOI: 10.1109/TITS.2017.2750075.

Qin, X., Zhiheng, L., Kai, Z., Feng, M., and Xin, J. (2023). Vehicle Trajectory Prediction via Urban Network Modeling. Sensors, 23. DOI: 10.3390/s23104893.

Rainbow, B. A., Men, Q., and Shum, H. P. H. (2021). Semantics-stgcnn: A semantics-guided spatial-temporal graph convolutional network for multi-class trajectory prediction. In 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 2959-2966. DOI: 10.48550/arXiv.2108.04740.

Sadri, A., Salim, F. D., Ren, Y., Shao, W., Krumm, J. C., and Mascolo, C. (2018). “What will you do for the rest of the day?: An approach to continuous trajectory prediction. Proceedings Of The Acm On Interactive, Mobile, Wearable And Ubiquitous Technologies, 2:1–26. DOI: 10.1145/3287064.

Santana, A. V. and Campos, J. (2017). Travel history: Reconstructing semantic trajectories based on heterogeneous social tracks source. In ACM, editor, Proceedings Of The 22nd Brazilian Symposium On Multimedia And The Web, NY, USA. Available online [link].

Selvaraj, D. C. e. a. (2021). Edge learning of vehicular trajectories at regulated intersections. In 2021 IEEE 94TH Vehicular Technology Conference (VTC2021-FALL), pages 1-7. DOI: 10.1109/VTC2021-Fall52928.2021.9625570.

Shen, G., Pengfei, L., Zhiyu, C., Yue, Y., and Xiangjie, K. (2023). Spatio-Temporal Interactive Graph Convolution Network for Vehicle Trajectory Prediction. Internet of Things 24. DOI: 10.1016/j.iot.2023.100935.

Simmons, R., Browning, B., Zhang, Y., and Sadekar, V. (2006). Learning to predict driver route and destination intent. In IEEE Intelligent Transportation Systems Conference. DOI: 10.1109/ITSC.2006.1706730.

Tang, L., Duan, Z., Zhu, Y., Ma, J., and Liu, Z. (2021). Recommendation for ridesharing groups through destination prediction on trajectory data. IEEE Transactions On Intelligent Transportation Systems: A Publication Of The IEEE Intelligent Transportation Systems Council., 22:1320–1333. DOI: 10.1109/TITS.2019.2961170.

Tong, P., Du, W., Li, M., Huang, J., Wang, W., and Qin, Z. (2021). Last-mile school shuttle planning with crowdsensed student trajectories. IEEE Transactions On Intelligent Transportation Systems: A Publication Of The IEEE Intelligent Transportation Systems Council, 22:293–306. DOI: 10.1109/TITS.2019.2956786.

Vahedian, A., Zhou, X., Tong, L., and Li, Y.; Luo, J. (2017). Forecasting gathering events through continuous destination prediction on big trajectory data. In Proceedings Of The 25th Acm Sigspatial International Conference On Advances In Geographic Information Systems.. DOI: 10.1145/3139958.3140008.

Wang, L., Yu, Z., Guo, B., Ku, T., and YI, F. (2017). Moving destination prediction using sparse dataset: A mobility gradient descent approach. ACM transactions on knowledge discovery from data, 11:1–33. DOI: 10.1145/3051128.

Wang, Z., J, G., Ziqiang, H., Haiqiang, Z., Junping, Z., and Jian, P. (2023). Lane Transformer: A High-Efficiency Trajectory Prediction Model. IEEE Open Journal of Intelligent Transportation Systems 4, pages 2-13. DOI: 10.1109/OJITS.2023.3233952.

Weintrit, A. (2017). The concept of time in navigation. TransNav the International Journal on Marine Navigation and Safety of Sea Transportation. TransNav, 11:23-33. DOI: 10.12716/1001.11.02.01.

Wu, H., Wang, L., Zheng, S., Xu, Q., and Wang, J. (2020). Crossing-road pedestrian trajectory prediction based on intention and behavior identification. In 2020 IEEE 23rd International Conference On Intelligent Transportation Systems (ITSC), pages 1-6. DOI: 10.1109/ITSC45102.2020.9294491.

Yuan, H. and Li, G. (2019). Distributed in-memory trajectory similarity search andjoin on road network. In 2019 Ieee 35th International Conference On Data Engineering (ICDE), page 1262–1273. DOI: 10.1109/ICDE.2019.00115.

Zhang, C., Bin, J., Wang, W., Peng, X., Wang, R., Halldearn, R., and Liu, Z. (2020). AIS Data Driven General Vessel Destination Prediction: A Random Forest Based Approach. Transportation Research Part C: Emerging Technologies 118 (September). DOI: 10.1016/j.trc.2020.102729.

Zhang, W., Liu, Y., Liu, T., and Yang, C. (2018). Trajectory prediction with recurrent neural networks for predictive resource allocation. In 2018 14TH IEEE International Conference On Signal Processing (ICSP). DOI: 10.1109/ICSP.2018.8652460.

Zheng, Y. (2015). Trajectory Data Mining. ACM Transactions on Intelligent Systems and Technology, 6:1-41. DOI: 10.1007/978-3-319-17885-1_1576.

Downloads

Published

2024-10-08

How to Cite

Júnior, J. B. F., Dutra, J. F., & Neto, F. D. N. (2024). Evaluation of Trajectory and Destination Prediction Models: A Systematic Classification and Analysis of Methodologies and Recent Results. Journal of Internet Services and Applications, 15(1), 474–484. https://doi.org/10.5753/jisa.2024.4041

Issue

Section

Research article