Which One is Better? Distributed Artificial Intelligence Strategies for Accurate Vehicular Emissions Forecasting

Authors

DOI:

https://doi.org/10.5753/jisa.2025.5166

Keywords:

Distributed AI Strategies, Vehicular Emissions, Greenhouse Emission, Federated Learning, Split Learning

Abstract

The rapid expansion of urban vehicular networks has led to increasing carbon emissions, posing significant environmental challenges in densely populated areas. Accurate emission predictions are crucial for sustainable urban planning, but current methods face limitations in handling large-scale dynamic data while balancing latency, privacy, and communication efficiency. This paper proposes a comprehensive framework study that compares centralized, federated, and shared learning approaches for CO2 emissions prediction in vehicular networks, using data from vehicles and roadside units (RSUs) to predict emissions in diverse urban scenarios. By evaluating the performance of each approach on latency, communication overhead, and prediction accuracy, this work provides insights into optimizing learning strategies for real-time, scalable, and privacy-preserving emissions management in intelligent transportation systems. The findings offer valuable guidance to urban planners and policymakers, fostering the development of sustainable urban mobility solutions.

Downloads

Download data is not yet available.

References

Abedi, A., K. S. (2024). Fedsl: Federated split learning on distributed sequential data in recurrent neural networks. Multimed Tools Appl 83. DOI: 10.1007/s11042-023-15184-5.

Belal, Y., Ben Mokhtar, S., Haddadi, H., Wang, J., and Mashhadi, A. (2024). Survey of federated learning models for spatial-temporal mobility applications. ACM Transactions on Spatial Algorithms and Systems, 10(3). DOI: 10.1145/3666089.

Braun, C., Da Costa, J. B. D., Villas, L. A., and de Souza, A. M. (2024). Ecopredict: Assessing distributed machine learning methods for predicting urban emissions. In 2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall), pages 1-5. DOI: 10.1109/VTC2024-Fall63153.2024.10757672.

Capanema, C. G. S., de Souza, A. M., Costa, J. B. D. d., Silva, F. A., Villas, L. A., and Loureiro, A. A. F. (2024). A novel prediction technique for federated learning. IEEE Transactions on Emerging Topics in Computing, pages 1-16. DOI: 10.1109/TETC.2024.3471458.

Codecá, L., Frank, R., Faye, S., and Engel, T. (2017). Luxembourg SUMO Traffic (LuST) Scenario: Traffic Demand Evaluation. IEEE Intelligent Transportation Systems Magazine, 9(2):52-63. DOI: 10.1109/mits.2017.2666585.

Creß, C., Bing, Z., and Knoll, A. C. (2024). Intelligent transportation systems using roadside infrastructure: A literature survey. IEEE Transactions on Intelligent Transportation Systems, 25(7):6309-6327. DOI: 10.1109/TITS.2023.3343434.

de Souza, A. M., Braun, T., Botega, L. C., Cabral, R., Garcia, I. C., and Villas, L. A. (2019). Better safe than sorry: a vehicular traffic re-routing based on traffic conditions and public safety issues. Journal of Internet Services and Applications, 10(1):17. DOI: 10.1186/s13174-019-0116-9.

de Souza, A. M., Braun, T., Botega, L. C., Villas, L. A., and Loureiro, A. A. F. (2020). Safe and sound: Driver safety-aware vehicle re-routing based on spatiotemporal information. IEEE Transactions on Intelligent Transportation Systems, 21(9):3973-3989. DOI: 10.1109/TITS.2019.2958624.

de Souza, A. M., Maciel, F., da Costa, J. B., Bittencourt, L. F., Cerqueira, E., Loureiro, A. A., and Villas, L. A. (2024). Adaptive client selection with personalization for communication efficient federated learning. Ad Hoc Networks, 157:103462. DOI: 10.2139/ssrn.4654118.

de Souza, A. M., Oliveira, H. F., Zhao, Z., Braun, T., Loureiro, A. A., and Villas, L. A. (2022). Enhancing sensing and decision-making of automated driving systems with multi-access edge computing and machine learning. IEEE Intelligent Transportation Systems Magazine, 14(1):44-56. DOI: 10.1109/MITS.2019.2953513.

Elbir, A. M., Soner, B., Çöleri, S., Gündüz, D., and Bennis, M. (2022). Federated learning in vehicular networks. In 2022 IEEE International Mediterranean Conference on Communications and Networking (MeditCom), pages 72-77. DOI: 10.1109/MeditCom55741.2022.9928621.

Falahatraftar, F., Pierre, S., and Chamberland, S. (2021). A centralized and dynamic network congestion classification approach for heterogeneous vehicular networks. IEEE Access, 9:122284-122298. DOI: 10.1109/ACCESS.2021.3108425.

Fei, X. and Ling, Q. (2023). Attention-based global and local spatial-temporal graph convolutional network for vehicle emission prediction. Neurocomputing, 521:41-55. DOI: 10.1016/j.neucom.2022.11.085.

Kaur, G. (2024). Federated learning based spatio-temporal framework for real-time traffic prediction. Wireless Personal Communications. DOI: 10.21203/rs.3.rs-2470634/v1.

