INTACT: Compact Storage of Data Streams in Mobile Devices to Unlock User Privacy at the Edge

Authors

DOI:

https://doi.org/10.5753/jisa.2025.5242

Keywords:

Mobile, data streams, storage, compression, geolocation, privacy, attack

Abstract

Data streams produced by mobile devices, such as smartphones, offer highly valuable sources of information to build ubiquitous services. Such data streams are generally uploaded and centralized to be processed by third parties, potentially exposing sensitive personal information. In this context, existing protection mechanisms, such as Location Privacy Protection Mechanisms (LPPMs), have been investigated. Alas, none of them have actually been implemented, nor deployed in real-life, in mobile devices to enforce user privacy at the edge. Moreover, the diversity of embedded sensors and the resulting data deluge makes it impractical to provision such services directly on mobiles, due to their constrained storage capacity, communication bandwidth and processing power. This article reports on the FLI technique, which leverages a piece-wise linear approximation technique to capture compact representations of data streams in mobile devices. Beyond the FLI storage layer, we introduce Divide & Stay, a new privacy preservation technique to execute Points of Interest (POIs) inference. Finally, we deploy both of them on Android and iOS as the INTACT framework, making a concrete step towards enforcing privacy and trust in ubiquitous computing systems.

Downloads

Download data is not yet available.

References

An, Y., Su, Y., Zhu, Y., and Wang, J. (2022). TVStore: Automatically bounding time series storage via Time-Varying compression. In 20th USENIX Conference on File and Storage Technologies (FAST 22), pages 83-100, Santa Clara, CA. USENIX Association. Available at: [link].

Andrés, M. E., Bordenabe, N. E., Chatzikokolakis, K., and Palamidessi, C. (2013). Geo-indistinguishability: Differential privacy for location-based systems. In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, pages 901-914. DOI: 10.48550/arXiv.1212.1984.

Apple (2013). iOS LocationManager documentation. Available at: [link] Last accessed on April 21st, 2024.

Bellet, A., Guerraoui, R., Taziki, M., and Tommasi, M. (2017). Fast and differentially private algorithms for decentralized collaborative machine learning. PhD thesis, INRIA Lille. Available at: [link].

Berlin, E. and Van Laerhoven, K. (2010). An on-line piecewise linear approximation technique for wireless sensor networks. In IEEE Local Computer Network Conference, pages 905-912. IEEE. DOI: 10.1109/lcn.2010.5735832.

Binder, S. (2019). Drift library. Availabe at: [link] Last accessed on April 21st, 2024.

Blalock, D., Madden, S., and Guttag, J. (2018). Sprintz: Time Series Compression for the Internet of Things. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(3). DOI: 10.1145/3264903.

Cerf, S., Primault, V., Boutet, A., Mokhtar, S. B., Birke, R., Bouchenak, S., Chen, L. Y., Marchand, N., and Robu, B. (2017). PULP: achieving privacy and utility trade-off in user mobility data. In 36th IEEE Symposium on Reliable Distributed Systems, SRDS 2017, Hong Kong, September 26-29, 2017, pages 164-173. IEEE Computer Society. DOI: 10.1109/SRDS.2017.25.

Dollinger, V. and Junginger, M. (2014). Objectbox database. Available at: [link] Last accessed on April 21st, 2024.

Dwork, C. (2008). Differential privacy: A survey of results. In International conference on theory and applications of models of computation, pages 1-19. Springer. DOI: 10.1007/978-3-540-79228-4_1.

Fang, S.-H., Liao, H.-H., Fei, Y.-X., Chen, K.-H., Huang, J.-W., Lu, Y.-D., and Tsao, Y. (2016). Transportation modes classification using sensors on smartphones. Sensors, 16(8):1324. DOI: 10.3390/s16081324.

Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R., and Kraska, T. (2019). FITing-tree: A data-aware index structure. In Proceedings of the 2019 International Conference on Management of Data, pages 1189-1206. DOI: 10.1145/3299869.3319860.

Gambs, S., Killijian, M.-O., and del Prado Cortez, M. N. (2014). De-anonymization attack on geolocated data. Journal of Computer and System Sciences, 80(8):1597-1614. DOI: 10.1109/trustcom.2013.96.

