Influence of Sequence Length and Geographic Representation on Optimal Prediction Architectures for Stolen Vehicle Geolocation
DOI:
https://doi.org/10.5753/jisa.2025.5187Keywords:
Vehicle Prediction, External Sensor Trajectory, XGBoost, LSTM, Transformer and LSTM Entangled, TLE, Geographic Representation, Historical Sequence Length, Optimal Architecture ShiftAbstract
When predicting the next geolocation of a stolen vehicle using external sensor data, such as speed radars, the challenge extends beyond the prediction itself to include determining the most suitable prediction architecture. While existing studies provide data that influence prediction performance, there is no consensus on the optimal architecture. Therefore, adopting a broader perspective to identify key criteria influencing the choice of architecture is essential. This study evaluates the shift in the optimal architecture depending on the length of the historical sequence and the format of geographic representation. The results reveal a shift in the optimal architecture, with the shift point being influenced by the type of geographic representation.
Downloads
References
Almeida, V. G., Silva, T. R., and Silva, F. A. (2022). Se for, vá na paz: Construindo rotas seguras para veículos coletivos urbanos. In Anais do XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 140-153. SBC. DOI: 10.5753/sbrc.2022.221978.
Bae, K., Lee, S., and Lee, W. (2022). Transformer networks for trajectory classification. In 2022 IEEE International Conference on Big Data and Smart Computing (BigComp), pages 331-333. IEEE. DOI: 10.1109/bigcomp54360.2022.00074.
Bernardi, E., Marte, C. L., Yoshioka, L. R., Ribeiro, P. C. M., and Fontana, C. F. (2015). Modelo sistêmico e classificação de falhas associadas ao sistema de reconhecimento de placas para fiscalização automática de veículos. In Anais do XXIX Congresso de Pesquisa e Ensino em Transportes, pages 1510-1521. Available at: [link].
Botchkarev, A. (2018). Evaluating performance of regression machine learning models using multiple error metrics in azure machine learning studio. Available at SSRN 3177507. DOI: 10.2139/ssrn.3177507.
Brito, M., Martins, B., Santos, C., Medeiros, I., Araújo, F., Seruffo, M., Oliveira, H., Cerqueira, E., and Rosário, D. (2023). Personalized experience-aware multi-criteria route selection for smart mobility. In Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 504-517. SBC. DOI: 10.5753/sbrc.2023.513.
Brownlee, J. (2020). Train-test split for evaluating machine learning algorithms. Available at: [link] Online; Accessed on: 09-04-2024.
Brownlee, J. (2021). Regression metrics for machine learning. Available at: [link] Online; Accessed on: 09-04-2024.
Capanema, C. G. S., Silva, F. A., and Silva, T. R. d. M. B. (2020). Mfa-rnn: Uma rede neural recorrente para predição de próximo local de visita com base em dados esparsos. In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuidos, pages 127-140. SBC. DOI: 10.5753/sbrc.2020.12278.
Chen, J., Feng, Q., and Fan, D. (2024). Vehicle trajectory prediction based on local dynamic graph spatiotemporal-long short-term memory model. World Electric Vehicle Journal, 15(1):28. DOI: 10.3390/wevj15010028.
Chen, X., Zhang, H., Zhao, F., Cai, Y., Wang, H., and Ye, Q. (2022). Vehicle trajectory prediction based on intention-aware non-autoregressive transformer with multi-attention learning for internet of vehicles. IEEE Transactions on Instrumentation and Measurement, 71:1-12. DOI: 10.1109/tim.2022.3192056.
Cruz, L. A., Coelho da Silva, T. L., Magalhães, R. P., Melo, W. C. D., Cordeiro, M., de Macedo, J. A. F., and Zeitouni, K. (2022). Modeling trajectories obtained from external sensors for location prediction via nlp approaches. Sensors, 22(19):7475. DOI: 10.3390/s22197475.
Cruz, L. A., Zeitouni, K., da Silva, T. L. C., de Macedo, J. A. F., and Silva, J. S. d. (2021). Location prediction: a deep spatiotemporal learning from external sensors data. Distributed and Parallel Databases, 39:259-280. DOI: 10.1007/s10619-020-07303-0.
Cruz, L. A., Zeitouni, K., and de Macedo, J. A. F. (2019). Trajectory prediction from a mass of sparse and missing external sensor data. In 2019 20th IEEE International conference on mobile data management (MDM), pages 310-319. IEEE. DOI: 10.1109/mdm.2019.00-43.
de Souza, A. M., Braun, T., Botega, L. C., Villas, L. A., and Loureiro, A. A. (2019). Safe and sound: Driver safety-aware vehicle re-routing based on spatiotemporal information. IEEE Transactions on Intelligent Transportation Systems, 21(9):3973-3989. DOI: 10.1109/tits.2019.2958624.
de Souza, A. M. and Villas, L. A. (2020). Vem tranquilo: Rotas eficientes baseado na dinâmica urbana futura com deep learning e computaçao de borda. In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 351-364. SBC. DOI: 10.5753/sbrc.2020.12294.
Gaiduchenko, N. E., Gritsyk, P. A., and Malashko, Y. I. (2020). Multi-step ballistic vehicle trajectory forecasting using deep learning models. In 2020 International Conference Engineering and Telecommunication (En&T), pages 1-6. IEEE. DOI: 10.1109/ent50437.2020.9431287.
Geng, M., Li, J., Xia, Y., and Chen, X. M. (2023). A physics-informed transformer model for vehicle trajectory prediction on highways. Transportation research part C: emerging technologies, 154:104272. DOI: 10.1016/j.trc.2023.104272.
