A Fuzzy Inference System for DDoS Identification in Fog Computing based on Energy Consumption
DOI:
https://doi.org/10.5753/jisa.2025.5161Keywords:
Fog Computing, Energy Consumption, Distributed Denial of Service Attack, Fuzzy LogicAbstract
Internet of Things (IoT) networks, characterized by their heterogeneous devices, standards, and features, along with limited energy resources, are particularly vulnerable to security threats. Fog computing, which processes data closer to the network edge (i.e., IoT devices), has emerged as a key paradigm for addressing these issues. The Message Queuing Telemetry Transport (MQTT) protocol is commonly used for communication between IoT and fog devices due to its simplicity and ease of implementation. However, MQTT does not include built-in security measures, making it susceptible to Distributed Denial of Service (DDoS) attacks. This paper identifies the main DDoS threats in the context of the MQTT protocol and proposes a Fuzzy Inference System (FIS) designed to detect and classify specific DDoS attack types. By analyzing energy consumption patterns in fog nodes, fuzzy logic infers the degree of membership of a DDoS attack in a fog node, providing a robust method for threat detection in IoT environments.
Downloads
References
Aceto, G., Persico, V., and Pescape, A. (2019). A survey on Information and Communication Technologies for Industry 4.0: state of the art, taxonomies, perspectives, and challenges. IEEE Communications Surveys & Tutorials, 1-(November 2011):1-1. DOI: 10.1109/comst.2019.2938259.
Al-Fayoumi, M. and Abu Al-Haija, Q. (2023). Capturing low-rate DDoS attack based on MQTT protocol in software Defined-IoT environment. Array, 19:100316. DOI: 10.1016/j.array.2023.100316.
Andy, S., Rahardjo, B., and Hanindhito, B. (2017). Attack scenarios and security analysis of MQTT communication protocol in IoT system. International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 4(September):600-604. DOI: 10.11591/eecsi.4.1064.
Berouine, A., Akssas, E., Naitmalek, Y., Lachhab, F., Bakhouya, M., Ouladsine, R., and Essaaidi, M. (2019). A Fuzzy Logic-Based Approach for HVAC Systems Control. 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT'19) | Paris, France / April 23-26, 2019, 1-:1510-1515. DOI: 10.1109/codit.2019.8820356.
Bougdira, A., Akharraz, I., and Ahaitouf, A. (2019). Fuzzy approach to enhance quality control within intelligent traceability systems. 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems, WITS 2019. DOI: 10.1109/WITS.2019.8723764.
Brun, O., Yin, Y., Augusto-gonzalez, J., Ramos, M., Brun, O., Yin, Y., Augusto-gonzalez, J., Ramos, M., Gelenbe, E., Attack, I., Brun, O., Yin, Y., Augusto-gonzalez, J., and Ramos, M. (2019). IoT Attack Detection with Deep Learning To cite this version : HAL Id : hal-02062091 IoT Attack Detection with Deep Learning. ISCIS Security Workshop, Feb 2018, Londres, United Kingdom. Available at: [link].
Butun, I., Osterberg, P., and Song, H. (2020). Security of the Internet of Things: Vulnerabilities, Attacks, and Countermeasures. IEEE Communications Surveys and Tutorials, 22(1):616-644. DOI: 10.1109/COMST.2019.2953364.
Costa, B. S. J., Bezerra, C. G., and De Oliveira, L. A. H. (2012). A multistage fuzzy controller: Toolbox for industrial applications. 2012 IEEE International Conference on Industrial Technology, ICIT 2012, Proceedings, pages 1142-1147. DOI: 10.1109/ICIT.2012.6210094.
Damerdji, D. O., Lehsaini, M., and Benmahdi, M. B. (2024). A Brief Review on Security in IoT Environments Based on Fog Computing Architecture. In 2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC), pages 1-6. DOI: 10.1109/ICEEAC61226.2024.10576289.
Deogirikar, J. and Vidhate, A. (2017). Security Attacks in IoT : A Survey. 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 1-:32-37. DOI: 10.1109/I-SMAC.2017.8058363.
Diro, A., Reda, H., Chilamkurti, N., Mahmood, A., Zaman, N., and Nam, Y. (2020). Lightweight Authenticated-Encryption Scheme for Internet of Things Based on Publish-Subscribe Communication. IEEE Access, 8:60539-60551. DOI: 10.1109/ACCESS.2020.2983117.
