Machine Learning-Based Strategy for Joint User Association and Resource Allocation in Next-Generation Networks

Authors

DOI:

https://doi.org/10.5753/jisa.2025.4894

Keywords:

User Association, Resource Allocation, Machine Learning, Reinforcement Learning

Abstract

This study presents an approach based on Reinforcement Learning (RL) to optimize the orchestration of User Association and Resource Allocation (UARA) mechanisms in next-generation heterogeneous networks, focusing on maximizing user satisfaction. The proposed strategy aims to improve the efficiency of these networks by overcoming operational challenges through user-centered adaptive algorithms. RL algorithms are utilized to rebalance the network load and optimize the distribution of radio resources among User Equipments (UEs), ultimately leading to improved service conditions. The results suggest that the strategic application of RL algorithms can lead to significant improvements compared to traditional methods, such as Max-SINR and Cell Range Expansion (CRE), reaching over 90% user satisfaction, highlighting the relevance of this research for next-generation networks.

Downloads

Download data is not yet available.

References

GPP TR 36.814 V9.0.0 (2010). Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects (Release 9). 3GPP. Available at:[link].

Adedoyin, M. A. and Falowo, O. E. (2020). Combination of ultra-dense networks and other 5g enabling technologies: A survey. IEEE Access, 8:22893-22932. DOI: 10.1109/ACCESS.2020.2969980.

Alhashimi, H. F. et al. (2023). A Survey on Resource Management for 6G Heterogeneous Networks: Current Research, Future Trends, and Challenges. Electronics, 12(3). DOI: 10.3390/electronics12030647.

Alzubaidi, O. T. H., Hindia, M. N., Dimyati, K., Noordin, K. A., Wahab, A. N. A., Qamar, F., and Hassan, R. (2022). Interference challenges and management in b5g network design: A comprehensive review. Electronics, 11(18). DOI: 10.3390/electronics11182842.

Attiah, M. L., Isa, A. A. M., Zakaria, Z., Abdulhameed, M. K., Mohsen, M. K., and Ali, I. (2020). A survey of mmWave user association mechanisms and spectrum sharing approaches: an overview, open issues and challenges, future research trends. Wireless Networks, 26(4):2487-2514. DOI: 10.1007/s11276-019-01976-x.

Bikram Kumar, B., Sharma, L., and Wu, S.-L. (2019). Online distributed user association for heterogeneous radio access network. Sensors, 19(6). DOI: 10.3390/s19061412.

Gomez, C. A., Shami, A., and Wang, X. (2018). Machine Learning Aided Scheme for Load Balancing in Dense IoT Networks. Sensors, 18(11). DOI: 10.3390/s18113779.

Jain, A., Lopez-Aguilera, E., and Demirkol, I. (2021). User association and resource allocation in 5g (aura-5g): A joint optimization framework. Computer Networks, 192:108063. DOI: https://doi.org/10.1016/j.comnet.2021.108063.

Jayaraman, R. et al. (2023). Effective Resource Allocation Technique to Improve QoS in 5G Wireless Network. Electronics, 12(2). DOI: 10.3390/electronics12020451.

Jiang, W., Feng, D., Sun, Y., Feng, G., Wang, Z., and Xia, X.-G. (2023). Joint computation offloading and resource allocation for d2d-assisted mobile edge computing. IEEE Transactions on Services Computing, 16(3):1949-1963. DOI: 10.1109/TSC.2022.3190276.

Khani, M., Sadr, M. M., and Jamali, S. (2024). Deep reinforcement learning-based resource allocation in multi-access edge computing. Concurrency and Computation: Practice and Experience, 36(15):e7995. DOI: https://doi.org/10.1002/cpe.7995.

Kim, D. U. et al. (2023). Resource Allocation and User Association Using Reinforcement Learning via Curriculum in a Wireless Network with High User Mobility. In 2023 International Conference on Information Networking (ICOIN), pages 382-386. DOI: 10.1109/ICOIN56518.2023.10048927.

Kim, Y., Jang, J., and Yang, H. J. (2024). Distributed resource allocation and user association for max-min fairness in hetnets. IEEE Transactions on Vehicular Technology, 73(2):2983-2988. DOI: 10.1109/TVT.2023.3316610.

Kuribayashi, H. P. et al. (2020). Particle Swarm-Based Cell Range Expansion for Heterogeneous Mobile Networks. IEEE Access, 8:37021-37034. DOI: 10.1109/ACCESS.2020.2975981.

Labana, M. and Hamouda, W. (2020). Joint User Association and Resource Allocation in CoMP-Enabled Heterogeneous CRAN. In GLOBECOM 2020 - 2020 IEEE Global Communications Conference, pages 1-6. DOI: 10.1109/GLOBECOM42002.2020.9322501.

