SISCMot: Situation Inference and Monitoring System for Intelligent Motorized Wheelchairs

Authors

DOI:

https://doi.org/10.5753/jisa.2025.5194

Keywords:

Internet of Things (IoT), Assistive Technologies, Motorized Wheelchair Monitoring, SISCMot, Context Awareness

Abstract

Assistive technologies aim to enhance independence and social inclusion for individuals with motor disabilities. Leveraging the Internet of Things (IoT), this study introduces SISCMot, an innovative monitoring and inference system tailored for intelligent motorized wheelchairs. SISCMot incorporates real-time data acquisition from the wheelchair’s electromechanical components, enabling context-aware analysis through IoT-connected dashboards. This system benefits a comprehensive range of stakeholders—including users, caregivers, technical support, and manufacturers—by providing critical insights into component performance, user mobility, and potential maintenance needs. Additionally, SISCMot offers a unique edge in preventive maintenance by monitoring key mechanical and electrical metrics, thereby extending the wheelchair’s operational lifespan. Evaluation based on the Technology Acceptance Model (TAM) confirms high usability and perceived value among target users, underscoring the system’s practical contribution to the assistive technology landscape.

Downloads

Download data is not yet available.

References

Albandes, R., Souza, A., Lambrecht, R., Pieper, L., Barcellos, F., and Yamin, A. (2024). Iot peritoneal dialysis: An approach exploring remote patient monitoring. Journal of the Brazilian Computer Society, 30(1):228-237. DOI: 10.5753/jbcs.2024.3201.

Arshad, J., Ashraf, M. A., Asim, H. M., Rasool, N., Jaffery, M. H., and Bhatti, S. I. (2023). Multi-mode electric wheelchair with health monitoring and posture detection using machine learning techniques. Electronics, 12(5):1132. DOI: 10.3390/electronics12051132.

Ashraf, T., Islam, N., Costa, S. L., Arefin, M. S., and Azad, A. A. M. (2021). Developing an iot based wheelchair: Biomedical data logging & emergency contingency services. In 2021 IEEE International Conference on Consumer Electronics (ICCE), pages 1-5, Las Vegas, NV, USA. IEEE. DOI: 10.1109/ICCE50685.2021.9427625.

Ashton, K. (2009). That 'internet of things' thing. RFID Journal. Available at: [link].

Barbosa, J., Tavares, J., Cardoso, I., Alves, B., and Martini, B. (2018). Trailcare: An indoor and outdoor context-aware system to assist wheelchair users. International Journal of Human-Computer Studies, 116:1-14. DOI: 10.1016/j.ijhcs.2018.04.001.

Bourgeois-Doyle, R. I. (2004). George J. Klein: The Great Inventor. Biography series. NRC Press. Book.

Cao, K., Liu, Y., Meng, G., and Sun, Q. (2020). An overview on edge computing research. IEEE Access, 8:85714-85728. DOI: 10.1109/ACCESS.2020.2991734.

Cho, S., Han, H., Park, H., Lee, S.-U., Kim, J.-H., Jeon, S. W., Wang, M., Avila, R., Xi, Z., Ko, K., et al. (2023). Wireless, multimodal sensors for continuous measurement of pressure, temperature, and hydration of patients in wheelchair. npj Flexible Electronics, 7(1):8. DOI: 10.1038/s41528-023-00238-3.

da Hora, H., Torres, G., and Arica, J. (2010). Confiabilidade em questionários para qualidade: um estudo com o coeficiente alfa de cronbach. Produto & Produção, 11(2):85-103. Available at: [link].

Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results. PhD thesis, Massachusetts Institute of Technology. Available at: [link].

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, pages 319-340. DOI: 10.2307/249008.

Dsouza, D. J., Srivastava, S., Prithika, R., and Sahana Rai, A. (2019). Iot based smart sensing wheelchair to assist in healthcare. Methods, 6(06). Available at:[link].

Kanade, P., Prasad, J. P., and Kanade, S. (2021). Iot based smart healthcare wheelchair for independent elderly. European Journal of Electrical Engineering and Computer Science, 5(5):4-9. DOI: 10.24018/ejece.2021.5.5.355.

Kang, M. and Hwang, Y. (2022). Exploring the factors affecting the continued usage intention of iot-based healthcare wearable devices using the tam model. Sustainability, 14:12492. DOI: 10.3390/su141912492.

Likert, R. (1932). A Technique for the Measurement of Attitudes. Number Nº 136-165 in A Technique for the Measurement of Attitudes. Archives of Psychology. Available at: [link].

Sheikh, S. Y. and Jilani, M. T. (2023). A ubiquitous wheelchair fall detection system using low-cost embedded inertial sensors and unsupervised one-class svm. Journal of Ambient Intelligence and Humanized Computing, 14(1):147-162. DOI: 10.1007/s12652-021-03279-6.

Shukur, H., Zeebaree, S., Zebari, R., Zeebaree, D., Ahmed, O., and Salih, A. (2020). Cloud computing virtualization of resources allocation for distributed systems. Journal of Applied Science and Technology Trends, 1(3):98-105. DOI: 10.38094/jastt1331.

Streiner, D. L. (2003). Starting at the beginning: An introduction to coefficient alpha and internal consistency. Journal of personality assessment, 80:99-103. DOI: 10.1207/S15327752JPA8001_18.

Suárez-Álvarez, J., Pedrosa, I., Lozano, L. M., García-Cueto, E., Cuesta, M., and Muñiz, J. (2018). Using reversed items in likert scales: A questionable practice. Psicothema, 30(2):149-158. DOI: 10.7334/psicothema2018.33.

Tavares, C., Domingues, M. F., Paixão, T., Alberto, N., Silva, H., and Antunes, P. (2020). Wheelchair pressure ulcer prevention using fbg based sensing devices. Sensors, 20(1). DOI: 10.3390/s20010212.

Tavares, C., Real, D., Domingues, M. d. F., Alberto, N., Silva, H., and Antunes, P. (2022). Sensor cell network for pressure, temperature and position detection on wheelchair users. International Journal of Environmental Research and Public Health, 19(4):2195. DOI: 10.3390/ijerph19042195.

Temdee, P. and Prasad, R. (2018). Context-Aware Communication and Computing: Applications for Smart Environment. DOI: 10.1007/978-3-319-59035-6.

World Health Organization (2022). Global report on health equity for persons with disabilities. page 312. Available at: [link].

Yin, Z., Yan, J., Fang, S., Wang, D., and Han, D. (2022). User acceptance of wearable intelligent medical devices through a modified unified theory of acceptance and use of technology. Annals of Translational Medicine, 10(11):629. DOI: 10.21037/atm-21-5510.

Downloads

Published

2025-09-02

How to Cite

Tavares, P. A., Real, R., Manzolli, W., Yamin, A. C., & Lucca, G. (2025). SISCMot: Situation Inference and Monitoring System for Intelligent Motorized Wheelchairs. Journal of Internet Services and Applications, 16(1), 530–542. https://doi.org/10.5753/jisa.2025.5194

Issue

Section

Research article