
Journal of Software Engineering Research and Development, 2023, 11:11, doi: doi.org/10.5753/jserd.2023.3314
 This work is licensed under a Creative Commons Attribution 4.0 International License..

Simulation-supported development for cooperative Multi-UAV
Systems with the Mysterio framework
Antônio SávioNascimentoCavalcante [UniversidadeEstadual deCampinas| savionasc@gmail.com]
Breno Bernard Nicolau de França [Universidade Estadual de Campinas | bfranca@unicamp.br]

Abstract
Over the years, UAVs (also known as drones) have been growing in studies and applications to solve diverse prob-

lems. Due to the complexity of these problems, dealing with just one UAV may not be enough, but using several
UAVs together to work cooperatively increases its capacities, thus boosting innovative solutions. However, develop-
ing cooperative Multi-UAV systems is not trivial, and reuse support is usually limited to low-level implementation.
This work presents a framework for Multi-UAVs, called Mysterio, which provides an underlying software architec-
ture with essential Multi-UAV components, enabling the reuse of design and code so that engineers can instantiate it
to carry out specific missions bymaking UAVswork in cooperation.We also present four instances of the framework
to evaluate Mysterio’s effectiveness in different scenarios. Finally, we discuss the framework’s potential to provide
and support design and code reuse to develop Cooperative Multi-UAVs systems for different application scenar-
ios. The results showed the potential to develop multi-UAV systems using the proposed framework. Additionally,
we extend our previous work bringing conceptual evolution and advances in the architecture and the framework.
Finally, this evolution extends the framework API to support computer simulations of UAV systems based on the
OMNeT++ simulator. This API is suitable for Single-UAV and Multi-UAV systems and has already been adapted
to communicate with base stations implemented through the Mysterio Framework.

Keywords: MultiUAV Systems, Frameworks, Computer Simulation

1 Introduction

Research onUnmannedAerial Vehicles (UAVs) has emerged
over the years and is becoming popular in civil and mili-
tary applications (Bekmezci et al., 2013; Gupta et al., 2015).
There are several examples of UAV applications for carry-
ing out operations in different fields such as agriculture (Va-
sudevan et al., 2016), risky operations such as fire manage-
ment (Hrabia et al., 2018), search and rescue (Scherer et al.,
2015) and others. Furthermore, the use of UAVs presents sev-
eral technical challenges like planning algorithms (Tachinina
et al., 2017; Sathyaraj et al., 2008), area coverage and map-
ping (Yu et al., 2018), integration with Internet of Things so-
lutions (Motlagh et al., 2016), among others.
Pursuing efficiency in the use of UAVs, it is possible to

maximize the advantages through cooperation in a network
setting of multiple UAVs, also called Multi-UAV systems.
Although dealing with multiple UAVs increases the com-
plexity of control and communication, there are also advan-
tages. For instance, Multi-UAV systems allow redundancy,
increasing scalability, reliability, availability, and survivabil-
ity (Gupta et al., 2015; Bekmezci et al., 2013). Another ad-
vantage is the reduction of overall execution time, given the
number of nodes executing tasks (Sharma et al., 2019).
Building cooperative Multi-UAV systems requires a com-

munication architecture, which should be enough to not in-
terfere with their cooperation, even if some UAVs are not
always available. The design of Multi-UAV systems fore-
sees some topologies that impact architectural decisions in
a Multi-UAV system (Bekmezci et al., 2013). Structuring a
system in a specific topologymay perform better than provid-
ing support tomultiple topologies. For example, all theUAVs
communicating directly with a base station may be enough to

achieve the system’s goals. However, depending on the sce-
nario, letting some UAVs communicate directly with each
other is also a feasible alternative.
The idea of cooperative Multi-UAV systems is not new.

In (Vincent and Rubin, 2004), the authors developed coop-
erative search strategies to find moving or stationary targets.
The communication between drones was fundamental in co-
operative missions, whether in the target identification algo-
rithm or the reorganization of the UAVs in case of failures.
In addition to topology and cooperation, a well-designed

software architecture represents a key success factor in the
performance of UAVs tasks and the cooperative system be-
havior (Briggs, 2012; Sinsley et al., 2008). The selection of
technologies for the development of such an architecture is
essential; that is, technologies such as hardware, frameworks,
and protocols impact several system attributes.
The cost of designing these systems can be critical to devel-

opment, so open-source and reuse-oriented technologies can
facilitate development by simplifying the reuse of architec-
ture design and code and saving development effort (Silano
and Iannelli, 2021).
To achieve the expected benefits of UAVs working coop-

eratively, an architecture needs to consider issues such as de-
sign cost, topology changes, mobility, and energy constraints,
among others (Arafat and Moh, 2019; Gupta et al., 2015).
These and other challenges make it difficult to develop a
high-quality architecture promoting communication and co-
operation in Multi-UAV systems.
With the combination of UAVs into cooperative Multi-

