Safe and Protected: Combining Protection Mechanism with Safety Verification In Autonomous Vehicles
DOI:
https://doi.org/10.5753/jisa.2026.5913Keywords:
Protection Mechanisms, Autonomous Vehicles, Formal MethodsAbstract
Protection mechanisms, also known as security mechanisms, in automotive systems are proactive components that continuously monitor vehicle signals to detect early signs of potential faults. For autonomous vehicles, it is essential that safety models, such as Responsibility-Sensitive Safety (RSS), which governs longitudinal and lateral safety, account for these mechanisms to enable timely and effective countermeasures against imminent actuation failures. A typical example is the proactive application of braking to increase longitudinal distance and mitigate the risk of losing braking capability. In this paper, we present a data-centric approach for modeling protection mechanisms using the SmartData framework, which facilitates the automatic derivation of safety properties for real-time formal verification via a Safety Enforcement Unit (SEU). We introduce extensions to RSS proper response strategies, enabling them to anticipate potential actuation constraints by leveraging shared internal states of protection mechanisms and a predictive time-to-trigger metric. We formally demonstrate that our approach preserves compliance with the original RSS safety guarantees by extending its inductive proof structure. Furthermore, we validate the feasibility of our solution through empirical evaluation, showing that the embedded formal verification can automatically extract properties from publish-subscribe message systems and operate at runtime with minimal overhead (less than 1% of platform processing capacity). Finally, we integrate our approach with RSS and a representative protection mechanism within the CARLA simulator to showcase its effectiveness in a realistic autonomous driving environment.
Downloads
References
Althoff, M. and Magdici, S. (2016). Set-based prediction of traffic participants on arbitrary road networks. IEEE Transactions on Intelligent Vehicles, 1(2):187-202. DOI: 10.1109/TIV.2016.2622920.
Conradi Hoffmann, J. L., Augusto Fröhlich, A., and Völp, M. (2024a). Enhancing rss to be fault tolerant during overtaking maneuvers. In IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society, pages 1-6. DOI: 10.1109/IECON55916.2024.10905937.
Conradi Hoffmann, J. L., Fröhlich, A. A., Völp, M., and Milazzo, P. (2024b). Using vehicular protection mechanisms to enable fault-aware safety verification of autonomous vehicles. In Proceedings of the 13th Latin-American Symposium on Dependable and Secure Computing, LADC '24, page 55–64, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3697090.3697101.
Conradi Hoffmann, J. L., Passig Horstmann, L., and Fröhlich, A. A. (2024c). Transparent integration of autonomous vehicles simulation tools with a data-centric middleware. Design Automation for Embedded Systems, 28(1):45-66. DOI: 10.1007/s10617-023-09280-w.
Cui, J., Sabaliauskaite, G., Liew, L. S., Zhou, F., and Zhang, B. (2019). Collaborative analysis framework of safety and security for autonomous vehicles. IEEE Access, 7:148672-148683. DOI: 10.1109/access.2019.2946632.
de Lucena, M. M. and Augusto Fröhlich, A. (2022). Modeling misbehavior detection timeliness in vanets. In 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA), pages 1-8, Stuttgart, Germany. IEEE. DOI: 10.1109/ETFA52439.2022.9921605.
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V. (2017). CARLA: An open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pages 1-16. DOI: 10.48550/arXiv.1711.03938.
Fröhlich, A. A. (2018). SmartData: an IoT-ready API for sensor networks. International Journal of Sensor Networks, 28(3):202. DOI: 10.1504/ijsnet.2018.096264.
Gruber, F. and Althoff, M. (2018). Anytime safety verification of autonomous vehicles. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pages 1708-1714, Maui, HI, USA. IEEE. DOI: 10.1109/ITSC.2018.8569950.
Hoffmann, J. L. C. and Fröhlich, A. A. (2022). Smartdata safety: Online safety models for data-driven cyber-physical systems. In 48th Annual Conference of the IEEE Industrial Electronics Society, pages 1-6, Brussels, Belgium. IEEE. DOI: 10.1109/IECON49645.2022.9969074.
Hoffmann, J. L. C. and Fröhlich, A. A. (2025). Smartdata: Toward the data-driven design of critical systems. IEEE Access, 13:41865-41886. DOI: 10.1109/ACCESS.2025.3548542.
