Drone Surveillance System Availability and Reliability: A Comprehensive Analytical and Numerical Modeling Approach
DOI:
https://doi.org/10.5753/jisa.2026.5931Keywords:
Unmanned Aerial Vehicles, Drone Surveillance Systems, Continuous-Time Markov Chains, Stochastic Petri Nets, System Reliability, Availability AnalysisAbstract
This paper proposes an approach to evaluate the availability and reliability of drone surveillance systems using complementary modeling techniques. Resilient system architecture with drone and battery redundancy is analyzed using two modeling strategies: (i) an analytical model based on Continuous-Time Markov Chains (CTMC), which yields closed-form availability equations, and (ii) a numerical model employing Stochastic Petri Nets (SPN) to handle more complex redundancy scenarios. Both models consider key factors such as battery charging/discharging times, drone failure and repair rates, and replacement operations. Sensitivity analyses highlight battery-related parameters as critical to system performance. Case studies show that optimizing component parameters can yield up to 97% availability, while redundancy alone can provide 91%. Combined strategies can achieve up to 99.89% availability. For long missions (30 hours), reliability analysis indicates that 15--20 redundant batteries and charging times below 36 minutes are needed to maintain over 80% reliability. For shorter missions, discharge times over 144 minutes are beneficial. This integrated modeling approach provides a robust framework for dependability assessment, guiding the design of resilient and cost-effective drone surveillance systems for mission-critical applications.
Downloads
References
Araujo, J., Alves, V., Oliveira, D., Dias, P., Silva, B., and Maciel, P. (2013). An investigative approach to software aging in android applications. In 2013 IEEE International Conference on Systems, Man, and Cybernetics, pages 1229-1234. DOI: 10.1109/SMC.2013.213.
Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE transactions on dependable and secure computing, 1(1):11-33. DOI: 10.1109/tdsc.2004.2.
Brito, C., Silva, L., Callou, G., Nguyen, T. A., Min, D., Lee, J.-W., and Silva, F. A. (2021). Offloading data through unmanned aerial vehicles: a dependability evaluation. Electronics, 10(16):1916. DOI: 10.3390/electronics10161916.
Clemente, D., Pereira, P., Dantas, J., and Maciel, P. (2022). Availability evaluation of system service hosted in private cloud computing through hierarchical modeling process. The Journal of Supercomputing, 78(7):9985-10024. DOI: 10.1007/s11227-021-04217-1.
Falcão, M., Souza, C., Balieiro, A., and Dias, K. (2023). Dynamic resource allocation for urllc in uav-enabled multi-access edge computing. In 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), pages 293-298, Göteborg, Sweden. IEEE, IEEE. DOI: 10.1109/eucnc/6gsummit58263.2023.10188346.
Fernandes, S., Tavares, E., Santos, M., Lira, V., and Maciel, P. (2012). Dependability assessment of virtualized networks. In 2012 IEEE international conference on communications (ICC), pages 2711-2716, Ontario, Canada. IEEE, IEEE. DOI: 10.1109/icc.2012.6363992.
Gohari, A., Ahmad, A. B., Rahim, R. B. A., Supa’at, A. S. M., Abd Razak, S., and Gismalla, M. S. M. (2022). Involvement of surveillance drones in smart cities: A systematic review. IEEE Access, 10:56611-56628. DOI: 10.1109/ACCESS.2022.3177904.
Hamby, D. (1995). A comparison of sensitivity analysis techniques. Health physics, 68(2):195-204. DOI: 10.1097/00004032-199502000-00005.
Hamby, D. M. (1994). A review of techniques for parameter sensitivity analysis of environmental models. Environmental monitoring and assessment, 32:135-154. DOI: 10.1007/bf00547132.
Hosseinalipour, S., Rahmati, A., Eun, D. Y., and Dai, H. (2021). Energy-aware stochastic uav-assisted surveillance. IEEE Transactions on Wireless Communications, 20(5):2820-2837. DOI: 10.1109/TWC.2020.3044490.
Jia, Z., Wu, Q., Dong, C., Yuen, C., and Han, Z. (2023). Hierarchical aerial computing for internet of things via cooperation of haps and uavs. IEEE Internet of Things Journal, 10(7):5676-5688. DOI: 10.1109/JIOT.2022.3151639.
Kharchenko, V., Kliushnikov, I., Rucinski, A., Fesenko, H., and Illiashenko, O. (2022). Uav fleet as a dependable service for smart cities: Model-based assessment and application. Smart Cities, 5(3):1151-1178. DOI: 10.3390/smartcities5030058.
Kotikalpudi, A., Danowsky, B. P., and Seiler, P. J. (2020). Reliability analysis for small unmanned air vehicle with algorithmic redundancy. In AIAA Scitech 2020 Forum, page 0739, Orlando, Florida. IEEE. DOI: 10.2514/6.2020-0739.
Li, Y., Hassairi, S., Satloff, T., Burns, E., Majgaard, C.-P., and Liang, C. (2020). Energy efficient strategy for uninterrupted mission execution via automatic drone replacement. In 2020 IEEE International Systems Conference (SysCon), pages 1-7, Montreal, Quebec. IEEE, IEEE. DOI: 10.1109/syscon47679.2020.9275880.
Lin, X., Su, G., Chen, B., Wang, H., and Dai, M. (2019). Striking a balance between system throughput and energy efficiency for uav-iot systems. IEEE Internet of Things Journal, 6(6):10519-10533. DOI: 10.1109/JIOT.2019.2939823.
