Towards an efficient solution to mitigate the forest fire problem based on unmanned aerial vehicles and wireless sensors
DOI:
https://doi.org/10.5753/jisa.2025.4995Keywords:
WSN, UAV, Forest Fires, FireAbstract
One of the leading global challenges that the society faces worldwide is related to the forest fire problem, which generates financial losses, threatens ecological systems, and affects public security, putting human and animal life at risk. Despite recent efforts to mitigate the forest fire problem, providing a higher accuracy rate for detecting fire, with a quick response time, without impacting the alert process is still a challenging R&D question that must be investigated. To advance this research front, we propose a solution to detect and monitor forest fires, called DF-Fire, using a UAV (Unmanned Aerial Vehicle) and WSN (Wireless Sensor Network). For this, a deep learning architecture is modeled to carry out the fire detection process. In addition, to cover the area of interest, DF-Fire has a flight plan based on the information that the WSN disseminates. DF-Fire has been evaluated on real devices to prove its efficiency and, when compared to other benchmarking solutions, our solution has advanced in state of the art by: (i) increasing the hit rate to detect the fire; (ii) reduce the response time; and (iii) reduce overhead in processing time without impacting the alert process. Also, DF-Fire takes advantage of the sensors’ information to provide efficiency in the flight plan and correlate them to monitor how the fire spreads.
Downloads
References
Abid, F. (2021). A survey of machine learning algorithms based forest fires prediction and detection systems. Fire technology, 57(2):559-590. DOI: 10.1007/s10694-020-01056-z.
Alzahrani, B., Oubbati, O. S., Barnawi, A., Atiquzzaman, M., and Alghazzawi, D. (2020). Uav assistance paradigm: State-of-the-art in applications and challenges. Journal of Network and Computer Applications, page 102706. DOI: 10.1016/j.jnca.2020.102706.
CAL FIRE (2020). Cal fire. Available online [link]. Accessed in: september 2020.
Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine learning research, 7:1-30. Available online [link].
Dubey, V., Kumar, P., and Chauhan, N. (2019). Forest fire detection system using iot and artificial neural network. In International Conference on Innovative Computing and Communications, pages 323-337. Springer. DOI: 10.1007/978-981-13-2324-9_33.
Faiçal, B. S., Pessin, G., Filho, G. P., Carvalho, A. C., Gomes, P. H., and Ueyama, J. (2016). Fine-tuning of uav control rules for spraying pesticides on crop fields: An approach for dynamic environments. International Journal on Artificial Intelligence Tools, 25(01):1660003. DOI: 10.1142/S0218213016600034.
Fonseca-Morello, T., Ramos, R., Steil, L., Parry, L., Barlow, J., Markusson, N., and Ferreira, A. (2017). Queimadas e incêndios florestais na amazônia brasileira: porque as políticas públicas têm efeito-limitado. Ambiente & Sociedade. São Paulo, 20(4):19-40. DOI: 10.1590/1809-4422asoc0232r1v2042017.
Freitas, H., Faiçal, B. S., Cardoso e Silva, A. V., and Ueyama, J. (2020). Use of uavs for an efficient capsule distribution and smart path planning for biological pest control. Computers and Electronics in Agriculture, 173:105387. DOI: 10.1016/j.compag.2020.105387.
Grover, K., Kahali, D., Verma, S., and Subramanian, B. (2020). Wsn-based system for forest fire detection and mitigation. In Emerging Technologies for Agriculture and Environment, pages 249-260. Springer. DOI: 10.1007/978-981-13-7968-0_19.
Helsgaun, K. (2000). An effective implementation of the lin–kernighan traveling salesman heuristic. European Journal of Operational Research, 126(1):106-130. DOI: 10.1016/S0377-2217(99)00284-2.
INPE (2020). Programa queimadas. Available online [link] Accessed: September 2020.
Kalatzis, N., Avgeris, M., Dechouniotis, D., Papadakis-Vlachopapadopoulos, K., Roussaki, I., and Papavassiliou, S. (2018). Edge computing in iot ecosystems for uav-enabled early fire detection. In 2018 IEEE International Conference on Smart Computing (SMARTCOMP), pages 106-114. DOI: 10.1109/SMARTCOMP.2018.00080.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 25, pages 1097-1105. Curran Associates, Inc.. DOI: 10.1145/3065386.
