Spreading Factor Allocation in LoRaWAN for Reliability and Delay-Constrained Smart Metering Applications

Authors

DOI:

https://doi.org/10.5753/jisa.2025.5932

Keywords:

Delay, LoRaWAN, Reliability, Smart Metering, Spreading Factor Allocation

Abstract

Long Range Wide-Area Network (LoRaWAN) is a prominent IoT technology, and one of its operational parameters that significantly influences reliable transmission and packet delivery delay is Spreading Factor (SF). In this context, this paper develops a Spreading Factor Allocation scheme, named Delay and Reliability-aware Spreading Factor Allocation (DR-SFA), and evaluates it through simulations in comparison with four related solutions: Initial Spreading Factor Allocation (I-SFA), Adaptive Data Rate (ADR), I-SFA+ADR, and Collision-Aware Adaptive Data Rate (CA-ADR). The simulated scenarios model an Advanced Metering Infrastructure (AMI) executing Interval Meter Reading (IMR) and Power-Control Command (PCC) applications, with 200 to 1000 Smart Meters (SMs) distributed across an area of 56.25 km2. The results demonstrate that DR-SFA outperforms the alternative solutions by reducing the number of required Data Aggregation Points (DAPs) by up to 92.86%, while meeting the reliability and maximum delay requirements of the tested applications. Furthermore, DR-SFA successfully receives packets from meters located up to 2197.56 meters away in the scenario with 200 SMs, and achieves a Packet Delivery Ratio (PDR) of 99.49%, while also decreasing packet loss due to interference by 83.84% compared to ADR, and packet loss due to under sensitivity by 53.96% compared to I-SFA+ADR, in the scenario with 1000 SMs.

Downloads

Download data is not yet available.

References

Abd Elkarim, S. I., Elsherbini, M. M., Mohammed, O., Khan, W. U., Waqar, O., and ElHalawany, B. M. (2022). Deep learning based joint collision detection and spreading factor allocation in lorawan. In 2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW), pages 187-192. IEEE. DOI: 10.1109/ICDCSW56584.2022.00043.

Al-Gumaei, Y. A., Aslam, N., Chen, X., Raza, M., and Ansari, R. I. (2021). Optimizing power allocation in lorawan iot applications. IEEE Internet of Things Journal, 9(5):3429-3442. DOI: 10.1109/JIOT.2021.3098477.

Al-Sammak, K. A., Al-Gburi, S. H., Marghescu, C., Drăgulinescu, A. M., Suciu, G., and Abdulqader, A. G. (2024). A comprehensive assessment of lorawan and nb-iot performance metrics under varied payload data sizes. In 2024 16th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pages 1-5. DOI: 10.1109/ECAI61503.2024.10607481.

Al-Sammak, K. A., Al-Gburi, S. H., Marghescu, I., Druagulinescu, A.-M. C., Marghescu, C., Martian, A., Al-Sammak, N. A. H., Suciu, G., and Alheeti, K. M. A. (2025). Optimizing iot energy efficiency: Real-time adaptive algorithms for smart meters with lorawan and nb-iot. Energies, 18(4):987. DOI: 10.3390/en18040987.

Alumfareh, M. F., Humayun, M., Ahmad, Z., and Khan, A. (2024). An intelligent lorawan-based iot device for monitoring and control solutions in smart farming through anomaly detection integrated with unsupervised machine learning. IEEE Access. DOI: 10.1109/ACCESS.2024.3450587.

Bouazizi, Y., Benkhelifa, F., ElSawy, H., and McCann, J. A. (2025). Sf-adaptive duty-cycled lora networks: Scalability, reliability, and latency tradeoffs. IEEE Transactions on Communications, 73(2):1042-1057. DOI: 10.1109/TCOMM.2024.3450586.

Correia, F. P., Silva, S. R. d., Carvalho, F. B. S. d., Alencar, M. S. d., Assis, K. D. R., and Bacurau, R. M. (2023). Lorawan gateway placement in smart agriculture: An analysis of clustering algorithms and performance metrics. Energies, 16(5):1-21. DOI: 10.3390/en16052356.

Da Silva, C. N., de Abreu, P. F. F., da Silveira, J. D. F., and dos R, J. V. (2022). Estimating the number of gateways through placement strategies in a lorawan network. In 2022 XII Brazilian Symposium on Computing Systems Engineering (SBESC), pages 1-6. DOI: 10.1109/SBESC56799.2022.9964620.

Da Silva, T. A. R., Sarmento Neto, G. A., Abreu, P. F. F., Veloso, A. F. D. S., Mendes, L. H. d. O., and Dos Reis, J. V. (2024). A novel data aggregation point placement method for smart metering service using lorawan technology. In 2024 11th International Conference on Future Internet of Things and Cloud (FiCloud), pages 55-62. DOI: 10.1109/FiCloud62933.2024.00017.

