Disaster-FD: Federated Failure Detection in Disaster Scenarios

Authors

DOI:

https://doi.org/10.5753/jisa.2025.5876

Keywords:

IoT, Disaster Management, Failure Detectors, Federated Monitoring

Abstract

This paper explores advanced features of Disaster-FD, a failure detector tailored for disaster-prone environments, with a specific focus on real-time monitoring of Internet of Things (IoT) networks. Leveraging federated monitoring, Disaster-FD enables the monitoring of geographically distributed regions to enhance network resilience. Inspired by Impact-FD, our proposed algorithm incorporates active monitoring and federated capabilities to ensure network reliability under adverse conditions. We conducted comprehensive experiments on the IoT-LAB platform to evaluate the robustness and resilience of Disaster-FD during potential disaster scenarios. These experiments assessed key parameters, including reliability thresholds, confidence levels, and impact factors, while ensuring efficient energy consumption and maintaining high network trust. Extensive evaluations, involving up to four geographically distinct regions in France and nearly a hundred IoT devices, demonstrate the effectiveness of Disaster-FD. Our findings highlight the potential of the algorithm to improve disaster response through enhanced IoT network monitoring, and we outline future directions for further development and optimization.

Downloads

Download data is not yet available.

References

Adjih, C., Baccelli, E., Fleury, E., Harter, G., Mitton, N., Noel, T., Pissard-Gibollet, R., Saint-Marcel, F., Schreiner, G., Vandaele, J., et al. (2015). FIT IoT-LAB: A large scale open experimental IoT testbed. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pages 459-464. IEEE. DOI: 10.1109/wf-iot.2015.7389098.

Aguilera, M. K., Delporte-Gallet, C., Fauconnier, H., and Toueg, S. (2004). Communication-efficient leader election and consensus with limited link synchrony. In Proceedings of the twenty-third annual ACM symposium on Principles of distributed computing, pages 328-337. DOI: 10.1145/1011767.1011816.

Atzori, L., Iera, A., and Morabito, G. (2010). The internet of things: A survey. Computer networks, 54(15):2787-2805. DOI: 10.1016/j.comnet.2010.05.010.

Barborak, M., Dahbura, A., and Malek, M. (1993). The consensus problem in fault-tolerant computing. ACM Computing Surveys (CSur), 25(2):171-220. DOI: 10.1145/152610.152612.

Chandra, T. D., Hadzilacos, V., and Toueg, S. (1996). The weakest failure detector for solving consensus. Journal of the ACM (JACM), 43(4):685-722. DOI: 10.1145/234533.234549.

Chandra, T. D. and Toueg, S. (1996). Unreliable failure detectors for reliable distributed systems. Journal of the ACM (JACM), 43(2):225-267. DOI: 10.1145/226643.226647.

Chen, W., Toueg, S., and Aguilera, M. K. (2002). On the quality of service of failure detectors. IEEE Transactions on computers, 51(5):561-580. DOI: 10.1109/icdsn.2000.857535.

Cristian, F. and Fetzer, C. (1999). The timed asynchronous distributed system model. IEEE Transactions on Parallel and Distributed Systems, 10(6):642-657. DOI: 10.1109/71.774912.

Das, A., Gupta, I., and Motivala, A. (2002). Swim: Scalable weakly-consistent infection-style process group membership protocol. In Proceedings International Conference on Dependable Systems and Networks, pages 303-312. IEEE. DOI: 10.1109/DSN.2002.1028914.

Fischer, M. J., Lynch, N. A., and Paterson, M. S. (1985). Impossibility of distributed consensus with one faulty process. Journal of the ACM (JACM), 32(2):374-382. DOI: 10.1145/3149.214121.

Janoneda, L. (2022). A cada desastre natural no brasil, em média, 3,4 mil pessoas são afetadas. Available online [link]. Acessed in 2022-01-09.

Kovatsch, M., Lanter, M., and Shelby, Z. (2014). Californium: Scalable cloud services for the internet of things with coap. In 2014 International Conference on the Internet of Things (IOT), pages 1-6. IEEE. DOI: 10.1109/iot.2014.7030106.

Leslie, L. (1998). The part-time parliament. ACM Trans. on Computer Systems, 16:133-169. DOI: 10.1145/3335772.3335939.

Rossetto, A. G. d. M., Geyer, C. F., Arantes, L., and Sens, P. (2018). Impact fd: An unreliable failure detector based on process relevance and confidence in the system. The Computer Journal, 61(10):1557-1576. DOI: 10.1093/comjnl/bxy041.

Sens, P., Arantes, L., Rosseto, A. G. D. M., and Marin, O. (2024). Stab-fd: A cooperative and adaptive failure detector for wide area networks. Journal of Parallel and Distributed Computing, 186. DOI: 10.1016/j.jpdc.2023.104803.

Silva, A. d. P., Rossetto, A. G. d. M., Sens, P., Arantes, L., Pasquini, R., and Coelho, P. (2024). Disaster-fd: A failure detector for disaster-prone environments. In Proceedings of the 13th Latin-American Symposium on Dependable and Secure Computing, pages 200-209. DOI: 10.1145/3697090.3697096.

Verissimo, P. and Rodrigues, L. (2012). Distributed Systems for System Architects, volume 1. Springer Science & Business Media. DOI: https://doi.org/10.1007/978-1-4615-1663-7.

Yang, R., Zhu, S., Li, Y., and Gupta, I. (2019). Medley: A novel distributed failure detector for IoT networks. In Proceedings of the 20th International Middleware Conference, pages 319-331. DOI: 10.1145/3361525.33615567.

Downloads

Published

2025-07-20

How to Cite

Silva, A. de P., Rossetto, A. G. de M., Sens, P., Arantes, L., Pasquini, R., & Coelho, P. (2025). Disaster-FD: Federated Failure Detection in Disaster Scenarios. Journal of Internet Services and Applications, 16(1), 453–469. https://doi.org/10.5753/jisa.2025.5876

Issue

Section

Research article