An Alternative Particle Filter-Driven ADR for Mobile Devices in LoRaWAN Networks

Authors

DOI:

https://doi.org/10.5753/jisa.2025.5043

Keywords:

ADR, Internet of Things, LoRaWAN, Mobility, Particle Filter

Abstract

LoRaWAN is a leading LPWAN technology for Internet of Things applications, known for its long-range communication and low-power consumption. Its ADR mechanism optimizes performance by adjusting transmission parameters, such as spreading factor and transmission power, based on network conditions. However, ADR faces significant limitations in environments with mobile end devices, where fluctuating signal quality leads to increased packet loss, inefficient energy usage, and reduced communication reliability. To address these challenges, PF-ADR, an alternative ADR scheme, is proposed for LoRaWAN networks with mobile devices. PF-ADR employs a particle filter to estimate a representative SNR value, maintaining multiple hypotheses of the communication channel state to enable more precise parameter adjustments. Simulations conducted under various scalability conditions reveal that PF-ADR achieves up to 29.5% higher packet delivery ratio compared to M-ADR, and 52.17% more than the standard ADR, while demonstrating a 43.19% improvement in energy efficiency over MB-ADR. Additionally, the algorithm reduces packet loss due to signal degradation while maintaining scalable performance in large networks. These results highlight the potential of PF-ADR to enhance communication reliability and energy efficiency in dynamic mobile environments.

Downloads

Download data is not yet available.

References

Ahwiadi, M. and Wang, W. (2020). An Adaptive Particle Filter Technique for System State Estimation and Prognosis. IEEE Transactions on Instrumentation and Measurement, 69(9):6756-6765. DOI: 10.1109/TIM.2020.2973850.

Al-Gumaei, Y. A., Aslam, N., Aljaidi, M., Al-Saman, A., Alsarhan, A., and Ashyap, A. Y. (2022). A Novel Approach to Improve the Adaptive-Data-Rate Scheme for IoT LoRaWAN. Electronics, 11(21). DOI: 10.3390/electronics11213521.

Almuhaya, M. A. M., Jabbar, W. A., Sulaiman, N., and Abdulmalek, S. (2022). A Survey on LoRaWAN Technology: Recent Trends, Opportunities, Simulation Tools and Future Directions. Electronics, 11(1). DOI: 10.3390/electronics11010164.

Anwar, K., Rahman, T., Zeb, A., Khan, I., Zareei, M., and Vargas-Rosales, C. (2021a). RM-ADR: Resource Management Adaptive Data Rate for Mobile Application in LoRaWAN. Sensors, 21(23). DOI: 10.3390/s21237980.

Anwar, K., Rahman, T., Zeb, A., Saeed, Y., Khan, M. A., Khan, I., Ahmad, S., Abdelgawad, A. E., and Abdollahian, M. (2021b). Improving the Convergence Period of Adaptive Data Rate in a Long Range Wide Area Network for the Internet of Things Devices. Energies, 14(18). DOI: 10.3390/en14185614.

Azizi, F., Teymuri, B., Aslani, R., Rasti, M., Tolvaneny, J., and Nardelli, P. H. J. (2022). MIX-MAB: Reinforcement Learning-based Resource Allocation Algorithm for LoRaWAN. In 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), pages 1-6. DOI: 10.1109/VTC2022-Spring54318.2022.9860807.

Bai, X., Qin, F., Ge, L., Zeng, L., and Zheng, X. (2023). Dynamic state estimation for synchronous generator with communication constraints: An improved regularized particle filter approach. IEEE Transactions on Sustainable Computing, 8(2):222-231. DOI: 10.1109/TSUSC.2022.3221090.

Baruffa, G. and Rugini, L. (2022). Performance of LoRa-Based Schemes and Quadrature Chirp Index Modulation. IEEE Internet of Things Journal, 9(10):7759-7772. DOI: 10.1109/JIOT.2021.3114096.

Benkahla, N., Tounsi, H., Song, Y.-Q., and Frikha, M. (2021a). Review and experimental evaluation of ADR enhancements for LoRaWAN networks. Telecommunication Systems, 77(1):1-22. DOI: 10.1007/s11235-020-00738-x.

Benkahla, N., Tounsi, H., Song, Y.-Q., and Frikha, M. (2021b). VHMM-based E-ADR for LoRaWAN networks with unknown mobility patterns. In 2021 International Wireless Communications and Mobile Computing (IWCMC), pages 86-91. DOI: 10.1109/IWCMC51323.2021.9498709.

Camarillo-Escobedo, R., Flores, J. L., Marin-Montoya, P., García-Torales, G., and Camarillo-Escobedo, J. M. (2022). Smart multi-sensor system for remote air quality monitoring using unmanned aerial vehicle and lorawan. Sensors, 22(5). DOI: 10.3390/s22051706.