UAV systems, the complexity of such systems increases,
as well as the need to organize and modularize their soft-
ware components, targeting functional correctness and flexi-
ble evolution. Still, the lack of technologies focusing on de-

https://orcid.org/0000-0002-3998-214X
mailto:savionasc@gmail.com
https://orcid.org/0000-0002-4531-1473
mailto:bfranca@unicamp.br

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

sign and code reuse to develop this type of system makes it
even more challenging, in addition to organizing them archi-
tecturally to accomplish their tasks efficiently, whether indi-
vidual or collective. Thus, a poorly designed architecture in
Multi-UAV systems makes them inefficient and does not ex-
ploit their expected benefits, such as the short operation time
in carrying out a mission.
In the literature (Arafat andMoh, 2019; Gupta et al., 2015;

Bekmezci et al., 2013; Sharma et al., 2019), features such as
robustness, adaptability, scalability, and resource efficiency,
are claimed as essential for Multi-UAV systems. However,
maintainability is also a relevant characteristic to achieve de-
pendability (Avizienis et al., 2004). So, our focus is on mod-
ularity and reusability, ultimately targeting maintainability.
Therefore, this work presents a reusable software architec-

ture and a framework focusing on reuse and modularity. In
this way, we seek to encourage the development of Multi-
UAV Cooperative Systems by reducing development costs
and time and promoting quality in the long term. Our archi-
tecture intends to be general for implementing Multi-UAV
cooperative systems, enabling the carrying out of different
missions. For this, we propose the Mysterio Framework to
develop and assess this Multi-UAV architecture with the sup-
port of simulated environments.
This paper is an extended version of (Cavalcante and

De França, 2022). The main additions in this paper are as
follows:

• We evolved the architecture and the Mysterio frame-
work, including two new levels of the architecture de-
scription using the C4 model. This way, we describe
our architecture at the context, container, and compo-
nent levels. These additions are presented in Sections 5
and 6.

• We also include a more complete description of our re-
search method in Section 4.

• We extended the framework API (Application Program-
ming Interface) by providing support for computer sim-
ulations of UAV systems (Section 6), evolving the
framework structure and API.

• To evaluate this extension, we implemented a new in-
stance based on the Connor instance to assess the new
integrated support for computer simulations as in Sec-
tion 7.5.

• Added guidance on developing simulation-supported in-
stances using the OMNeT++ simulator1 in Section 7.5.

The remaining sections are organized as follows. Section 2
presents relevant concepts for understanding UAV software
architectures. Section 3 presents related works. Section 4
presents the research method. Section 5 presents the pro-
posed architecture and framework. Sections 6 and 7 detail
the framework instantiation process and present a set of in-
stances, respectively. Finally, Section 8 concludes the paper.

2 Software Architecture for UAVs
UAVs, popularly known as drones, have important charac-
teristics, such as the ease of deployment, high flight capac-

1https://omnetpp.org/

ity, and the ability to hover in the air (Hayat et al., 2016), as
well as properties such as robustness, adaptability, resource
efficiency, scalability, cooperation, heterogeneity and self-
configuration (Yanmaz et al., 2018).
Unlike using a single UAV with limited capabilities, the

coordination and cooperation of multiple UAVs can create
a system capable of amplifying its advantages. Such coop-
eration is commonly defined with the idea of imitating ani-
mal behavior (Navarro and Matía, 2012), using the so-called
swarm algorithms (Navarro and Matía, 2012; Bandala et al.,
2014).
As the size and complexity of software and cyber-physical

systems increase, software architecture becomes a critical
success factor. Bass et al. (2012) describe software archi-
tecture as “the set of structures needed to reason about the
system, which comprises software elements, relations among
them, and properties of both”. Software architecture can be
also understood as a system abstraction with a certain level
of detail, showing some information and omitting others.
UAV systems can benefit from software architectures, as

we can find architectures specifying specific scenarios or
even defining new flight patterns or behaviors for UAVs (Tis-
dale et al., 2006). Additionally, some architectural styles can
be found in the UAV literature (Briggs, 2012). Paunicka et al.
(2005) followed a layered architectural style, while Doherty
et al. (2000) developed a distributed and concentric architec-
ture of components, allowing several service processes to oc-
cur simultaneously. Other works like Sinsley et al. (2008)
used hierarchical control architectures, in which the higher
the level of the component, the more robust it is. In (Chen
et al., 2009), the authors present a hierarchical architecture
for autonomous UAV systems. Through this multi-level hi-
erarchy architecture, software based on it becomes more or-
ganized and modular. Furthermore, there are also behavior-
based architectures, as in (Cai et al., 2011) and (Briggs,
2012), where systems behave based on the inputs (percep-
tions) of the detected situations. Understanding common ar-
chitectural styles for UAVs is important for envisioning a
reusable architecture for UAV systems. In addition, selecting
communication protocols is also an important architectural
decision.

