Performance Evaluation of a Camera Surveillance System in Smart Buildings Using Queuing Models
DOI:
https://doi.org/10.5753/jisa.2025.5076Keywords:
Surveillance Cameras, Smart Building, Edge-Fog computing, Queue TheoryAbstract
Security is increasingly prioritized, driving the use of camera surveillance in various settings such as companies, schools, and hospitals. Cameras deter crime and enable continuous monitoring. Integrating Edge and Fog Computing into these systems decentralizes data processing, allowing for faster responses to critical events. Challenges in deploying such systems include high costs, complex technology integration, and precise sizing. Costs cover cameras, Edge devices, cabling, and software, while integration requires technical expertise and time. Accurate sizing is essential to prevent resource under- or over-utilization. Analytical modeling helps simulate scenarios and calculate needed resources. This work proposes an M/M/c/K queuing model to assess surveillance system performance in smart buildings, considering data arrival rates and Edge and Fog container capacities. The model allows parameter customization to analyze various scenarios. Results show that increasing the number of containers more significantly improves system performance than increasing the number of cores per container.
Downloads
References
Al-Naday, M., Reed, M., Dobre, V., Toor, S., Volckaert, B., and De Turck, F. (2023). Service-based federated deep reinforcement learning for anomaly detection in fog ecosystems. In 2023 26th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), pages 121-128. IEEE. DOI: 10.1109/icin56760.2023.10073495.
Alsadie, D. (2024). Artificial intelligence techniques for securing fog computing environments: trends, challenges, and future directions. IEEE Access. DOI: 10.1109/access.2024.3463791.
Amshavalli, R. and Kalaivani, J. (2023). Real-time institution video data analysis using fog computing and adaptive background subtraction. Journal of Real-Time Image Processing, 20(5):96. DOI: 10.1007/s11554-023-01350-3.
Borges, I., Callou, G., and Silva, F. A. (2023). Performance evaluation and energy consumption of a video surveillance system with distributed storage. In 2023 18th Iberian Conference on Information Systems and Technologies (CISTI), pages 1-6. IEEE. DOI: 10.23919/cisti58278.2023.10211770.
Cui, L., Su, D., Zhou, Y., Zhang, L., Wu, Y., and Chen, S. (2020). Edge learning for surveillance video uploading sharing in public transport systems. IEEE Transactions on Intelligent Transportation Systems, 22(4):2274-2285. DOI: 10.1109/tits.2020.3008420.
Ding, S. (2023). Analysis and application of computer queueing theory. In 2023 International Conference on Image, Algorithms and Artificial Intelligence (ICIAAI 2023), pages 447-453. Atlantis Press. DOI: 10.2991/978-94-6463-300-9_45.
Dudin, S. and Dudina, O. (2023). Analysis of a multi-server queue with group service and service time dependent on the size of a group as a model of a delivery system. Mathematics, 11(22):4587. DOI: 10.3390/math11224587.
Ghandour, O., El Kafhali, S., and Hanini, M. (2023). Computing resources scalability performance analysis in cloud computing data center. Journal of Grid Computing, 21(4):61. DOI: 10.1007/s10723-023-09696-5.
Ghandour, O., El Kafhali, S., and Hanini, M. (2024). Adaptive workload management in cloud computing for service level agreements compliance and resource optimization. Computers and Electrical Engineering, 120:109712. DOI: 10.1016/j.compeleceng.2024.109712.
Gracias, J. S., Parnell, G. S., Specking, E., Pohl, E. A., and Buchanan, R. (2023). Smart cities-a structured literature review. Smart Cities, 6(4):1719-1743. DOI: 10.3390/smartcities6040080.
Hasan, R. A., Obaid, O. I., AlQassab, A. I. M., Jasim, H., and Dheyab, S. A. (2024). Mapping web service characteristics to queueing theory models for performance analysis. Babylonian Journal of Networking, 2024:98-110. DOI: 10.58496/bjn/2024/011.
Hossain, M. E., Tarafder, M. T. R., Ahmed, N., Al Noman, A., Sarkar, M. I., and Hossain, Z. (2023). Integrating ai with edge computing and cloud services for real-time data processing and decision making. International Journal of Multidisciplinary Sciences and Arts, 2(4):252-261. DOI: 10.47709/ijmdsa.v2i1.2559.
