Intrusion detection in vehicular networks using machine learning

Authors

DOI:

https://doi.org/10.5753/jisa.2025.5017

Keywords:

Vehicular Networks, Intelligent Transport System, Urban Mobility, Intrusion Detection Systems, Machine Learning

Abstract

Vehicular networks and intelligent transport systems play a critical role in modern urban mobility. In order to improve urban transportation in smart cities, vehicles and fixed stations exchange information about traffic, road conditions, and accidents, allowing better decision-making and ensuring greater safety for the population. However, to provide security, a vehicular network must be resilient to attacks. Anomaly detection models are a potential solution to the reduced effectiveness of signature-based intrusion detection systems, which struggle to detect new attacks due to the absence of previous signatures. Leveraging artificial intelligence in intrusion detection systems becomes relevant, as it allows learning from a vast amount of data. However, many models proposed for anomaly detection based on machine learning lack validation and application in vehicular networks, thus lacking evidence of promising results in these specific contexts. Therefore, this work aims to address this gap by comparing two models used in anomaly detection in the context of vehicular networks: the CNN-LSTM model that has already been applied in the area of vehicular networks and the TranAD model that needed to be adapted for this type of network. The results demonstrate that the CNN-LSTM model provides superior performance, presenting an F1 of 0.9585 against 0.8839 of TranAD in the scenario in which both models obtained the best result.

Downloads

Download data is not yet available.

Author Biographies

Heitor Tonel Ventura, Universidade Tecnológica Federal do Paraná

Heitor Tonel Ventura holds a Bachelor's degree in Information Systems from the Federal University of Technology – Paraná (UTFPR) in Curitiba, Brazil.

Raian de Almeida Moretti, Universidade Tecnológica Federal do Paraná

Raian de Almeida Moretti is pursuing a Bachelor's degree in Information Systems at the Federal University of Technology – Paraná (UTFPR) in Curitiba, Brazil.

Ana Cristina Barreiras Kochem Vendramin, Universidade Tecnológica Federal do Paraná

Ana Cristina Vendramin is a titular professor of the Academic Department of Informatics (DAINF) and the Graduate Program in Applied Computing (PPGCA) at the Federal University of Technology – Parana (UTFPR), Curitiba, Brazil. She got her Master of Science Degree in Telematics (2003) and her Ph.D. degree in Computer Engineering (2012) from the Graduate Program in Electrical and Computer Engineering (CPGEI), UTFPR. Her research interests include Computer Networks, Distributed Systems, and Computational Intelligence.

Daniel Fernando Pigatto, Universidade Tecnológica Federal do Paraná

Daniel is professor of the Academic Department of Informatics (DAINF) and the Postgraduate Program in Applied Computing (PPGCA), both part of the Federal University of Technology - Paraná (UTFPR), Curitiba Campus. He has a bachelor's degree in Computer Science, a master's and a doctorate in Computer Science with emphasis on Computer Networks, Distributed Systems, Operating Systems and Performance Evaluation.

References

Aggarwal, C. C. (2017). Outlier analysis. Springer International Publishing. DOI: 10.1007/978-3-319-47578-3.

Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., and Ahmad, F. (2021). Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1):e4150. DOI: 10.1002/ett.4150.

Ahmed, M., Mahmood, A. N., and Hu, J. (2016). A survey of network anomaly detection techniques. Journal of Network and Computer Applications, 60:19-31. DOI: 10.1016/j.jnca.2015.11.016.

Al-Absi, M. A., Al-Absi, A. A., Sain, M., and Lee, H. (2021). Moving ad hoc networks—a comparative study. Sustainability, 13(11). DOI: 10.3390/su13116187.

Aldhanhani, T., Abraham, A., Hamidouche, W., and Shaaban, M. (2024). Future trends in smart green iov: Vehicle-to-everything in the era of electric vehicles. IEEE Open Journal of Vehicular Technology, 5:278-297. DOI: 10.1109/OJVT.2024.3358893.