Farhad, A., Kim, D.-H., and Pyun, J.-Y. (2022). R-ARM: Retransmission-Assisted Resource Management in LoRaWAN for the Internet of Things. IEEE Internet of Things Journal, 9(10):7347-7361. DOI: 10.1109/JIOT.2021.3111167.

Farhad, A., Kwon, G.-R., and Pyun, J.-Y. (2023). Mobility Adaptive Data Rate Based on Kalman Filter for LoRa-Empowered IoT Applications. In 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC), pages 321-324. DOI: 10.1109/CCNC51644.2023.10060330.

Farhad, A. and Pyun, J.-Y. (2023). AI-ERA: Artificial Intelligence-Empowered Resource Allocation for LoRa-Enabled IoT Applications. IEEE Transactions on Industrial Informatics, 19(12):11640-11652. DOI: 10.1109/TII.2023.3248074.

Francis, I. and Mohd Shah, S. (2022). Cost-Effective Arduino-Based RFID Automated Cage Door and Pet Tagging with GPS Tracker using Peer-to-Peer LoRaWAN. Journal of Electronic Voltage and Application, 3(2):47–58. DOI: 10.30880/jeva.2022.03.02.005.

González-Palacio, M., Tobón-Vallejo, D., Sepúlveda-Cano, L. M., Rúa, S., Pau, G., and Le, L. B. (2023). LoRaWAN Path Loss Measurements in an Urban Scenario including Environmental Effects. Data, 8(1). DOI: 10.3390/data8010004.

Grooms, I. and Robinson, G. (2021). A hybrid particle-ensemble Kalman filter for problems with medium nonlinearity. PLOS ONE, 16(3):1-20. DOI: 10.1371/journal.pone.0248266.

Gyenes, Z. and Szádeczky-Kardoss, E. G. (2021). Particle filter-based perception method for obstacles in dynamic environment of a mobile robot. In 2021 25th International Conference on Methods and Models in Automation and Robotics (MMAR), pages 97-102. DOI: 10.1109/MMAR49549.2021.9528442.

Ilahi, I., Usama, M., Farooq, M. O., Umar Janjua, M., and Qadir, J. (2020). LoRaDRL: Deep Reinforcement Learning Based Adaptive PHY Layer Transmission Parameters Selection for LoRaWAN. In 2020 IEEE 45th Conference on Local Computer Networks (LCN), pages 457-460. DOI: 10.1109/LCN48667.2020.9314772.

Jouhari, M., Saeed, N., Alouini, M.-S., and Amhoud, E. M. (2023). A Survey on Scalable LoRaWAN for Massive IoT: Recent Advances, Potentials, and Challenges. IEEE Communications Surveys & Tutorials, 25(3):1841-1876. DOI: 10.1109/COMST.2023.3274934.

Kufakunesu, R., Hancke, G., and Abu-Mahfouz, A. (2022). A Fuzzy-Logic Based Adaptive Data Rate Scheme for Energy-Efficient LoRaWAN Communication. Journal of Sensor and Actuator Networks, 11:65. DOI: 10.3390/jsan11040065.

Kufakunesu, R., Hancke, G. P., and Abu-Mahfouz, A. M. (2020). A Survey on Adaptive Data Rate Optimization in LoRaWAN: Recent Solutions and Major Challenges. Sensors, 20(18). DOI: 10.3390/s20185044.

Li, X., Xu, J., Li, R., Jia, L., and You, J. (2024). Advancing Performance in LoRaWAN Networks: The Circular Region Grouped Bit-Slot LoRa MAC Protocol. Electronics, 13(3). DOI: 10.3390/electronics13030621.

Lodhi, M. A., Obaidat, M. S., Wang, L., Mahmood, K., Ibrahim Qureshi, K., Chen, J., and Hsiao, K.-F. (2024). Tiny Machine Learning for Efficient Channel Selection in LoRaWAN. IEEE Internet of Things Journal, 11(19):30714-30724. DOI: 10.1109/JIOT.2024.3413585.

Lodhi, M. A., Wang, L., and Farhad, A. (2022). ND-ADR: Nondestructive adaptive data rate for LoRaWAN Internet of Things. International Journal of Communication Systems, 35(9):e5136. DOI: https://doi.org/10.1002/dac.5136.

Loubany, A., Lahoud, S., and El Chall, R. (2020). Adaptive algorithm for spreading factor selection in LoRaWAN networks with multiple gateways. Computer Networks, 182:107491. DOI: https://doi.org/10.1016/j.comnet.2020.107491.

Loubany, A., Lahoud, S., Samhat, A. E., and El Helou, M. (2023). Improving Energy Efficiency in LoRaWAN Networks with Multiple Gateways. Sensors, 23(11). DOI: 10.3390/s23115315.

Magrin, D., Capuzzo, M., and Zanella, A. (2020). A Thorough Study of LoRaWAN Performance Under Different Parameter Settings. IEEE Internet of Things Journal, 7(1):116-127. DOI: 10.1109/JIOT.2019.2946487.

