Blockchain-Based location validation in an environment of mutual distrust

Authors

DOI:

https://doi.org/10.5753/jisa.2025.5039

Keywords:

Blockchain, Decentralized, Location proof, Trust management, Vehicular networks

Abstract

As technology advances, more and more of our day-to-day objects are made smart and communicate with each other. Vehicles are no exception. They can exchange data to increase safety on the road or find more efficient routes, among other conveniences. Just like every other moving object, many of these applications are location-dependent. However, the network is vulnerable to safety and privacy threats. Certain dishonest and misbehaving peers may try to exploit the network. Therefore, establishing trust between vehicles is one of the network's most important challenges. We propose a decentralized and verifiable model for verifying GPS data using Cartesi Rollups. In this way, we count on the scalability of the multilayer blockchain solution and avoid the communication overhead of a voting system. We evaluated this model by simulating it with SUMO, varying the density of fraudulent nodes and the signal range. Under these conditions, it was able to identify fraud attempts with more than 85% accuracy in the worst cases.

Downloads

Download data is not yet available.

References

Asaad, S. M. and Maghdid, H. S. (2022). A comprehensive review of indoor/outdoor localization solutions in iot era: Research challenges and future perspectives. Computer Networks, 212:109041. DOI: 10.36227/techrxiv.15138609.v1.

Behrisch, M., Bieker, L., Erdmann, J., and Krajzewicz, D. (2011). Sumo-simulation of urban mobility: an overview. In Proceedings of SIMUL 2011, The Third International Conference on Advances in System Simulation. ThinkMind. Available at: [link].

Boeira, F., Barcellos, M. P., de Freitas, E. P., Vinel, A., and Asplund, M. (2017). Effects of colluding sybil nodes in message falsification attacks for vehicular platooning. In 2017 IEEE Vehicular Networking Conference (VNC), pages 53-60. IEEE. DOI: 10.1109/vnc.2017.8275641.

Cartesi (2022). Cartesi Documentation. Available at: [link].

Choudhury, N. (2014). World wide web and its journey from web 1.0 to web 4.0. International Journal of Computer Science and Information Technologies, 5(6):8096-8100. Available at: [link].

Ferraz, L. H. G., Velloso, P. B., and Duarte, O. C. M. (2014). An accurate and precise malicious node exclusion mechanism for ad hoc networks. Ad hoc networks, 19:142-155. DOI: 10.1016/j.adhoc.2014.03.001.

Getting, B. (2007). Basic definitions: Web 1.0, web. 2.0, web 3.0. Available at: [link] Acesso em 13.07.2023.

Hartig, O. and Pérez, J. (2018). Semantics and complexity of graphql. In Proceedings of the 2018 World Wide Web Conference, pages 1155-1164. DOI: 10.1145/3178876.3186014.

Kudva, S., Badsha, S., Sengupta, S., La, H., Khalil, I., and Atiquzzaman, M. (2021). A scalable blockchain based trust management in vanet routing protocol. Journal of Parallel and Distributed Computing, 152:144-156. DOI: 10.1016/j.jpdc.2021.02.024.

Kumar, N., Acharya, D., and Lohani, D. (2020). An iot-based vehicle accident detection and classification system using sensor fusion. IEEE Internet of Things Journal, 8(2):869-880. DOI: 10.1109/jiot.2020.3008896.

Moura, E. (2021). Cartesi rollups. Available at: [link] Accessed on 2022-02.

Muratov, F., Lebedev, A., Iushkevich, N., Nasrulin, B., and Takemiya, M. (2018). Yac: Bft consensus algorithm for blockchain. arXiv preprint arXiv:1809.00554. DOI: 10.48550/arxiv.1809.00554.

Murugesan, S. (2007). Understanding web 2.0. IT professional, 9(4):34-41. DOI: 10.1109/mitp.2007.78.

Nakamoto, S. (2008). Bitcoin whitepaper. URL: https://bitcoin. org/bitcoin. pdf-(Дата обращения: 17.07. 2019). DOI: 10.21428/9610ddb2.a6a2490c.

Park, S. (2021). D-park: User-centric smart parking system over ble-beacon based internet of things. Electronics, 10(5):541. DOI: 10.3390/electronics10050541.

Prefeitura da Cidade do Rio de Janeiro (2022). Transporte rodoviário: Api de gps dos ônibus (sppo). Available at: [link].

Prefeitura Rio (2021). Prefeitura poderá multar consórcios por meio dos dados de gps dos ônibus. Available at: [link].

Ragnedda, M. and Destefanis, G. (2019). Blockchain and Web 3.0. London: Routledge, Taylor and Francis Group. DOI: 10.4324/9780429029530.

Singh, P. K., Singh, R., Nandi, S. K., Ghafoor, K. Z., Rawat, D. B., and Nandi, S. (2020). Blockchain-based adaptive trust management in internet of vehicles using smart contract. IEEE Transactions on Intelligent Transportation Systems, 22(6):3616-3630. DOI: 10.1109/tits.2020.3004041.

Szumska, E., Stańczyk, T., Zuska, A., Grabski, P., Jáskiewicz, M., Jurecki, R., Kurczyński, D., and Lagowski, P. (2022). Experimental testing of longitudinal acceleration in urban buses. In IOP Conference Series: Materials Science and Engineering, volume 1247, page 012017. IOP Publishing. DOI: 10.1088/1757-899x/1247/1/012017.

Teixeira, A. and Nehab, D. (2018). The core of cartesi. Whitepaper, Cartesi. Available at: [link].

Thibault, L. T., Sarry, T., and Hafid, A. S. (2022). Blockchain scaling using rollups: A comprehensive survey. IEEE Access. DOI: 10.1109/access.2022.3200051.

Yang, Z., Yang, K., Lei, L., Zheng, K., and Leung, V. C. (2018). Blockchain-based decentralized trust management in vehicular networks. IEEE internet of things journal, 6(2):1495-1505. DOI: 10.1109/jiot.2018.2836144.

Downloads

Published

2025-07-09

How to Cite

Loivos, E. B., Vianna, A. A., & Rocha, A. A. de A. (2025). Blockchain-Based location validation in an environment of mutual distrust. Journal of Internet Services and Applications, 16(1), 407–418. https://doi.org/10.5753/jisa.2025.5039

Issue

Section

Research article