Das, R. and Bera, J. N. (2022). Quality of service improvement in neighborhood area networking for ami with zigbee-based tunable clustered scale-free topology and rpl routing. IEEE Transactions on Smart Grid, 14(1):453-463. DOI: 10.1109/TSG.2022.3191358.

Enriko, I. K. A., Abidin, A. Z., and Noor, A. S. (2021). Design and implementation of lorawan-based smart meter system for rural electrification. In 2021 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), pages 1-5. IEEE. DOI: 10.1109/GECOST52368.2021.9538704.

Farhad, A., Kim, D.-H., Kim, B.-H., Mohammed, A. F. Y., and Pyun, J.-Y. (2020a). Mobility-aware resource assignment to iot applications in long-range wide area networks. IEEE Access, 8:186111-186124. DOI: 10.1109/ACCESS.2020.3029575.

Farhad, A., Kim, D.-H., Subedi, S., and Pyun, J.-Y. (2020b). Enhanced lorawan adaptive data rate for mobile internet of things devices. Sensors, 20(22):6466. DOI: 10.3390/s20226466.

Farhad, S., Lodhi, M. A., Khan, W. U., and Masood, F. (2020c). An adaptive and lightweight spreading factor assignment scheme for lorawan networks. In 2020 14th International Conference on Open Source Systems and Technologies (ICOSST), pages 1-6. IEEE. DOI: 10.1109/ICOSST51357.2020.9333065.

Gallardo, J. L., Ahmed, M. A., and Jara, N. (2021). Clustering algorithm-based network planning for advanced metering infrastructure in smart grid. IEEE Access, 9:48992-49006. DOI: 10.1109/ACCESS.2021.3068752.

Gupta, M. K. and Chandra, P. (2022). Effects of similarity/distance metrics on k-means algorithm with respect to its applications in iot and multimedia: a review. Multimedia Tools and Applications, 81(26):37007-37032. DOI: 10.1007/s11042-021-11255-7.

Hazarika, A. and Choudhury, N. (2024). isfa: Intelligent sf allocation approach for lora-based mobile and static end devices. In 2024 IEEE Wireless Communications and Networking Conference (WCNC), pages 1-6. IEEE. DOI: 10.1109/WCNC57260.2024.10570655.

Hsu, H.-C., Zhuang, S.-R., and Huang, Y.-F. (2021). Cost-effective data aggregation method for smart grid. Electronics, 10(23):1-13. DOI: 10.3390/electronics10232911.

Jouhari, M., Saeed, N., Alouini, M.-S., and Amhoud, E. M. (2023). A survey on scalable lorawan for massive iot: Recent advances, potentials, and challenges. IEEE Communications Surveys & Tutorials, 25(3):1841-1876. DOI: 10.1109/COMST.2023.3274934.

Júnior, J. A. d. O., de Camargo, E. T., and Seiji Oyamada, M. (2023). Data compression in lora networks: A compromise between performance and energy consumption. Journal of Internet Services and Applications, 14(1):95-106. DOI: 10.5753/jisa.2023.3000.

Khan, A., Shirazi, S. H., Adeel, M., Assam, M., Ghadi, Y. Y., Mohamed, H. G., and Xie, Y. (2023). A qos-aware data aggregation strategy for resource constrained iot-enabled ami network in smart grid. IEEE Access. DOI: 10.1109/ACCESS.2023.3312552.

Khan, A., Umar, A. I., Munir, A., Shirazi, S. H., Khan, M. A., and Adnan, M. (2021). A qos-aware machine learning-based framework for ami applications in smart grids. Energies, 14(23):8171. DOI: 10.3390/en14238171.

Khan, A., Umar, A. I., Shirazi, S. H., Ishaq, W., Shah, M., Assam, M., and Mohamed, A. (2022). Qos-aware cost minimization strategy for ami applications in smart grid using cloud computing. Sensors, 22(13):4969. DOI: 10.3390/s22134969.

Kumar, B. S., Ramalingam, S., Divya, V., Amruthavarshini, S., and Dhivyashree, S. (2023). Lora-iot based industrial automation motor speed control monitoring system. In 2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), pages 11-15. IEEE. DOI: 10.1109/IDCIoT56793.2023.10053525.

Lang, A., Wang, Y., Feng, C., Stai, E., and Hug, G. (2022). Data aggregation point placement for smart meters in the smart grid. IEEE Transactions on Smart Grid, 13(1):541-554. DOI: 10.1109/TSG.2021.3119904.

Loh, F., Baur, C., Geissler, S., ElBakoury, H., and Hossfeld, T. (2023). Collision and energy efficiency assessment of lorawans with cluster-based gateway placement. In 2023 IEEE International Conference on Communications Workshops (ICC Workshops), pages 391-396. IEEE. newblock href10.1109/ICCWorkshops57953.2023.10283556DOI:10.1109/ICCWorkshopsdots556. DOI: 10.1109/iccworkshops57953.2023.10283556.