Marais, J. M., Abu-Mahfouz, A. M., and Hancke, G. P. (2023). Improving the Sustainability of Confirmed Traffic in LoRaWANs Through an Adaptive Congestion Scheme. IEEE Sensors Journal, 23(2):1660-1670. DOI: 10.1109/JSEN.2022.3226273.

Martinez-Caro, J.-M. and Cano, M.-D. (2019). IoT System Integrating Unmanned Aerial Vehicles and LoRa Technology: A Performance Evaluation Study. Wireless Communications and Mobile Computing, 2019(1):4307925. DOI: https://doi.org/10.1155/2019/4307925.

Milarokostas, C., Tsolkas, D., Passas, N., and Merakos, L. (2023). A Comprehensive Study on LPWANs With a Focus on the Potential of LoRa/LoRaWAN Systems. IEEE Communications Surveys & Tutorials, 25(1):825-867. DOI: 10.1109/COMST.2022.3229846.

Moysiadis, V., Lagkas, T., Argyriou, V., Sarigiannidis, A., Moscholios, I. D., and Sarigiannidis, P. (2021). Extending ADR mechanism for LoRa enabled mobile end-devices. Simulation Modelling Practice and Theory, 113:102388. DOI: 10.1016/j.simpat.2021.102388.

Nouar, A., Abbes, M. T., Boumerdassi, S., and Chaib, M. (2024). Impact of Mobility Model on LoRaWan Performance. Journal of Communications, 19(1). DOI: 10.12720/jcm.19.1.7-18.

Philip, M. S. and Singh, P. (2021). Energy Consumption Evaluation of LoRa Sensor Nodes in Wireless Sensor Network. In 2021 Advanced Communication Technologies and Signal Processing (ACTS), pages 1-4. DOI: 10.1109/ACTS53447.2021.9708341.

Saleh, A. R. and Momeni, H. R. (2024). An improved iterative closest point algorithm based on the particle filter and K-means clustering for fine model matching. The Visual Computer. DOI: 10.1007/s00371-023-03195-0.

Sallum, E., Pereira, N., Alves, M., and Santos, M. (2020). Improving Quality-Of-Service in LoRa Low-Power Wide-Area Networks through Optimized Radio Resource Management. Journal of Sensor and Actuator Networks, 9(1). DOI: 10.3390/jsan9010010.

Sarmento Neto, G. A., Da Silva, T. A. R., Abreu, P. F. F., Veloso, A. F. D. S., Mendes, L. H. D. O., and Dos Reis Junior, J. V. (2024). Addressing Mobility Challenges in LoRaWAN through Adaptive Data Rate: A Statistical Median-Based Approach. In 2024 11th International Conference on Future Internet of Things and Cloud (FiCloud). DOI: 10.1109/FiCloud62933.2024.00058.

Severino, R. F., Serrador, A., Datia, N., Campos-Rebelo, R., and Machado, J. (2023). A Low-Cost Solution for Assets Location Tracking Based on LoRaWAN Networks. In 2023 IEEE 9th World Forum on Internet of Things (WF-IoT), pages 1-8. DOI: 10.1109/WF-IoT58464.2023.10539413.

To, T.-H. and Duda, A. (2018). Simulation of LoRa in NS-3: Improving LoRa Performance with CSMA. In 2018 IEEE International Conference on Communications (ICC), pages 1-7. DOI: 10.1109/ICC.2018.8422800.

Ullah, I., Su, X., Zhu, J., Zhang, X., Choi, D., and Hou, Z. (2020). Evaluation of Localization by Extended Kalman Filter, Unscented Kalman Filter, and Particle Filter-Based Techniques. Wireless Communications and Mobile Computing, 2020(1):8898672. DOI: https://doi.org/10.1155/2020/8898672.

Vangelista, L., Calabrese, I., and Cattapan, A. (2023). Mobility Classification of LoRaWAN Nodes Using Machine Learning at Network Level. Sensors, 23(4). DOI: 10.3390/s23041806.

Varsi, A., Taylor, J., Kekempanos, L., Pyzer Knapp, E., and Maskell, S. (2020). A Fast Parallel Particle Filter for Shared Memory Systems. IEEE Signal Processing Letters, 27:1570-1574. DOI: 10.1109/LSP.2020.3014035.

Wang, K., Wang, K., and Ren, Y. (2024). Time-Allocation Adaptive Data Rate: An Innovative Time-Managed Algorithm for Enhanced Long-Range Wide-Area Network Performance. Electronics, 13(2). DOI: 10.3390/electronics13020434.

Downloads

Published

2025-05-19

How to Cite

Neto, G. A. S., da Silva, T. A. R., Veloso, A. F. da S., de Abreu, P. F., Mendes, L. H. de O., Rabelo, R. A. L., & dos Reis Jr, J. V. (2025). An Alternative Particle Filter-Driven ADR for Mobile Devices in LoRaWAN Networks. Journal of Internet Services and Applications, 16(1), 194–208. https://doi.org/10.5753/jisa.2025.5043

Issue

Section

Research article