Google (2011). AndroidLocationManager documentation. Available at: [link] Last accessed on April 21st, 2024.

Google (2018). Flutter framework. Available at: [link] Last accessed on April 21st, 2024.

Grützmacher, F., Beichler, B., Hein, A., Kirste, T., and Haubelt, C. (2018). Time and memory efficient online piecewise linear approximation of sensor signals. Sensors, 18(6):1672. DOI: 10.3390/s18061672.

Hariharan, R. and Toyama, K. (2004). Project lachesis: parsing and modeling location histories. In International Conference on Geographic Information Science, pages 106-124. Springer. DOI: 10.1007/978-3-540-30231-5_8.

InfluxData (2013). InfluxDB. Available at: [link] Last accessed April 21st, 2024.

Keogh, E., Chu, S., Hart, D., and Pazzani, M. (2001). An online algorithm for segmenting time series. In Proceedings 2001 IEEE international conference on data mining, pages 289-296. IEEE. DOI: 10.1109/icdm.2001.989531.

Khalfoun, B., Ben Mokhtar, S., Bouchenak, S., and Nitu, V. (2021). EDEN: Enforcing location privacy through re-identification risk assessment: A federated learning approach. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(2). DOI: 10.1145/3463502.

Liu, X., Lin, Z., and Wang, H. (2008). Novel online methods for time series segmentation. IEEE Transactions on Knowledge and Data Engineering, 20(12):1616-1626. DOI: 10.1109/tkde.2008.29.

Luxey, A., Bromberg, Y.-D., Costa, F. M., Lima, V., da Rocha, R. C. A., and Taïani, F. (2018). Sprinkler: A probabilistic dissemination protocol to provide fluid user interaction in multi-device ecosystems. In IEEE International Conference on Pervasive Computing and Communications (PerCom), pages 1-10. DOI: 10.1109/percom.2018.8444577.

Machanavajjhala, A., Kifer, D., Gehrke, J., and Venkitasubramaniam, M. (2007). l-Diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1):3-es. DOI: 10.1109/ICDE.2006.1.

Maouche, M., Ben Mokhtar, S., and Bouchenak, S. (2018). HMC: Robust privacy protection of mobility data against multiple re-identification attacks. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(3):1-25. DOI: 10.1145/3264934.

Maouche, M., Mokhtar, S. B., and Bouchenak, S. (2017). Ap-attack: a novel user re-identification attack on mobility datasets. In Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pages 48-57. DOI: 10.4108/eai.7-11-2017.2273573.

Meftah, L., Rouvoy, R., and Chrisment, I. (2019). Fougere: user-centric location privacy in mobile crowdsourcing apps. In IFIP International Conference on Distributed Applications and Interoperable Systems, pages 116-132. Springer. DOI: 10.1007/978-3-030-22496-7_8.

Moawad, A., Hartmann, T., Fouquet, F., Nain, G., Klein, J., and Le Traon, Y. (2015). Beyond discrete modeling: A continuous and efficient model for IoT. In 2015 ACM/IEEE 18th International Conference on Model Driven Engineering Languages and Systems (MODELS), pages 90-99. IEEE. DOI: 10.5555/3351736.3351751.

Mokhtar, S. B., Boutet, A., Bouzouina, L., Bonnel, P., Brette, O., Brunie, L., Cunche, M., D'Alu, S., Primault, V., Raveneau, P., et al. (2017). PRIVA'MOV: Analysing human mobility through multi-sensor datasets. In NetMob 2017. Available at: Piorkowski, M., Sarafijanovic-Djukic, N., and Grossglauser, M. (2009). CRAWDAD data set epfl/mobility (v. 2009-02-24).

Polar (2021). Ignite 2. Available at: [link] Last accessed on April 21st, 2024.

Primault, V., Mokhtar, S. B., Lauradoux, C., and Brunie, L. (2014). Differentially private location privacy in practice. arXiv preprint arXiv:1410.7744. DOI: https://doi.org/10.48550/arxiv.1410.7744.

Primault, V., Mokhtar, S. B., Lauradoux, C., and Brunie, L. (2015). Time distortion anonymization for the publication of mobility data with high utility. In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 1, pages 539-546. IEEE. DOI: 10.1109/trustcom.2015.417.