Dulik, M. (2019). Network attack using TCP protocol for performing DoS and DDoS attacks. 2019 Communication and Information Technologies Conference Proceedings, KIT 2019 - 10th International Scientific Conference. DOI: 10.23919/KIT.2019.8883481.
Espinosa, J. and Vandewalle, J. (2000). Constructing fuzzy models with linguistic integrity from numerical data-AFRELI algorithm. IEEE Transactions on Fuzzy Systems, 8(5):591-600. DOI: 10.1109/91.873582.
Firdous, S. N., Baig, Z., Valli, C., and Ibrahim, A. (2017). Modelling and Evaluation of Malicious Attacks against the IoT MQTT Protocol. In 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages 748-755. DOI: 10.1109/iThings-GreenCom-CPSCom-SmartData.2017.115.
Haripriya, A. P. and Kulothungan, K. (2019). Secure-MQTT: an efficient fuzzy logic-based approach to detect DoS attack in MQTT protocol for internet of things. Eurasip Journal on Wireless Communications and Networking, 2019(1). DOI: 10.1186/s13638-019-1402-8.
Hazra, A., Rana, P., Adhikari, M., and mgoth, T. A. (2023). Fog computing for next-generation internet of things: Fundamental, state-of-the-art and research challenges. Computer Science Review, 48:100549. DOI: 10.1016/j.cosrev.2023.100549.
Hwang, K., Lee, J. M., Jung, I. H., and Lee, D.-h. H. (2019). Modification of Mosquitto Broker for Delivery of Urgent MQTT Message. 2019 IEEE Eurasia Conference on IOT, Communication and Engineering, ECICE 2019, pages 166-167. DOI: 10.1109/ECICE47484.2019.8942800.
Jang, J., Sun, C., and Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing—A Computational Ap-proach to Learning and Machine Intelligence. 1482 Book Reviews IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 42(10):1482-1484. Book.
Javaheri, D., Gorgin, S., Lee, J.-A., and Masdari, M. (2023). Fuzzy logic-based ddos attacks and network traffic anomaly detection methods: Classification, overview, and future perspectives. Information Sciences, 626:315-338. DOI: 10.1016/j.ins.2023.01.067.
Kepceoglu, B., Murzaeva, A., and Demirci, S. (2019). Performing energy consuming attacks on IoT devices. 27th Telecommunications Forum, TELFOR 2019, pages 19-22. DOI: 10.1109/TELFOR48224.2019.8971102.
Kerimkhulle, S., Dildebayeva, Z., Tokhmetov, A., Amirova, A., Tussupov, J., Makhazhanova, U., Adalbek, A., Taberkhan, R., Zakirova, A., and Salykbayeva, A. (2023). Fuzzy logic and its application in the assessment of information security risk of industrial internet of things. Symmetry, 15(10). DOI: 10.3390/sym15101958.
Khwanrit, R., Kittipiyakul, S., Kudtonagngam, J., and Fujita, H. (2018). Accuracy Comparison of Present Low-cost Current Sensors for Building Energy Monitoring. 2018 International Conference on Embedded Systems and Intelligent Technology and International Conference on Information and Communication Technology for Embedded Systems, ICESIT-ICICTES 2018, pages 3-8. DOI: 10.1109/ICESIT-ICICTES.2018.8442066.
Lakshminarayana, S., Praseed, A., and Thilagam, P. S. (2024). Securing the IoT Application Layer from an MQTT Protocol Perspective: Challenges and Research Prospects. IEEE Communications Surveys & Tutorials, pages 1-1. DOI: 10.1109/COMST.2024.3372630.
Lee, C. C. (1990). Fuzzy Logic in Control Systems: Fuzzy Logic Controller—Part I. IEEE Transactions on Systems, Man and Cybernetics, 20(2):404-418. DOI: 10.1109/21.52551.
Lekić , M., Galić , J., and Matić , S. (2019). An IoT Solution for Secured and Remote Sound Level Monitoring. 2019 18th International Symposium INFOTEH-JAHORINA, INFOTEH 2019 - Proceedings, 1-(March):20-22. DOI: 10.1109/INFOTEH.2019.8717759.
