Spatial Optimization of Charging Networks for Heavy-Duty EVs Using Hexagonal Discrete Models

Authors

DOI:

https://doi.org/10.5753/jisa.2025.5022

Keywords:

electric vehicles, charging station placement, facility-location, spatio-temporal simulation, real-world data

Abstract

Due to the environmental impact caused by greenhouse gas emissions, solving problems aimed at increasing the usage of electric vehicles became important. Personal Electric Vehicles are being highly adopted by society in order to reduce emissions. However, a prominent part of air pollution is provided by heavy-duty vehicles, such as trucks, and its electrification is challenging because of the lack of government policies and charging infrastructure. In light of this, electric charge stations should be located considering the truck drivers’ route to increase its adoption. Therefore, this study proposes two hexagonal discrete covering models, a Hexagonal P-Median (HPMP) and Hexagonal Capacitated Location Set Covering (HCLSCP), enhancing the space complexity of classical discrete models to cover the Brazilian truck drivers’ route. Furthermore, we compare the novel hexagonal models to a greedy method using a spatio-temporal simulation. We consider the infrastructure limitations with capacity constraints and waiting time in recharging queues with real-world data comprising locations of 3,086 drivers. The results show a trade-off between infrastructure cost, coverage demand, and queuing performance. The HPMP is ideal for covering demand, while the greedy method minimizes infrastructure cost, and HCLSCP outperforms the other models in queuing management.

Downloads

Download data is not yet available.

References

Ahmad, F., Iqbal, A., Asharf, I., Marzband, M., and Khan, I. (2023). Placement and capacity of ev charging stations by considering uncertainties with energy management strategies. IEEE Transactions on Industry Applications, 59(3):3865-3874. DOI: 10.1109/TIA.2023.3253817.

Akter, T. and Hernandez, S. (2023). Representative truck activity patterns from anonymous mobile sensor data. International Journal of Transportation Science and Technology, 12(2):492-504. DOI: 10.1016/j.ijtst.2022.05.002.

Andrade, J., Ochoa, L. F., and Freitas, W. (2020). Regional-scale allocation of fast charging stations: travel times and distribution system reinforcements. IET Generation, Transmission & Distribution, 14(19):4225-4233. DOI: 10.1049/iet-gtd.2019.1786.

Bi, R., Xiao, J., Pelzer, D., Ciechanowicz, D., Eckhoff, D., and Knoll, A. (2017). A simulation-based heuristic for city-scale electric vehicle charging station placement. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pages 1-7. DOI: 10.1109/ITSC.2017.8317680.

Celes, C., Silva, F. A., Boukerche, A., de Castro Andrade, R. M., and Loureiro, A. A. (2017). Improving vanet simulation with calibrated vehicular mobility traces. IEEE Transactions on Mobile Computing, 16(12):3376-3389. DOI: 10.1109/TMC.2017.2690636.

Chen, Y., Zhang, H., Sun, W., and Zheng, B. (2023). Rntrajrec: Road network enhanced trajectory recovery with spatial-temporal transformer. In 2023 IEEE 39th International Conference on Data Engineering (ICDE), pages 829-842. IEEE. DOI: 10.1109/ICDE55515.2023.00069.

Church, R. L., Murray, A., et al. (2018). Location covering models. Advances in Spatial Science. DOI: 10.1007/978-3-319-99846-6.

Cui, Q., Weng, Y., and Tan, C.-W. (2019). Electric vehicle charging station placement method for urban areas. IEEE Transactions on Smart Grid, 10(6):6552-6565. DOI: 10.1109/TSG.2019.2907262.

Current, J. R. and Storbeck, J. E. (1988). Capacitated covering models. Environment and planning B: planning and Design, 15(2):153-163. DOI: 10.1068/b150153.

Deng, Y., Chen, Z., Yan, P., and Zhong, R. (2023). Battery swapping and management system design for electric trucks considering battery degradation. Transportation Research Part D: Transport and Environment, 122:103860. DOI: 10.1016/j.trd.2023.103860.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1(1):269-271. DOI: 10.1145/3544585.3544600.

Feng, X., Barcelos, G., Gaboardi, J. D., Knaap, E., Wei, R., Wolf, L. J., Zhao, Q., and Rey, S. J. (2022). spopt: a python package for solving spatial optimization problems in pysal. Journal of Open Source Software, 7(74). DOI: 10.21105/joss.03330.

Giuliano, G., Dessouky, M., Dexter, S., Fang, J., Hu, S., and Miller, M. (2021). Heavy-duty trucks: The challenge of getting to zero. Transportation Research Part D: Transport and Environment, 93:102742. DOI: 10.1016/j.trd.2021.102742.

Gündüz, S. B., Geçici, E., and Güler, M. G. (2024). Locating hydrogen fuel stations: A comparative study for istanbul. International Journal of Hydrogen Energy, 52:1234-1246. DOI: 10.1016/j.ijhydene.2023.10.295.

He, S. Y., Kuo, Y.-H., and Wu, D. (2016). Incorporating institutional and spatial factors in the selection of the optimal locations of public electric vehicle charging facilities: A case study of beijing, china. Transportation Research Part C: Emerging Technologies, 67:131-148. DOI: 10.1016/j.trc.2016.02.003.