Raes, R., Ruas, O., Luxey-Bitri, A., and Rouvoy, R. (2022a). FLI accelerometer example application. Available at: [link] Hosted on Software Heritage Last accessed on November 4th, 2024.

Raes, R., Ruas, O., Luxey-Bitri, A., and Rouvoy, R. (2022b). FLI implementation. Available at: [link] Hosted on Software Heritage Last accessed on November 4th, 2024.

Raes, R., Ruas, O., Luxey-Bitri, A., and Rouvoy, R. (2022c). In-situ LPPM. Available at: [link] Hosted on Software Heritage Last accessed on November 4th, 2024.

Raes, R., Ruas, O., Luxey-Bitri, A., and Rouvoy, R. (2022d). Memory space benchmarking application. Available at: [link] Hosted on Software Heritage Last accessed on November 4th, 2024.

Raes, R., Ruas, O., Luxey-Bitri, A., and Rouvoy, R. (2022e). Throughput benchmarking application. Available at: [link] Hosted on Software Heritage Last accessed on November 4th, 2024.

Raes, R., Ruas, O., Luxey-Bitri, A., and Rouvoy, R. (2024). Compact Storage of Data Streams in Mobile Devices. In DAIS'24 - 24th International Conference on Distributed Applications and Interoperable Systems, Proceedings of the 24th International Conference on Distributed Applications and Interoperable Systems (DAIS'24), Groningen, Netherlands. LNCS. DOI: 10.1007/978-3-031-62638-8_4.

Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557-570. DOI: 10.1142/s0218488502001648.

Tamplin, J. and Lee, A. (2012). Firebase services. Available at: [link] Last accessed on April 21st, 2024.

Timescale (2019). Building a distributed time-series database on PostgreSQL. Available at: [link] Last accessed on May 12th 2023.

Timescale Inc (2018). Timescale database. Available at: [link] Last accessed on April 21st, 2024.

Vaizman, Y., Ellis, K., and Lanckriet, G. (2017). Recognizing Detailed Human Context in the Wild from Smartphones and Smartwatches. IEEE Pervasive Computing, 16(4). DOI: 10.1109/MPRV.2017.3971131.

Wang, L., Gjoreski, H., Ciliberto, M., Mekki, S., Valentin, S., and Roggen, D. (2019). Enabling reproducible research in sensor-based transportation mode recognition with the sussex-huawei dataset. IEEE Access, 7:10870-10891. DOI: 10.1109/access.2019.2890793.

Wolfson, O., Chamberlain, S., Dao, S., Jiang, L., and Mendez, G. (1998). Cost and imprecision in modeling the position of moving objects. In Proceedings 14th International Conference on Data Engineering, pages 588-596. DOI: 10.1109/ICDE.1998.655822.

Xu, K., Yue, H., Guo, L., Guo, Y., and Fang, Y. (2015). Privacy-preserving machine learning algorithms for big data systems. In 2015 IEEE 35th international conference on distributed computing systems, pages 318-327. IEEE. DOI: 10.1109/icdcs.2015.40.

y Arcas, B. A. (2018). Decentralized machine learning. In 2018 IEEE International Conference on Big Data (Big Data), pages 1-1. IEEE. DOI: 10.1109/bigdata.2018.8622078.

Yu, M.-C., Yu, T., Wang, S.-C., Lin, C.-J., and Chang, E. Y. (2014). Big data small footprint: The design of a low-power classifier for detecting transportation modes. Proceedings of the VLDB Endowment, 7(13):1429-1440. DOI: 10.14778/2733004.2733015.

Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., and Terveen, L. (2004). Discovering personal gazetteers: an interactive clustering approach. In Proceedings of the 12th annual ACM international workshop on Geographic information systems, pages 266-273. DOI: 10.1145/1032222.1032261.

Downloads

Published

2025-06-30

How to Cite

Raes, R., Ruas, O., Luxey-Bitri, A., & Rouvoy, R. (2025). INTACT: Compact Storage of Data Streams in Mobile Devices to Unlock User Privacy at the Edge. Journal of Internet Services and Applications, 16(1), 372–387. https://doi.org/10.5753/jisa.2025.5242

Issue

Section

Research article