Li, F., Shi, Y., Shinde, A., Ye, J., and Song, W. (2019). Enhanced cyber-physical security in internet of things through energy auditing. IEEE Internet of Things Journal, 6(3):5224-5231. DOI: 10.1109/JIOT.2019.2899492.
Liao, Z., Lu, X., Yang, T., and Wang, H. (2009). Missing data imputation: A fuzzy k-means clustering algorithm over sliding window. 6th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2009, 3:133-137. DOI: 10.1109/FSKD.2009.407.
Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., and Zhao, W. (2017). A Survey on Internet of Things : Architecture , Enabling Technologies , Security and Privacy , and Applications. IEEE Internet of Things Journal ( Volume: 4 , Issue: 5 , Oct. 2017 ), 4(5):1125-1142. DOI: 10.1109/JIOT.2017.2683200.
Mamdani, E. (1974). Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the Institution of Electrical Engineers, 121:1585-1588(3). Available at [link].
Mamdani, E. and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1):1-13. DOI: 10.1016/S0020-7373(75)80002-2.
Mathur, S., Verma, A., and Srivastav, G. (2023). Analysis the three layers of computing: Cloud, fog & edge. In 2023 International Conference on Computational Intelligence, Communication Technology and Networking (CICTN), pages 463-466. DOI: 10.1109/CICTN57981.2023.10140951.
Naik Nitin (2017). Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. 2017 IEEE International Symposium on Systems Engineering, ISSE 2017 - Proceedings. DOI: 10.1109/SysEng.2017.8088251.
Nazir, S. and Kaleem, M. (2019). Security with MQTT. 2019 International Conference on Information Science and Communication Technology (ICISCT), pages 1-5. DOI: 10.1109/CISCT.2019.8777403.
Osanaiye, O., Chen, S., Yan, Z., Lu, R., Choo, K. K. R., and Dlodlo, M. (2017). From Cloud to Fog Computing: A Review and a Conceptual Live VM Migration Framework. IEEE Access, 5:8284-8300. DOI: 10.1109/ACCESS.2017.2692960.
Palmieri, A., Prem, P., Ranise, S., Morelli, U., and Ahmad, T. (2019). MQTTSA: A Tool for Automatically Assisting the Secure Deployments of MQTT Brokers. 2019 IEEE World Congress on Services (SERVICES), 2642-939X:47-53. DOI: 10.1109/services.2019.00023.
Pappis, C. P. and Siettos, C. I. (2005). Fuzzy reasoning. In Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pages 437-474. Search Methodologies. Springer, Boston, MA. DOI: 10.1007/0-387-28356-0_15.
Pedrycz, W. and Gomide, F. (1998). An Introduction to Fuzzy Sets: Analysis and Design. MIT Press, Cambridge.. DOI: 10.7551/mitpress/3926.001.0001.
Peralta, G., Iglesias-Urkia, M., Barcelo, M., Gomez, R., Moran, A., and Bilbao, J. (2017). Fog computing based efficient IoT scheme for the Industry 4.0. Proceedings of the 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics, ECMSM 2017, pages 1-6. DOI: 10.1109/ECMSM.2017.7945879.
Potrino, G., De Rango, F., and Santamaria, A. F. (2019). Modeling and evaluation of a new IoT security system for mitigating DoS attacks to the MQTT broker. IEEE Wireless Communications and Networking Conference, WCNC, 2019-April:1-6. DOI: 10.1109/WCNC.2019.8885553.
Roohi, A., Adeel, M., and Shah, M. A. (2019). DDoS in IoT: A roadmap towards security countermeasures. ICAC 2019 - 2019 25th IEEE International Conference on Automation and Computing, 1(1):1-6. DOI: 10.23919/IConAC.2019.8895034.
Sangodoyin, A., Modu, B., Awan, I., and Pagna Disso, J. (2018). An Approach to Detecting Distributed Denial of Service Attacks in Software Defined Networks. Proceedings - 2018 IEEE 6th International Conference on Future Internet of Things and Cloud, FiCloud 2018, pages 436-443. DOI: 10.1109/FiCloud.2018.00069.