Alladi, T., Gera, B., Agrawal, A., Chamola, V., and Yu, F. R. (2021). Deepadv: A deep neural network framework for anomaly detection in vanets. IEEE Transactions on Vehicular Technology, 70(11):12013-12023. DOI: 10.1109/TVT.2021.3113807.

Alqahtani, H. and Kumar, G. (2024). Machine learning for enhancing transportation security: A comprehensive analysis of electric and flying vehicle systems. Engineering Applications of Artificial Intelligence, 129:107667. DOI: 10.1016/j.engappai.2023.107667.

Aslam, B., Amjad, F., and Zou, C. C. (2012). Optimal roadside units placement in urban areas for vehicular networks. In 2012 IEEE Symposium on Computers and Communications (ISCC), pages 000423-000429. DOI: 10.1109/ISCC.2012.6249333.

Bangui, H. and Buhnova, B. (2021). Recent advances in machine-learning driven intrusion detection in transportation: Survey. Procedia Computer Science, 184:877-886. DOI: 10.1016/j.procs.2021.04.014.

Bhuyan, M. H., Bhattacharyya, D. K., and Kalita, J. K. (2014). Network anomaly detection: Methods, systems and tools. IEEE Communications Surveys & Tutorials, 16(1):303-336. DOI: 10.1109/SURV.2013.052213.00046.

Black, S. and Kim, Y. (2022). An overview on detection and prevention of application layer ddos attacks. In 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), pages 0791-0800. DOI: 10.1109/CCWC54503.2022.9720741.

Borchers, T., Wittowsky, D., and Fernandes, R. A. S. (2024). A comprehensive survey and future directions on optimising sustainable urban mobility. IEEE Access, 12:63023-63048. DOI: 10.1109/ACCESS.2024.3393470.

Buczak, A. L. and Guven, E. (2016). A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Communications Surveys & Tutorials, 18(2):1153-1176. DOI: 10.1109/COMST.2015.2494502.

Cebula, J., Popeck, M., and Young, L. (2014). A taxonomy of operational cyber security risks version 2. Technical Report CMU/SEI-2014-TN-006.

Chang, X., Li, H., Rong, J., Huang, Z., Chen, X., and Zhang, Y. (2019). Effects of on-board unit on driving behavior in connected vehicle traffic flow. Journal of Advanced Transportation, 2019:8591623. DOI: 10.1155/2019/8591623.

Chapelle, O., Scholkopf, B., and Zien, Eds., A. (2009). Semi-supervised learning (chapelle, o. et al., eds.; 2006) [book reviews]. IEEE Transactions on Neural Networks, 20(3):542-542. DOI: 10.1109/TNN.2009.2015974.

Cisco Systems (2023). Snort - network intrusion and detection system. Available online [link], Accessed 18 abr. 2023.

Codeca, L., Frank, R., and Engel, T. (2015). Luxembourg sumo traffic (lust) scenario: 24 hours of mobility for vehicular networking research. In 2015 IEEE Vehicular Networking Conference (VNC), pages 1-8. DOI: 10.1109/VNC.2015.7385539.

Deeksha, Kumar, A., and Bansal, M. (2017). A review on vanet security attacks and their countermeasure. In 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC), pages 580-585. DOI: 10.1109/ISPCC.2017.8269745.

Dongare, A., Kharde, R., Kachare, A. D., et al. (2012). Introduction to artificial neural network. International Journal of Engineering and Innovative Technology (IJEIT), 2(1):189-194. Available online [link].

Dutra, F., Bonfim, K., Travagini, C., Meneguette, R., Santos, A., and Pereira, L. (2022). Detecção incremental de comportamento malicioso em vanets. In Anais do XXII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais, pages 125-138, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/sbseg.2022.225164.

Feiri, M., Petit, J., Schmidt, R. K., and Kargl, F. (2013). The impact of security on cooperative awareness in vanet. In 2013 IEEE Vehicular Networking Conference, pages 127-134. DOI: 10.1109/VNC.2013.6737599.