GISGeography (2016). How universal transverse mercator (utm) works. Available at: [link] Online; Accessed on: 09-30-2024.
Haviland, C. V. and Wiseman, H. (1974). Criminals who drive. In Proceedings: American Association for Automotive Medicine Annual Conference, volume 18, pages 432-439. Association for the Advancement of Automotive Medicine. Available at: [link].
Hu, H., Wang, Q., Du, L., Lu, Z., and Gao, Z. (2022). Vehicle trajectory prediction considering aleatoric uncertainty. Knowledge-Based Systems, 255:109617. DOI: 10.1016/j.knosys.2022.109617.
IBGE (2016). Sistemas de referência. Available at: [link] Online; Accessed on: 09-30-2024.
Karimzadeh, M., Aebi, R., de Souza, A. M., Zhao, Z., Braun, T., Sargento, S., and Villas, L. (2021). Reinforcement learning-designed lstm for trajectory and traffic flow prediction. In 2021 IEEE wireless communications and networking conference (WCNC), pages 1-6. IEEE. DOI: 10.1109/wcnc49053.2021.9417511.
Kundu, N. (2023). Random forests vs gradient boosting: An overview of key differences and when to use each method. Available at: [link] Online; Accessed on: 03-05-2025.
Ladeira, L. Z., de Souza, A. M., Rocha Filho, G. P., Silva, T. H., Sanches, M. F., and Villas, L. A. (2019a). Martini: Towards a mobile and variable time window identification for spatio-temporal data. In 2019 IEEE Latin-American Conference on Communications (LATINCOM), pages 1-6. IEEE. DOI: 10.1109/latincom48065.2019.8937868.
Ladeira, L. Z., de Souza, A. M., Rocha Filho, G. P., Silva, T. H., and Villas, L. A. (2019b). Serviço de sugestão de rotas seguras para veículos. In Anais do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 608-621. SBC. DOI: 10.5753/sbrc.2019.7390.
Ladeira, L. Z., de Souza, A. M., Silva, T. H., Rocha Filho, G. P., Peixoto, M. L. M., and Villas, L. A. (2020). Cerva: Roteamento contextual para veículos com risco espaço-temporal. In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 379-392. SBC. DOI: 10.5753/sbrc.2020.12296.
Liao, H., Wang, C., Li, Z., Li, Y., Wang, B., Li, G., and Xu, C. (2024). Physics-informed trajectory prediction for autonomous driving under missing observation. Available at SSRN 4809575. DOI: 10.2139/ssrn.4809575.
Lima, M. (2022). 6 passos para criar seu primeiro projeto de machine learning. Available at: [link] Online; Accessed on: 09-04-2024.
Macedo, G., Filho, G. R., Santos, J., Neves, A., Almeida, M., Falqueiro, M., Meneguette, R., Serrano, A., Mendonça, F., and Gonçalves, V. (2024). Predição de geolocalização de veículo com alerta de roubo usando lstm, transformer e tle. In Anais do XVI Simpósio Brasileiro de Computação Ubíqua e Pervasiva, pages 61-70, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/sbcup.2024.2568.
Neto, J. S. D. S., Da Silva, T. L. C., Cruz, L. A., de Lira, V. M., de Macêdo, J. A. F., Magalhaes, R. P., and Peres, L. G. (2021). Predicting the next location for trajectories from stolen vehicles. In 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), pages 452-456. IEEE. DOI: 10.1109/ictai52525.2021.00073.
Oliveira, C. (2021). Métricas para regressão: Entendendo as métricas r², mae, mape, mse e rmse. Available at: [link] Online; Accessed on: 09-04-2024.
Onose, E. (2023a). R squared: Understanding the coefficient of determination. Available at: [link] Online; Accessed on: 03-05-2025.
Onose, E. (2023b). R squared: Understanding the coefficient of determination. Available at: [link] Online; Accessed on: 09-04-2024.
Raschka, S. (2018). Model evaluation, model selection, and algorithm selection in machine learning. arXiv preprint arXiv:1811.12808. DOI: 10.48550/arXiv.1811.12808.
Reyna, A. R. H., Farfán, A. J. F., Filho, G. P. R., Sampaio, S., de Grande, R., Nakamura, L. H. V., and Meneguette, R. I. (2024). Medavet: Traffic vehicle anomaly detection mechanism based on spatial and temporal structures in vehicle traffic. Journal of Internet Services and Applications, 15(1):25–38. DOI: 10.5753/jisa.2024.3809.
Tsiligkaridis, A., Zhang, J., Taguchi, H., and Nikovski, D. (2020). Personalized destination prediction using transformers in a contextless data setting. In 2020 International Joint Conference on Neural Networks (IJCNN), pages 1-7. IEEE. DOI: 10.1109/ijcnn48605.2020.9207514.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. DOI: https://doi.org/10.48550/arxiv.1706.03762.
Wikipedia (2024a). Epsg geodetic parameter dataset. Available at: [link] Online; Accessed on: 09-30-2024.
Wikipedia (2024b). Web mercator projection. Available at: [link] Online; Accessed on: 09-30-2024.
Xu, Y., Wang, Y., and Peeta, S. (2023). Leveraging transformer model to predict vehicle trajectories in congested urban traffic. Transportation research record, 2677(2):898-909. DOI: 10.1177/03611981221109594.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Internet Services and Applications

This work is licensed under a Creative Commons Attribution 4.0 International License.

