Plant Disease Detection Using Federated Learning and Cloud Infrastructure for Scalability and Data Privacy

Authors

DOI:

https://doi.org/10.5753/jisa.2025.5055

Keywords:

Federated Learning, Distributed Communication, Data Privacy, Disease Detection, Agricultural Productivity

Abstract

Agriculture faces significant challenges from crop diseases, making early and accurate detection critical. Federated Learning (FL), an advancement in artificial intelligence (AI) and machine learning (ML), presents a promising solution by enabling collaborative model training on decentralized data without the need to share sensitive information. This article examines the application of FL in detecting plant diseases through image analysis, highlighting the role of cloud computing in addressing challenges related to data processing, storage, and model scalability. By leveraging decentralized data stored and processed in the cloud, FL develops robust models that not only improve detection accuracy but also generalize effectively to new data, promoting knowledge sharing while ensuring data privacy. The integration of cloud infrastructure enables FL to scale, providing resilience and productivity gains in agricultural practices. The results show that the proposed approach achieves a 99.71% accuracy using the VGG16 model after Federated Learning aggregation, while preserving data confidentiality, enhancing agricultural resilience, and benefiting from the scalability and flexibility offered by cloud computing.

Downloads

Download data is not yet available.

References

Aggarwal, M., Khullar, V., Goyal, N., Alammari, A., Albahar, M. A., and Singh, A. (2023). Lightweight federated learning for rice leaf disease classification using non independent and identically distributed images. Sustainability, 15(16):12149. DOI: 10.3390/su151612149.

Banabilah, S., Aloqaily, M., Alsayed, E., Malik, N., and Jararweh, Y. (2022). Federated learning review: Fundamentals, enabling technologies, and future applications. Information processing & management, 59(6):103061. DOI: 10.1016/j.ipm.2022.103061.

Basseto, V., Sanches, S., Grandi, M., Oliveira, C., Kern, H., and Silla, P. (2022). Catálogo virtual de doenças e pragas de soja. Available online [link].

CABI (2023). Global burden of crop loss. Available online [link].

Chen, M., Shlezinger, N., Poor, H. V., Eldar, Y. C., and Cui, S. (2021). Communication-efficient federated learning. Proceedings of the National Academy of Sciences, 118(17):e2024789118. DOI: 10.1073/pnas.2024789118.

Li, L., Fan, Y., Tse, M., and Lin, K.-Y. (2020). A review of applications in federated learning. Computers & Industrial Engineering, 149:106854. DOI: 10.1016/j.cie.2020.106854.

Mamba Kabala, D., Hafiane, A., Bobelin, L., and Canals, R. (2023). Image-based crop disease detection with federated learning. Scientific Reports, 13(1):19220. DOI: 10.1038/s41598-023-46218-5.

Mehta, S., Kukreja, V., and Yadav, R. (2023a). Advanced mango leaf disease detection and severity analysis with federated learning and cnn. In 2023 3rd International Conference on Intelligent Technologies (CONIT), pages 1-6. DOI: 10.1109/CONIT59222.2023.10205922.

Mehta, S., Kukreja, V., and Yadav, R. (2023b). A federated learning cnn approach for tomato leaf disease with severity analysis. In 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), pages 309-314. DOI: 10.1109/ICAISS58487.2023.10250571.

Moreira, A. L., Tiecher, P. R., Duarte, S. M., Samuelsson, E., Ferreira, L., and dos Santos, F. C. (2022). Joaninhas: Controle de pragas. Revista Científica da Faculdade de Educação e Meio Ambiente, 13(edespmulti). Available online [link].

Shoaib, M., Shah, B., EI-Sappagh, S., Ali, A., Ullah, A., Alenezi, F., Gechev, T., Hussain, T., and Ali, F. (2023). An advanced deep learning models-based plant disease detection: A review of recent research. Frontiers in Plant Science, 14. DOI: 10.3389/fpls.2023.1158933.

Silva, B. F. and Cavichioli, F. A. (2022). O uso de veículos aéreos não tripulados para detecção de pragas e doenças na cultura da soja. Revista Interface Tecnológica, 19(1):236-247. DOI: 10.31510/infa.v19i1.1363.

Souza, J. R., Oliveira, S. Z., and Oliveira, H. (2024). The impact of federated learning on urban computing. Journal of Internet Services and Applications, 15(1):380-409. DOI: 10.5753/jisa.2024.4006.

Zhuansun, Y., Li, D., Huang, X., and Sun, C. (2024). Communication-efficient federated learning with adaptive compression under dynamic bandwidth. arXiv preprint arXiv:2405.03248. DOI: 10.48550/arxiv.2405.03248.

Downloads

Published

2025-09-01

How to Cite

Caminha, P. V., & Oliveira, H. M. N. da S. (2025). Plant Disease Detection Using Federated Learning and Cloud Infrastructure for Scalability and Data Privacy. Journal of Internet Services and Applications, 16(1), 530–543. https://doi.org/10.5753/jisa.2025.5055

Issue

Section

Research article