Gillani, M., Niaz, H. A., Farooq, M. U., and Ullah, A. (2022). Data collection protocols for VANETs: a survey. Complex & Intelligent Systems, 8(3):2593-2622. DOI: 10.1007/s40747-021-00629-x.

Gonçalves, F., Macedo, J., and Santos, A. (2021). Evaluation of vanet datasets in context of an intrusion detection system. In 2021 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pages 1-6. DOI: 10.23919/SoftCOM52868.2021.9559058.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. Available online [link].

Gopal, S., Gupta, P., Sharma, M., Kaushal, D., Joshi, S., and Sharma, B. (2023). Iot enabled e-vehicles for developing smart transportation system. In 2023 International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT), pages 1063-1068. DOI: 10.1109/ICAICCIT60255.2023.10466202.

Grover, J., Jain, A., Singhal, S., and Yadav, A. (2018). Real-time vanet applications using fog computing. In Somani, A. K., Srivastava, S., Mundra, A., and Rawat, S., editors, Proceedings of First International Conference on Smart System, Innovations and Computing, pages 683-691, Singapore. Springer Singapore. DOI: 10.1007/978-981-10-5828-8_65.

Guerna, A., Bitam, S., and Calafate, C. T. (2022). Roadside unit deployment in internet of vehicles systems: A survey. Sensors, 22(9). DOI: 10.3390/s22093190.

Hawkins, D. M. (1980). Identification of Outliers. Springer Netherlands. DOI: 10.1007/978-94-015-3994-4.

Hezam Al Junaid, Mohammed Ali, Syed, A.A., Mohd Warip, Mohd Nazri, Fazira Ku Azir, Ku Nurul, and Romli, Nurul Hidayah (2018). Classification of security attacks in vanet: A review of requirements and perspectives. MATEC Web of Conferences, 150:06038. DOI: 10.1051/matecconf/201815006038.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507. DOI: 10.1126/science.1127647.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735-1780. DOI: 10.1162/neco.1997.9.8.1735.

Hoque, N., Bhuyan, M. H., Baishya, R., Bhattacharyya, D., and Kalita, J. (2014). Network attacks: Taxonomy, tools and systems. Journal of Network and Computer Applications, 40:307-324. DOI: 10.1016/j.jnca.2013.08.001.

ISO/IEC 27001 (2022). Information security, cybersecurity and privacy protection - Information security management systems - Requirements. Standard, International Organization for Standardization, Geneva, CH. Available online [link].

Izhari, F. and Dhany, H. W. (2024). Optimizing urban traffic management through advanced machine learning: A comprehensive study. In Proceedings of the [Conference Name, if available]. DOI: 10.35335/idss.v6i4.167.

Jiao, Y., Yang, K., Song, D., and Tao, D. (2022). Timeautoad: Autonomous anomaly detection with self-supervised contrastive loss for multivariate time series. IEEE Transactions on Network Science and Engineering, 9(3):1604-1619. DOI: 10.1109/TNSE.2022.3148276.

Kamel, J., Wolf, M., van der Hei, R. W., Kaiser, A., Urien, P., and Kargl, F. (2020). Veremi extension: A dataset for comparable evaluation of misbehavior detection in vanets. In ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pages 1-6. DOI: 10.1109/ICC40277.2020.9149132.

Khraisat, A., Gondal, I., Vamplew, P., and Kamruzzaman, J. (2019). Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity, 2(1):20. DOI: 10.1186/s42400-019-0038-7.

Krogh, A. (2008). What are artificial neural networks? Nature biotechnology, 26(2):195-197. Available online [link].

Kumar, G. and Mikkili, S. (2024). Critical review of vehicle-to-everything (v2x) topologies: Communication, power flow characteristics, challenges, and opportunities. CPSS Transactions on Power Electronics and Applications, 9(1):10-26. DOI: 10.24295/CPSSTPEA.2023.00042.

Li, Z., Liu, F., Yang, W., Peng, S., and Zhou, J. (2022). A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, 33(12):6999-7019. DOI: 10.1109/TNNLS.2021.3084827.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization.