Kumar, D. P., Amgoth, T., and Annavarapu, C. S. R. (2019). Machine learning algorithms for wireless sensor networks: A survey. Information Fusion, 49:1-25. DOI: 10.1016/j.inffus.2018.09.013.
Kyrkou, C. and Theocharides, T. (2020). Emergencynet: Efficient aerial image classification for drone-based emergency monitoring using atrous convolutional feature fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13:1687-1699. DOI: 10.1109/JSTARS.2020.2969809.
Lin, S. and Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman problem. Operations research, 21(2):498-516. DOI: 10.1287/opre.21.2.498.
Monteiro, L. B., Ribeiro, V. F., Garcia, C. P., Rocha Filho, G. P., and Weigang, L. (2023). 4d trajectory conflict detection and resolution using decision tree pruning method. IEEE Latin America Transactions, 21(2):277-287. DOI: 10.1109/TLA.2023.10015220.
Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10), pages 807-814. Available online [link].
Neto, J. R., Boukerche, A., Yokoyama, R. S., Guidoni, D. L., Meneguette, R. I., Ueyama, J., and Villas, L. A. (2017). Performance evaluation of unmanned aerial vehicles in automatic power meter readings. Ad Hoc Networks, 60:11-25. DOI: 10.1016/j.adhoc.2017.03.003.
Premal, C. E. and Vinsley, S. S. (2014). Image processing based forest fire detection using ycbcr colour model. In 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], pages 1229-1237. DOI: 10.1109/ICCPCT.2014.7054883.
Resende, F. C., da Silva Cardozo, F., and Pereira, G. (2017). Análise ambiental da ocorrência das queimadas na porção nordeste do cerrado. Revista do Departamento de Geografia, 34:31-42. DOI: 10.11606/rdg.v34i0.131917.
Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T. (2008). Labelme: a database and web-based tool for image annotation. International journal of computer vision, 77(1-3):157-173. DOI: 10.1007/s11263-007-0090-8.
Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N. S., Khreishah, A., and Guizani, M. (2019). Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges. Ieee Access, 7:48572-48634. DOI: 10.1109/ACCESS.2019.2909530.
Sharma, A., Singh, P. K., and Kumar, Y. (2020). An integrated fire detection system using iot and image processing technique for smart cities. Sustainable Cities and Society, 61:102332. DOI: 10.1016/j.scs.2020.102332.
Skala, K. and Dubravic, A. (2008). Integrated system for forest fire early detection and management. Periodicum biologorum; Vol.110 No.2, 110. Available online [link].
SOS Pantantal (2020). Sos pantanal. Available online [link]. Accessed in: September 2020.
Student (1908). The probable error of a mean. Biometrika, pages 1-25. DOI: 10.2307/2331554.
Ueyama, J., Freitas, H., Faical, B. S., Filho, G. P. R., Fini, P., Pessin, G., Gomes, P. H., and Villas, L. A. (2014). Exploiting the use of unmanned aerial vehicles to provide resilience in wireless sensor networks. IEEE Communications Magazine, 52(12):81-87. DOI: 10.1109/MCOM.2014.6979956.
Voudouris, C. and Tsang, E. (1999). Guided local search and its application to the traveling salesman problem. European journal of operational research, 113(2):469-499. DOI: 10.1016/S0377-2217(98)00099-X.
Yuan, C., Liu, Z., and Zhang, Y. (2015). Uav-based forest fire detection and tracking using image processing techniques. In 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pages 639-643. DOI: 10.1109/ICUAS.2015.7152345.
Zahangir Alom, M., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Shamima Nasrin, M., Van Esesn, B. C., Awwal, A. A. S., and Asari, V. K. (2018). The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv e-prints, pages arXiv-1803. DOI: 10.48550/arXiv.1803.01164.
Zhao, Y., Ma, J., Li, X., and Zhang, J. (2018). Saliency detection and deep learning-based wildfire identification in uav imagery. Sensors, 18(3):712. DOI: 10.3390/s18030712.
Zharikova, M. and Sherstjuk, V. (2019). Forest firefighting monitoring system based on uav team and remote sensing. In Automated Systems in the Aviation and Aerospace Industries, pages 220-241. IGI Global. DOI: 10.1109/ELNANO.2018.8477527.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Internet Services and Applications

This work is licensed under a Creative Commons Attribution 4.0 International License.