3 Related Works
We identified related works on Multi-UAV systems describ-
ing their software architectures. However, unlike our work,
their goals do not address software reuse.
In (Krichen et al., 2018), the authors developed a Multi-

UAV systemwith a software architecture focused on commu-
nication networks that would interconnect UAVs, base sta-
tions, ground control stations, satellite, and wireless sensor
networks. The authors explained the Multi-UAV system has
several means of communication so that the UAVs could deal
with the scenario of monitoring and controlling risk areas.
Unlike this proposal, our work has a general-purpose soft-
ware architecture focused on modularization and reuse for
the development of Multi-UAV systems; that is, it is not lim-
ited to specific application scenarios.
In (Tisdale et al., 2006), the authors presented a software

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

Ta
bl
e
1.
R
es
po
ns
ib
ili
tie
sa

nd
re
la
te
d
co
m
po
ne
nt
so

fe
xi
st
in
g
M
ul
ti-
U
AV

ar
ch
ite
ct
ur
es
.

Co
mp

on
en
ts
in
Re

lat
ed

W
ork

s

Re
sp
on
sib

ilit
y

Re
lat
ed

W
ork

As
ma

re
et
al.

(20
12
)

Da
nie

le
ta
l.(

20
09
)

Tis
da
le
(20

08
)

Ho
ng

an
dS

hi
(20

18
)

Kr
ich

en
et
al.

(20
18
)

M
ah
mo

ud
an
dM

oh
am

ed
(20

15
)

Sc
he
rer

et
al.

(20
15
)

Tis
da
le
et
al.

(20
06
)

Ya
nm

az
et
al.

(20
18
)

Ke
ke
ce

ta
l.(

20
13
)

Ry
an

et
al.

(20
06
)

Pa
un
ick

ae
ta
l.(

20
05
)

Se
lf-
ma

na
ge
me

nt
(in

div
idu

al)
UA

V
Co

ntr
ol

So
ftw

are
M
UA

V
Au

top
lot

(du
ne
)

UA
VR

em
ote

Co
ntr

oll
er

UA
V

Co
ntr

oll
er

X
M
iss

ion
Co

ord
ina

tio
n

UA
V

M
iss

ion
Co

ntr
ol

UA
Vs

Au
top

lot
Ve

hic
le

Co
ntr

oll
er

Se
lf-
ma

na
ge
me

nt
(co

lle
cti
ve
)

Te
am

La
ye
r

M
UA

V
De

cis
ion

Su
pp
ort

Sy
ste

m

Co
ntr

ol
Sta

tio
n

Gr
ou
nd

Co
ntr

ol
X

M
iss

ion
Co

ord
ina

tio
n

/Pl
an
nin

g
X

M
iss

ion
Co

ntr
ol

/Pl
an
nin

g
X

Te
am

Co
ntr

ol
Ve

hic
le

M
od
e

M
an
ag
er

M
iss

ion
sp
ec
ifi
ca
tio

na
nd

ma
na
ge
me

nt
M
iss

ion
M
iss

ion
Co

ntr
ol

Op
era

tor
M
iss

ion
Pla

nn
er

M
iss

ion
Co

ntr
ol

/Ta
sk

M
an
ag
er

Ta
sk

Re
qu
est

er
M
iss

ion
Co

ord
ina

tio
n

Pla
nn
ing

an
dT

ask
Al
loc

ati
on

M
iss

ion
Co

ntr
ol

/Pl
an
nin

g

M
iss

ion
M
an
ag
er

Te
am

Co
ntr

ol
Re

so
urc

e
M
an
ag
er

Au
the

nti
ca
te
UA

Vs
in
co
mm

un
ica

tio
n

Di
sco

ve
ry

Dr
on
e

Ac
ce
ss

Se
rvi

ce
X

Se
cu
rit
y

&
ide

nti
fy

X
AP

Is
X

X
X

X
Ap

pli
ca
tio

n
M
od
ule

X

M
an
ag
em

ess
ag
es

an
dc

om
mu

nic
ati
on

(U
AV

s,
oth

er
no
de

an
dc

on
tro

ls
tat
ion

)
Co

mm
.