Hoffmann, J. L. C., Horstmann, L. P., Wagner, M., Vieira, F., de Lucena, M. M., and Fröhlich, A. A. (2022). Using formal methods to specify data-driven cyber-physical systems. In 2022 IEEE 31st International Symposium on Industrial Electronics (ISIE), pages 643-648, Anchorage, AK, USA. IEEE. DOI: 10.1109/ISIE51582.2022.9831686.
Huang, J. and Tan, H.-S. (2016). Control system design of an automated bus in revenue service. IEEE Transactions on Intelligent Transportation Systems, 17(10):2868-2878. DOI: 10.1109/tits.2016.2530760.
International Organization for Standardization (2018). ISO 2626: Road vehicles – functional safety. Available at: r̆lhttps://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en.
Kim, S.-W., Qin, B., Chong, Z. J., Shen, X., Liu, W., Ang, M. H., Frazzoli, E., and Rus, D. (2015). Multivehicle cooperative driving using cooperative perception: Design and experimental validation. IEEE Transactions on Intelligent Transportation Systems, 16(2):663-680. DOI: 10.1109/TITS.2014.2337316.
Kong, W., Luo, Y., Qin, Z., Qi, Y., and Lian, X. (2019). Comprehensive fault diagnosis and fault-tolerant protection of in-vehicle intelligent electric power supply network. IEEE Transactions on Vehicular Technology, 68(11):10453-10464. DOI: 10.1109/TVT.2019.2921784.
Koopman, P. and Wagner, M. (2016). Challenges in autonomous vehicle testing and validation. SAE International Journal of Transportation Safety, 4(1):15-24. DOI: 10.4271/2016-01-0128.
Lucchetti, F., Graczyk, R., and Völp, M. (2023). Toward resilient autonomous driving—an experience report on integrating resilience mechanisms into the apollo autonomous driving software stack. Frontiers in Computer Science, 5:1-11. DOI: 10.3389/fcomp.2023.1125055.
Ludwich, M. K. and Frohlich, A. A. (2015). Proper handling of interrupts in cyber-physical systems. In 2015 International Symposium on Rapid System Prototyping (RSP), pages 83-89, Piscataway, New Jersey, USA. IEEE. DOI: 10.1109/RSP.2015.7416551.
Maler, O. and Nickovic, D. (2004). Monitoring temporal properties of continuous signals. In Lakhnech, Y. and Yovine, S., editors, Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pages 152-166, Berlin, Heidelberg. Springer Berlin Heidelberg. DOI: 10.1007/978-3-540-30206-3_12.
of Automotive Engineers, I. S. (2021). Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. DOI: 10.4271/j3016_202104.
Orzechowski, P. F., Li, K., and Lauer, M. (2019). Towards responsibility-sensitive safety of automated vehicles with reachable set analysis. In 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE), pages 1-6, Graz, Austria. IEEE. DOI: 10.1109/ICCVE45908.2019.8965069.
Pek, C., Manzinger, S., Koschi, M., and Althoff, M. (2020). Using online verification to prevent autonomous vehicles from causing accidents. Nature Machine Intelligence, 2(9):518-528. DOI: 10.1038/s42256-020-0225-y.
Sangha, M., Gomm, J., Yu, D., and Page, G. (2005). Fault detection and identification of automotive engines using neural networks. IFAC Proceedings Volumes, 38(1):272-277. 16th IFAC World Congress. DOI: 10.3182/20050703-6-CZ-1902.01933.
Shalev-Shwartz, S., Shammah, S., and Shashua, A. (2017). On a formal model of safe and scalable self-driving cars. CoRR, abs/1708.06374:1-37. DOI: http://arxiv.org/abs/1708.06374.
Sidorenko, G., Fedorov, A., Thunberg, J., and Vinel, A. (2022). Towards a complete safety framework for longitudinal driving. IEEE Transactions on Intelligent Vehicles, 7(4):809-814. DOI: 10.1109/TIV.2022.3209910.
Sivakumar, A. and Mohanty, P. (2020). Electronic system design of a formula student electric car. In 2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), pages 115-120, Udupi, India. IEEE. DOI: 10.1109/DISCOVER50404.2020.9278091.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Journal of Internet Services and Applications

This work is licensed under a Creative Commons Attribution 4.0 International License.