Lins, L., Nascimento, E., Dantas, J., Araujo, J., and Maciel, P. (2024). Stochastic modeling for assessing the reliability and availability of drone-based surveillance systems. In 2024 IEEE International Systems Conference (SysCon), pages 1-8, Montreal, Quebec. IEEE, IEEE. DOI: 10.1109/syscon61195.2024.10553470.
Lopez, V. and Akundi, A. (2023). Modeling a uav surveillance scenario-an applied mbse approach. In 2023 IEEE International Systems Conference (SysCon), pages 1-8, Montreal, Quebec. IEEE, IEEE. DOI: 10.1109/SysCon53073.2023.10131074.
MacCarthy, J. (2019). The drone system ii: Availability performance analysis and modeling. In INCOSE International Symposium, volume 29, pages 910-921. Wiley Online Library. DOI: 10.1002/j.2334-5837.2019.00643.x.
Machida, F. and Andrade, E. (2021). Availability modeling for drone image processing systems with adaptive offloading. volume 2021-December, pages 93-103. IEEE Computer Society. DOI: 10.1109/PRDC53464.2021.00021.
Maciel, P., Dantas, J., Melo, C., et al. (2022). A survey on reliability and availability modeling of edge, fog, and cloud computing. Journal of Reliable Intelligent Environments, 8:227-245. DOI: 10.1007/s40860-021-00154-1.
Maciel, P., Matos, R., Silva, B., Figueiredo, J., Oliveira, D., Fé, I., Maciel, R., and Dantas, J. (2017). Mercury: Performance and dependability evaluation of systems with exponential, expolynomial, and general distributions. In 2017 IEEE 22nd Pacific Rim international symposium on dependable computing (PRDC), pages 50-57, Christchurch, New Zealand. IEEE, IEEE. DOI: 10.1109/prdc.2017.16.
Maciel, P. R. M. (2023). Performance, reliability, and availability evaluation of computational systems, Volume II: Reliability, availability modeling, measuring, and data analysis, volume 2. CRC Press, Recife, Pernambuco. Book.
Maciel, R., Araujo, J., Dantas, J., Melo, C., Guedes, E., and Maciel, P. (2018). Impact of a ddos attack on computer systems: An approach based on an attack tree model. In 2018 Annual IEEE International Systems Conference (SysCon), pages 1-8. DOI: 10.1109/SYSCON.2018.8369611.
Mishra, B., Garg, D., Narang, P., and Mishra, V. (2020). Drone-surveillance for search and rescue in natural disaster. Computer Communications, 156:1-10. DOI: 10.1016/j.comcom.2020.03.012.
Moghadasi, N., Kulkarni, A., Crayton, D., Grissom, R., Lambert, J. H., and Feng, L. (2023). Formal methods in unmanned aerial vehicle swarm control for wildfire detection and monitoring. In 2023 IEEE International Systems Conference (SysCon), pages 1-8, JW Marriot Parq Vancouver. IEEE, IEEE. DOI: 10.1109/syscon53073.2023.10131075.
Pereira, P., Araujo, J., Melo, C., et al. (2021). Analytical models for availability evaluation of edge and fog computing nodes. The Journal of Supercomputing, 77:9905-9933. DOI: 10.1007/s11227-021-03672-0.
Petritoli, E., Leccese, F., and Ciani, L. (2017). Reliability assessment of uav systems. In 4th IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2017 - Proceedings, pages 266-270. Institute of Electrical and Electronics Engineers Inc.. DOI: 10.1109/MetroAeroSpace.2017.7999577.
Petritoli, E., Leccese, F., and Ciani, L. (2018). Reliability and maintenance analysis of unmanned aerial vehicles. Sensors (Switzerland), 18. DOI: 10.3390/s18093171.
Pham, Q.-V., Ruby, R., Fang, F., Nguyen, D. C., Yang, Z., Le, M., Ding, Z., and Hwang, W.-J. (2022). Aerial Computing: A New Computing Paradigm, Applications, and Challenges. IEEE Internet of Things Journal, 9(11):8339-8363. DOI: 10.1109/JIOT.2022.3160691.
Rusnak, P., Kvassay, M., Zaitseva, E., Kharchenko, V., and Fesenko, H. (2019). Reliability assessment of heterogeneous drone fleet with sliding redundancy. In 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT), pages 19-24. DOI: 10.1109/DESSERT.2019.8770031.
Trivedi, K. S. (2008). Probability & statistics with reliability, queuing and computer science applications. John Wiley & Sons, Berlin, Germany. Available at: [link].
Watanabe, K. and Machida, F. (2022). Availability analysis of a drone system with proactive offloading for software life-extension. In 2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS), pages 1-6. IEEE. DOI: 10.1109/coins54846.2022.9854966.
Xing, L. and Johnson, B. W. (2023). Reliability theory and practice for unmanned aerial vehicles. IEEE Internet of Things Journal, 10(4):3548-3566. DOI: 10.1109/JIOT.2022.3218491.
Zaitseva, E., Levashenko, V., Kvassay, M., and Kharchenko, V. (2020). Reliability evaluation of heterogeneous drone fleet by structure function based method. pages 4883-4889. Research Publishing, Singapore. DOI: 10.3850/978-981-14-8593-0_5145-cd.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Journal of Internet Services and Applications

This work is licensed under a Creative Commons Attribution 4.0 International License.