Hu, X., Lei, H., Deng, D., Bi, Y., Zhao, J., and Wang, R. (2024). A two-stage approach to siting electric bus charging stations considering future-current demand. Journal of Cleaner Production, 434:139962. DOI: 10.1016/j.jclepro.2023.139962.

IEA (2024). Global ev outlook. Technical report, IEA. Available online [link].

Iravani, H. (2022). A multicriteria gis-based decision-making approach for locating electric vehicle charging stations. Transportation Engineering, 9:100135. DOI: 10.1016/j.treng.2022.100135.

Jahangir, H., Gougheri, S. S., Vatandoust, B., Golkar, M. A., Golkar, M. A., Ahmadian, A., and Hajizadeh, A. (2022). A novel cross-case electric vehicle demand modeling based on 3d convolutional generative adversarial networks. IEEE Transactions on Power Systems, 37(2):1173-1183. DOI: 10.1109/TPWRS.2021.3100994.

Kchaou-Boujelben, M. (2021). Charging station location problem: A comprehensive review on models and solution approaches. Transportation Research Part C: Emerging Technologies, 132:103376. DOI: 10.1016/j.trc.2021.103376.

Lam, A. Y. S., Leung, Y.-W., and Chu, X. (2014). Electric vehicle charging station placement: Formulation, complexity, and solutions. IEEE Transactions on Smart Grid, 5(6):2846-2856. DOI: 10.1109/TSG.2014.2344684.

Liimatainen, H., van Vliet, O., and Aplyn, D. (2019). The potential of electric trucks – an international commodity-level analysis. Applied Energy, 236:804-814. DOI: 10.1016/j.apenergy.2018.12.017.

Lin, J., Zhou, W., and Wolfson, O. (2016). Electric vehicle routing problem. Transportation research procedia, 12:508-521. DOI: 10.1016/j.trpro.2016.02.007.

Machado, C. A. S., Takiya, H., Yamamura, C. L. K., Quintanilha, J. A., and Berssaneti, F. T. (2020). Placement of infrastructure for urban electromobility: A sustainable approach. Sustainability, 12(16):6324. DOI: 10.3390/su12166324.

Omohundro, S. M. (1989). Five balltree construction algorithms. International Computer Science Institute. Available online [link].

O’Connell, A., Pavlenko, N., Bieker, G., and Searle, S. (2023). A comparison of the life-cycle greenhouse gas emissions of european heavy-duty vehicles and fuels. International Council on Clean Transportation: Washington, DC, USA, pages 1-36. Available online [link].

Santos, G., Melos, G., Figueiredo, L., Silva, F., Silva, T., and Loureiro, A. (2024). Hexagonal p-median: Um modelo para alocação de pontos de recarga para caminhões elétricos. In Anais do VIII Workshop de Computação Urbana, pages 169-182, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/courb.2024.3278.

Tamba, M., Krause, J., Weitzel, M., Ioan, R., Duboz, L., Grosso, M., and Vandyck, T. (2022). Economy-wide impacts of road transport electrification in the eu. Technological forecasting and social change, 182:121803. DOI: 10.1016/j.techfore.2022.121803.

Tobler, W. R. (1970). A computer movie simulating urban growth in the detroit region. Economic geography, 46(sup1):234-240. DOI: 10.2307/143141.

Viswanathan, V., Zehe, D., Ivanchev, J., Pelzer, D., Knoll, A., and Aydt, H. (2016). Simulation-assisted exploration of charging infrastructure requirements for electric vehicles in urban environments. Journal of Computational Science, 12:1-10. DOI: 10.1016/j.jocs.2015.10.012.

Wu, J., Powell, S., Xu, Y., Rajagopal, R., and Gonzalez, M. C. (2024). Planning charging stations for 2050 to support flexible electric vehicle demand considering individual mobility patterns. Cell Reports Sustainability, 1(1). Available online [link].

Xiong, Y., An, B., and Kraus, S. (2021). Electric vehicle charging strategy study and the application on charging station placement. Autonomous Agents and Multi-Agent Systems, 35(1):1-19. DOI: 10.1007/s10458-020-09484-5.

Xiong, Y., Gan, J., An, B., Miao, C., and Bazzan, A. L. (2017). Optimal electric vehicle fast charging station placement based on game theoretical framework. IEEE Transactions on Intelligent Transportation Systems, 19(8):2493-2504. DOI: 10.1109/TITS.2017.2754382.

Zafar, U., Bayram, I. S., and Bayhan, S. (2021). A gis-based optimal facility location framework for fast electric vehicle charging stations. In 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), pages 1-5. IEEE. DOI: 10.1109/ISIE45552.2021.9576448.

Downloads

Published

2025-05-30

How to Cite

dos Santos, G. B., Melos, G. C., Figueiredo, L. J. A. S., Silva, F. A., Silva, T. R. M. B., & Loureiro, A. A. F. (2025). Spatial Optimization of Charging Networks for Heavy-Duty EVs Using Hexagonal Discrete Models. Journal of Internet Services and Applications, 16(1), 268–286. https://doi.org/10.5753/jisa.2025.5022

Issue

Section

Research article