Khairuddin, M., Shahbudin, S., and Kassim, M. (2021). A smart building security system with intelligent face detection and recognition. In Iop conference series: Materials science and engineering, volume 1176, page 012030. IOP Publishing. DOI: 10.1088/1757-899x/1176/1/012030.
Kim, W., Kwak, A., Yoo, B., and Ko, H. (2024). Ipfs viewer: Iot surveillance camera system using ipfs and mqtt. In 2024 IEEE International Conference on Consumer Electronics (ICCE), pages 1-6. IEEE. DOI: 10.1109/icce59016.2024.10444244.
Kim, Y. and Jeong, J. (2023). A simulation-based approach to evaluate the performance of automated surveillance camera systems for smart cities. Applied Sciences, 13(19):10682. DOI: 10.3390/app131910682.
Kumar, T., Sharma, P., Tanwar, J., Alsghier, H., Bhushan, S., Alhumyani, H., Sharma, V., and Alutaibi, A. I. (2024). Cloud-based video streaming services: Trends, challenges, and opportunities. CAAI Transactions on Intelligence Technology, 9(2):265-285. DOI: 10.1049/cit2.12299.
Moorthy H., R., Upadhya, V., Holla, V. V., Shetty, S. S., and Tantry, V. V. (2020). Challenges encountered in building a fast and efficient surveillance system: An overview. In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pages 731-737. DOI: 10.1109/I-SMAC49090.2020.9243563.
Myagmar-Ochir, Y. and Kim, W. (2023). A survey of video surveillance systems in smart city. Electronics, 12(17):3567. DOI: 10.3390/electronics12173567.
Narmadha, V. and Rajendran, P. (2024). A literature review on development of queueing networks. Reliability: Theory & Applications, 19(1 (77)):696-702. Available at:[link].
Ogumeyo, S. and Omole, C. (2023). Mathematical analysis of performance measures of m/m/1 queue models. The Transactions of the Nigerian Association of Mathematical Physics, 19:125-134. DOI: 10.60787/tnamp-19-125-134.
Patwal, A., Diwakar, M., Tripathi, V., and Singh, P. (2023). Crowd counting analysis using deep learning: A critical review. Procedia Computer Science, 218:2448-2458. DOI: 10.1016/j.procs.2023.01.220.
Sabino, A., Lima, L. N., Brito, C., Feitosa, L., Caetano, M. F., Barreto, P. S., and Silva, F. A. (2024). Forest fire monitoring system supported by unmanned aerial vehicles and edge computing: a performance evaluation using petri nets. Cluster Computing, pages 1-21. DOI: 10.21203/rs.3.rs-3635851/v1.
Santos, B., Soares, A., Nguyen, T.-A., Min, D.-K., Lee, J.-W., and Silva, F.-A. (2021). Iot sensor networks in smart buildings: A performance assessment using queuing models. Sensors, 21(16):5660. DOI: 10.3390/s21165660.
Sharifi, M., Abhari, A., and Taghipour, S. (2021). A queueing model for video analytics applications of smart cities. In 2021 Winter Simulation Conference (WSC), pages 1-10. IEEE. DOI: 10.1109/wsc52266.2021.9715373.
Singh, P. and Singh, K. D. (2023). Fog-centric intelligent surveillance system: A novel approach for effective and efficient surveillance. In 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT), pages 762-766. IEEE. DOI: 10.1109/incacct57535.2023.10141802.
Singh, P. et al. (2025). Queuing theory in cloud computing: Analyzing m/m/1 and m/m/c/n models with aws. International Journal of Science and Social Science Research, 2(4):122-134. DOI: 10.5281/zenodo.14942226.
Srirama, S. N. (2024). A decade of research in fog computing: relevance, challenges, and future directions. Software: Practice and Experience, 54(1):3-23. DOI: 10.1002/spe.3243.
Usmanova, N., Mirzayev, D., Ergashev, F., and Yunusova, D. (2023). Field monitoring application based on video surveillance: Evaluation of system performance. In E3S Web of Conferences, volume 443, page 06016. EDP Sciences. DOI: 10.1051/e3sconf/202344306016.
Zhou, H., Hu, F., Juras, M., Mehta, A. B., and Deng, Y. (2021). Real-time video streaming and control of cellular-connected uav system: Prototype and performance evaluation. IEEE Wireless Communications Letters, 10(8):1657-1661. DOI: 10.1109/lwc.2021.3076415.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Internet Services and Applications

This work is licensed under a Creative Commons Attribution 4.0 International License.