Selvachandran, G., Quek, S. G., Lan, L. T. H., Son, L. H., Long Giang, N., Ding, W., Abdel-Basset, M., and Albuquerque, V. H. C. (2019). A New Design of Mamdani Complex Fuzzy Inference System for Multi-attribute Decision Making Problems. IEEE Transactions on Fuzzy Systems, 6706(c):1-1. DOI: 10.1109/tfuzz.2019.2961350.
Shah, B., Iqbal, F., Abbas, A., and Kim, K. I. (2015). Fuzzy logic-based guaranteed lifetime protocol for real-time wireless sensor networks. Sensors (Switzerland), 15(8):20373-20391. DOI: 10.3390/s150820373.
Shi, Y., Li, F., Song, W. Z., Li, X. Y., and Ye, J. (2019). Energy audition based cyber-physical attack detection system in IoT. ACM International Conference Proceeding Series. DOI: 10.1145/3321408.3321588.
Shukla, P., Krishna, C. R., and Patil, N. V. (2024). IoT traffic-based DDoS attacks detection mechanisms: A comprehensive review. . J Supercomput, 80:9986–10043. DOI: 10.1007/s11227-023-05843-7.
Sikora, M., Gerlich, T., and Malina, L. (2019). On Detection and Mitigation of Slow Rate Denial of Service Attacks. International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, 2019-Octob:0-4. DOI: 10.1109/ICUMT48472.2019.8970844.
Suguna, M., Ramalakshmi, M. G., Cynthia, J., and Prakash, D. (2018). A survey on cloud and internet of things based healthcare diagnosis. 2018 4th International Conference on Computing Communication and Automation, ICCCA 2018, 1-:1-4. DOI: 10.1109/CCAA.2018.8777606.
Surya Kartika, L. G., Rinartha, K., Atmojo, Y. P., and Wayan Sukadana, I. (2019). Green Monitoring System for Energy Saving in Accommodation Services. 2019 1st International Conference on Cybernetics and Intelligent System, ICORIS 2019, 1(August):73-78. DOI: 10.1109/ICORIS.2019.8874919.
Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15:116-132. DOI: 10.1109/TSMC.1985.6313399.
Tian, G. Y. (2020). An Intrusion Detection System Against DDoS Attacks in loT Networks. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), pages 1-6. DOI: 10.1109/CCWC47524.2020.9031206.
Toldinas, J., Lozinskis, B., Baranauskas, E., and Dobrovolskis, A. (2019). MQTT Quality of Service versus Energy Consumption. 2019 23rd International Conference Electronics, pages 1-4. DOI: 10.1109/ELECTRONICS.2019.8765692.
Vailshery, L. S. (2024). Number of IoT connections worldwide 2022-2033. Available at: [link] Accessed in September 2024.
Vishwakarma, R. and Jain, A. K. (2020). A survey of DDoS attacking techniques and defence mechanisms in the IoT network. Telecommunication Systems, 73(1):3-25. DOI: 10.1007/s11235-019-00599-z.
Xiaoyan, Z. (1996). ZY. Institute of Juzzy Systems and Knowledge Engineering Republic of China, 77:175-190. Book.
Xu, C., Xiong, Z., Zhao, G., and Yu, S. (2019). An Energy-Efficient Region Source Routing Protocol for Lifetime Maximization in WSN. IEEE Access, 7:135277-135289. DOI: 10.1109/access.2019.2942321.
Yassein, M. B., Shatnawi, M. Q., Aljwarneh, S., and Al-Hatmi, R. (2018). Internet of Things: Survey and open issues of MQTT protocol. Proceedings - 2017 International Conference on Engineering and MIS, ICEMIS 2017, 2018-Janua:1-6. DOI: 10.1109/ICEMIS.2017.8273112.
Yousaf, R., Ahmad, R., Ahmed, W., and Haseeb, A. (2017). Fuzzy Power Allocation for Opportunistic Relay in Energy Harvesting Wireless Sensor Networks. IEEE Access, 5:17165-17176. DOI: 10.1109/ACCESS.2017.2743063.
Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-I. Information Sciences, 8(3):199-249. DOI: 10.1016/0020-0255(75)90036-5.
Zimmermann, H. J. (2001). Fuzzy Set Theory, and its applications. Springer Netherlands, Dordrecht, 4 edition edition. Book.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Internet Services and Applications

This work is licensed under a Creative Commons Attribution 4.0 International License.