LoRa Alliance, I. (2017). Lorawan 1.1 specification. newblock [link]. Accessed: 2025-07-09.

Loubany, A., Lahoud, S., Samhat, A. E., and El Helou, M. (2023). Throughput improvement for lorawan networks considering iot applications priority. In 2023 6th Conference on Cloud and Internet of Things (CIoT), pages 206-210. IEEE. DOI: 10.1109/CIoT57267.2023.10084887.

Magrin, D., Capuzzo, M., and Zanella, A. (2020). A through study of lorawan performance under different parameter settings. IEEE Internet of Things Journal, 7(1):116-127. DOI: 10.1109/JIOT.2019.2946487.

Mao, W., Zhao, Z., Chang, Z., Min, G., and Gao, W. (2021). Energy-efficient industrial internet of things: Overview and open issues. IEEE transactions on industrial informatics, 17(11):7225-7237. DOI: 10.1109/TII.2021.3067026.

Marini, R., Cerroni, W., and Buratti, C. (2020). A novel collision-aware adaptive data rate algorithm for lorawan networks. IEEE Internet of Things Journal, 8(4):2670-2680. DOI: 10.1109/JIOT.2020.3020189.

Marini, R., Mikhaylov, K., Pasolini, G., and Buratti, C. (2022). Low-power wide-area networks: Comparison of lorawan and nb-iot performance. IEEE Internet of Things Journal, 9(21):21051-21063. DOI: 10.1109/JIOT.2022.3176394.

Marques, L., Eugênio, P., Bastos, L., Santos, H., Rosário, D., Nogueira, E., Cerqueira, E., Kreutz, M., and Neto, A. (2023). Analysis of electrical signals by machine learning for classification of individualized electronics on the internet of smart grid things (iosgt) architecture. Journal of Internet Services and Applications, 14(1):124-135. DOI: 10.5753/jisa.2023.3076.

More, P. A. and Patel, Z. M. (2023). Lorawan performance analysis with data rate. In 2023 1st International Conference on Cognitive Computing and Engineering Education (ICCCEE), pages 1-5. IEEE. DOI: 10.1109/ICCCEE55951.2023.10424626.

Neto, G. A. S., Da Silva, T. A., Abreu, P. F., Veloso, A. F. D. S., Mendes, L. H. d. O., and Dos Reis, J. V. (2024). Addressing mobility challenges in lorawan through adaptive data rate: A statistical median-based approach. In 2024 11th International Conference on Future Internet of Things and Cloud (FiCloud), pages 330-337. IEEE. DOI: 10.1109/FiCloud62933.2024.00058.

Semtech (2017). Sx1301 datasheet. Available at:[link] Accessed: 2025-07-09.

Soto-Vergel, A., Arismendy, L., Bornacelli-Durán, R., Cardenas, C., Montero-Arévalo, B., Rivera, E., Calle, M., and Candelo-Becerra, J. E. (2023). Lora performance in industrial environments: Analysis of different adr algorithms. IEEE Transactions on Industrial Informatics, 19(10):10501-10511. DOI: 10.1109/TII.2023.3240696.

Veloso, A. F. d. S., Júnior, J. V. R., Rabelo, R. d. A. L., and Silveira, J. D.-f. (2021). Hydsmaas: A hybrid communication infrastructure with lorawan and loramesh for the demand side management as a service. Future Internet, 13(11):271. DOI: 10.3390/fi13110271.

Wei, Y., Tsang, K. F., Wang, W., and Zhou, M. M. (2023). Priority-based resource allocation optimization for multi-service lorawan harmonization in compliance with ieee 2668. Sensors, 23(5):2660. DOI: 10.3390/s23052660.

Yang, M.-S. and Hussain, I. (2023). Unsupervised multi-view k-means clustering algorithm. IEEE Access, 11:13574-13593. DOI: 10.1109/ACCESS.2023.3243133.

Zain, A. R., Oktivasari, P., Agustin, M., Kurniawan, A., Murad, F. A., and Nurrahman, I. (2022). Evaluation of encryption and decryption data packet delivery performance in smart home design using the lorawan protocol. In 2022 5th International Conference of Computer and Informatics Engineering (IC2IE), pages 241-246. IEEE. DOI: 10.1109/IC2IE56416.2022.9970045.

Downloads

Published

2025-10-14

How to Cite

da Silva, T. A. R., Neto, G. A. S., Mendes, L. H. O., Abreu, P. F. F., Santos, F. J. V., & dos Reis Jr, J. V. (2025). Spreading Factor Allocation in LoRaWAN for Reliability and Delay-Constrained Smart Metering Applications. Journal of Internet Services and Applications, 16(1), 612–628. https://doi.org/10.5753/jisa.2025.5932

Issue

Section

Research article