Krajzewicz, D. and et al. (2012). Recent development and applications of sumo-simulation of urban mobility. International Journal On Advances in Systems and Measurements, 5(3 & 4):128-138. Available online [link].

Kumar, M. (2024). A traffic flow prediction framework based on integrated federated learning and recurrent long short-term networks. Peer-to-Peer Networking and Applications. DOI: 10.1007/s12083-024-01792-x.

Lobo, S., Neumeier, S., Fernandez, E., and Facchi, C. (2020). Intas - the ingolstadt traffic scenario for sumo. In SUMO User Conference Proceedings. DOI: 10.48550/arXiv.2011.11995.

Rahman, M. M. and Thill, J.-C. (2023). Impacts of connected and autonomous vehicles on urban transportation and environment: A comprehensive review. Sustainable Cities and Society, page 104649. DOI: 10.1016/j.scs.2023.104649.

Saleem, M., Abbas, S., Ghazal, T. M., Adnan Khan, M., Sahawneh, N., and Ahmad, M. (2022). Smart cities: Fusion-based intelligent traffic congestion control system for vehicular networks using machine learning techniques. Egyptian Informatics Journal, 23(3):417-426. DOI: 10.1016/j.eij.2022.03.003.

Samikwa, E., Di Maio, A., and Braun, T. (2024). Dfl: Dynamic federated split learning in heterogeneous iot. IEEE Transactions on Machine Learning in Communications and Networking, 2:733-752. DOI: 10.1109/TMLCN.2024.3409205.

Sánchez, J. A., Melendi, D., García, R., Pañeda, X. G., Corcoba, V., and García, D. (2024). Distributed and collaborative system to improve traffic conditions using fuzzy logic and v2x communications. Vehicular Communications, page 100746. DOI: 10.1016/j.vehcom.2024.100746.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2017). Efficient processing of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295-2329. DOI: 10.1109/jproc.2017.2761740.

Uppoor, S., Trullols-Cruces, O., Fiore, M., and Barcelo-Ordinas, J. M. (2013). Generation and analysis of a large-scale urban vehicular mobility dataset. IEEE Transactions on Mobile Computing, 13(5):1061-1075. DOI: 10.1109/TMC.2013.27.

Wang, H., Liu, T., Kim, B., Lin, C.-W., Shiraishi, S., Xie, J., and Han, Z. (2020). Architectural design alternatives based on cloud/edge/fog computing for connected vehicles. IEEE Communications Surveys & Tutorials, 22(4):2349-2377. DOI: 10.1109/COMST.2020.3020854.

World Health Organization (2019). Air pollution. Available online [link]. Accessed: 2025-04-05.

Wu, C., Liu, Z., Zhang, D., Yoshinaga, T., and Ji, Y. (2018). Spatial intelligence toward trustworthy vehicular iot. IEEE Communications Magazine, 56(10):22-27. DOI: 10.1109/MCOM.2018.1800089.

Yang, W. (2022). A reinforcement learning based data storage and traffic management in information-centric data center networks. Mobile Networks and Applications. DOI: 10.1007/s11036-020-01629-w.

Zhang, R., Chen, H., Xie, P., Zu, L., Wei, Y., Wang, M., Wang, Y., and Zhu, R. (2023). Exhaust emissions from gasoline vehicles with different fuel detergency and the prediction model using deep learning. Sensors, 23(17). DOI: 10.3390/s23177655.

Zhang, S., Li, J., Shi, L., Ding, M., Nguyen, D. C., Tan, W., Weng, J., and Han, Z. (2024). Federated learning in intelligent transportation systems: Recent applications and open problems. IEEE Transactions on Intelligent Transportation Systems, 25(5):3259-3285. DOI: 10.1109/TITS.2023.3324962.

Zhao, H., Cheng, H., Mao, T., and He, C. (2019). Research on traffic accident prediction model based on convolutional neural networks in vanet. In 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD), pages 79-84. DOI: 10.1109/ICAIBD.2019.8837020.

Zheng, G., Ni, Q., Navaie, K., Pervaiz, H., Min, G., Kaushik, A., and Zarakovitis, C. (2024). Mobility-aware split-federated with transfer learning for vehicular semantic communication networks. IEEE Internet of Things Journal, 11(10):17237-17248. DOI: 10.1109/JIOT.2024.3360230.

Zhou, Y., Zhang, Z., Ding, F., Ahn, S., Wu, K., and Ran, B. (2024). A deep long short-term memory network embedded model predictive control strategies for car-following control of connected automated vehicles in mixed traffic. IEEE Transactions on Intelligent Transportation Systems, 25(7):8209-8220. DOI: 10.1109/tits.2024.3412329.

Downloads

Published

2025-10-02

How to Cite

Braun, C., Jarczewski, R. O., & de Souza, A. M. (2025). Which One is Better? Distributed Artificial Intelligence Strategies for Accurate Vehicular Emissions Forecasting. Journal of Internet Services and Applications, 16(1), 554–565. https://doi.org/10.5753/jisa.2025.5166

Issue

Section

Research article