Marinov, T., Nenova, M., and Iliev, G. (2017). Dangerous weather warning algorithm in vanet. International Scientific Conference on Information, Communication and Energy Systems and Technologies, Niš, Serbia. Available online [link].

Mitchell, T. M. (1997). Machine learning, volume 1. McGraw-hill New York. Book.

Murphy, K. P. (2022). Probabilistic Machine Learning: An introduction. MIT Press. Book.

Nassif, A. B., Talib, M. A., Nasir, Q., and Dakalbab, F. M. (2021). Machine learning for anomaly detection: A systematic review. IEEE Access, 9:78658-78700. DOI: 10.1109/ACCESS.2021.3083060.

Nie, L., Wang, H., Gong, S., Ning, Z., Obaidat, M. S., and Hsiao, K.-F. (2019). Anomaly detection based on spatio-temporal and sparse features of network traffic in vanets. In 2019 IEEE Global Communications Conference (GLOBECOM), pages 1-6. DOI: 10.1109/GLOBECOM38437.2019.9013915.

Open Information Security Foundation (2023). Suricata - observe. protect. adapt. Available online [link].

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32, pages 8024-8035. Curran Associates, Inc. Available online [link].

Ramadan, R. A., Emara, A.-H., Al-Sarem, M., and Elhamahmy, M. (2021). Internet of drones intrusion detection using deep learning. Electronics, 10(21). DOI: 10.3390/electronics10212633.

Ribeiro, A. H., Tiels, K., Aguirre, L. A., and Schön, T. (2020). Beyond exploding and vanishing gradients: analysing rnn training using attractors and smoothness. In Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. Available online [link].

Salehinejad, H., Sankar, S., Barfett, J., Colak, E., and Valaee, S. (2017). Recent advances in recurrent neural networks. arXiv preprint arXiv:1801.01078. DOI: 10.48550/arXiv.1801.01078.

Sarhan, M., Layeghy, S., Gallagher, M., and Portmann, M. (2023). From zero-shot machine learning to zero-day attack detection. International Journal of Information Security. DOI: 10.1007/s10207-023-00676-0.

Sommer, C., German, R., and Dressler, F. (2011). Bidirectionally coupled network and road traffic simulation for improved ivc analysis. IEEE Transactions on Mobile Computing, 10(1):3-15. DOI: 10.1109/TMC.2010.133.

Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., and Pei, D. (2019). Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD '19, page 2828–2837, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3292500.3330672.

Tan, H., Gui, Z., and Chung, I. (2018). A secure and efficient certificateless authentication scheme with unsupervised anomaly detection in vanets. IEEE Access, 6:74260-74276. DOI: 10.1109/ACCESS.2018.2883426.

Tuli, S., Casale, G., and Jennings, N. R. (2022). Tranad: Deep transformer networks for anomaly detection in multivariate time series data.

V2X Core Technical Committee (2023). V2X communications message set dictionary. 400 Commonwealth Drive, Warrendale, PA, United States. DOI: 10.4271/J2735_202309.

van der Heijden, R. W., Lukaseder, T., and Kargl, F. (2018). Veremi: A dataset for comparable evaluation of misbehavior detection in vanets.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc. Available online [link].

Veeramreddy, J., Prasad, V., and Prasad, K. (2011). A review of anomaly based intrusion detection systems. International Journal of Computer Applications, 28:26-35. DOI: 10.5120/3399-4730.

Vihurskyi, B. (2024). Optimizing urban traffic management with machine learning techniques: A systematic review. In 2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT), pages 403-408. DOI: 10.1109/InCACCT61598.2024.10551137.

Downloads

Published

2025-05-16

How to Cite

Ventura, H. T., Moretti, R. de A., Vendramin, A. C. B. K., & Pigatto, D. F. (2025). Intrusion detection in vehicular networks using machine learning. Journal of Internet Services and Applications, 16(1), 174–193. https://doi.org/10.5753/jisa.2025.5017

Issue

Section

Research article