Mahbub, M. et al. (2021). Maximizing the Probability of User Association of a Tier of a Multi-Tier Heterogeneous Network by Optimal Resource Allocation. In 2021 Emerging Technology in Computing, Commun. and Electronics (ETCCE), pages 1-6. DOI: 10.1109/ETCCE54784.2021.9689907.

Naderializadeh, N., Sydir, J. J., Simsek, M., and Nikopour, H. (2021). Resource management in wireless networks via multi-agent deep reinforcement learning. IEEE Transactions on Wireless Communications, 20(6):3507-3523. DOI: 10.1109/TWC.2021.3051163.

Paixão, E. R. et al. (2023). Multilayer Framework for Resource Orchestration in Next Generation Networks. Journal of Communication and Information Systems, 38:1–8. DOI: 10.14209/jcis.2023.1.

Raffin, A. et al. (2021). Reliable Reinforcement Learning Implementations. Journal of Mach. Learning Research, 22(268):1-8. Available at: [link].

Shen, X., Gao, J., Wu, W., Lyu, K., Li, M., Zhuang, W., Li, X., and Rao, J. (2020). AI-Assisted Network-Slicing Based Next-Generation Wireless Networks. IEEE Open Journal of Vehicular Technology, 1:45-66. DOI: 10.1109/OJVT.2020.2965100.

Tanveer, J., Haider, A., Ali, R., and Kim, A. (2022). An overview of reinforcement learning algorithms for handover management in 5g ultra-dense small cell networks. Applied Sciences, 12(1). DOI: 10.3390/app12010426.

Wang, C., Renzo, M. D., Stanczak, S., Wang, S., and Larsson, E. G. (2020). Artificial intelligence enabled wireless networking for 5g and beyond: Recent advances and future challenges. IEEE Wireless Communications, 27(1):16-23. DOI: 10.1109/MWC.001.1900292.

Wang, L., Ai, Y., Liu, N., and Fei, A. (2019). User association and resource allocation in full-duplex relay aided noma systems. IEEE Internet of Things Journal, 6(6):10580-10596. DOI: 10.1109/JIOT.2019.2939875.

Wang, S., Balarezo, J. F., Kandeepan, S., Al-Hourani, A., Chavez, K. G., and Rubinstein, B. (2021). Machine learning in network anomaly detection: A survey. IEEE Access, 9:152379-152396. DOI: 10.1109/ACCESS.2021.3126834.

Wijethilaka, S. and Liyanage, M. (2021). Survey on network slicing for internet of things realization in 5g networks. IEEE Communications Surveys & Tutorials, 23(2):957-994. DOI: 10.1109/COMST.2021.3067807.

Xu, Y., Gui, G., Gacanin, H., and Adachi, F. (2021). A survey on resource allocation for 5g heterogeneous networks: Current research, future trends, and challenges. IEEE Communications Surveys & Tutorials, 23(2):668-695. DOI: 10.1109/COMST.2021.3059896.

Yazici, I., Shayea, I., and Din, J. (2023). A survey of applications of artificial intelligence and machine learning in future mobile networks-enabled systems. Engineering Science and Technology, an International Journal, 44:101455. DOI: https://doi.org/10.1016/j.jestch.2023.101455.

Zhai, D., Li, H., Tang, X., Zhang, R., and Cao, H. (2024). Joint position optimization, user association, and resource allocation for load balancing in uav-assisted wireless networks. Digital Communications and Networks, 10(1):25-37. DOI: https://doi.org/10.1016/j.dcan.2022.03.011.

Zhang, L. et al. (2019). 6G Visions: Mobile Ultra-broadband, Super Internet-of-Things and Artificial Intelligence. China Communications, 16(8):1-14. DOI: 10.23919/JCC.2019.08.001.

Zhao, N., Liang, Y.-C., and Pei, Y. (2018). Dynamic contract incentive mechanism for cooperative wireless networks. IEEE Transactions on Vehicular Technology, 67(11):10970-10982. DOI: 10.1109/TVT.2018.2865951.

Zhao, N. et al. (2019). Deep Reinforcement Learning for User Association and Resource Allocation in Heterogeneous Cellular Networks. IEEE Transactions on Wireless Communications, 18(11):5141-5152. DOI: 10.1109/TWC.2019.2933417.

Downloads

Published

2025-05-02

How to Cite

Alves, M., Broechl, G., Loyolla, L., Junior, W., Alves, M., & Kuribayashi, H. (2025). Machine Learning-Based Strategy for Joint User Association and Resource Allocation in Next-Generation Networks. Journal of Internet Services and Applications, 16(1), 117–130. https://doi.org/10.5753/jisa.2025.4894

Issue

Section

Research article