La
ye
r

Co
mm

.,
ID

L,
DG

SL
Co

mm
.(I

M
C)

Co
mm

.
Sy

ste
m

Te
rre

str
ial
/

Sa
tel
lite

Ne
tw
ork

La
ye
r

Br
ok
er

Co
mm

.
Ne

tw
ork

X
Co

mm
.

Ne
tw
ork

Co
mm

.
La

ye
r

Te
am

Co
ntr

ol
Ev

en
t

Ch
an
ne
l

As
sig

na
nd

ch
an
ge

lea
de
rr
esp

on
sib

ilit
y

for
so
me

UA
V

Op
tim

ize
r

X
X

X
X

X
X

X
X

X
Pr
oc
ess

M
on
ito

r
X

M
an
ag
es

tat
us

an
di
nfo

rm
ati
on

of
UA

Vs
Sta

te
Ag

gre
ga
tor

M
iss

ion
Co

ntr
ol

Gr
ou
nd

Sta
tio

n
UA

V
(ab

str
ac
tio

n)
Gr

ou
nd

Co
ntr

ol
X

Vi
ew

Ba
ses

tat
ion

Pla
nn
ing

/T
ask

Al
loc

ati
on

X
Sy

ste
m

Sta
te

Op
era

tor
Co

ntr
oll

er
Co

mp
.

Us
eo

fs
en
so
rs

X
Se
ns
ors

Au
top

lot
Se
ns
or

M
an
ag
er

Se
ns
or

Un
it

UA
V

/R
eso

urc
e

Se
ns
ing

Se
ns
ors

Se
ns
ing

Ha
rdw

are
Ab

str
ac
tio

n
La

ye
r

Ha
rdw

are
Ab

str
ac
tio

n
La

ye
r

Re
so
urc

e
M
an
ag
er

Sy
ste

m
da
ta
ma

na
ge
me

nt
M
iss

ion
La

ye
r

Da
ta

M
an
ag
em

en
t

X
Sto

rag
e&

Da
ta
To

ols
Da

tab
ase

DB
M
S

Se
ns
or

Da
ta

An
aly

sis
Da

taH
ub

Se
ns
or

Da
ta

An
aly

sis

Sh
are

d
Co

op
era

tiv
e

M
em

ory
Da

taH
ub

X

Pa
th
pla

nn
ing

X
Ro

ute
Pla

nn
ing

Pa
th

Pla
nn
ing

ag
en
t

Fli
gh
t

co
ntr

oll
er

X
X

M
iss

ion
Pla

nn
ing

Tr
aje

cto
ry

Tr
ac
kin

g
M
iss

ion
Pla

nn
ing

M
iss

ion
M
an
ag
er

X
X

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

architecture platform aimed at autonomous vision-based nav-
igation, obstacle avoidance, and convoy tracking. The sys-
tem’s UAVs make their own flight decisions to avoid obsta-
cles depending on the data collected by their flight sensors.
Unlike our work, the authors described their general architec-
ture for Multi-agent systems, so they used UAVs to carry out
missions with a focus on autonomous and collaborative con-
trol. In some specific missions of other work, the authors de-
veloped a multi-agent system using UAVs. Unlike our work,
this one focused on developing a multi-agent framework
aimed at planning paths to optimize information-based objec-
tive functions.With this, it was possible to include individual
controllers, sensors, and user interfaces to carry out missions
and improve the path planning scheme (Tisdale, 2008).
Among the works found in the literature, some were fun-

damental for the development of our architecture (Asmare
et al., 2012; Daniel et al., 2009; Tisdale, 2008; Hong and Shi,
2018; Krichen et al., 2018; Mahmoud and Mohamed, 2015;
Scherer et al., 2015; Tisdale et al., 2006; Yanmaz et al., 2018;
Kekec et al., 2013; Ryan et al., 2006; Paunicka et al., 2005).
These works are presented in Table 1. They all developed
UAV systems in their work and presented and discussed their
software architectures. Mostly, these architectures follow the
Layers style.
Finally, the architecture presented in (Asmare et al., 2012)

reuses a software architecture presented in other works by
the same authors to develop a framework specific for Mo-
bile Autonomous Systems with a focus on autonomy and in-
dividual or team self-management of each mobile system. In
this approach, the mobile systems used were UAVs. Unlike
our work, this work focuses on UAVs and mobile systems.
In addition, the authors carried out a study on the behavior
and interactions of the mobile systems (UAVs) developed by
them. The authors also used distributed management policies
and focused on optimizing the self-management of UAVs in
performing distributed policy-based tasks.

4 Research Method
As the main goal regards the software architecture (Cav-
alcante and De França, 2022), implementing a framework
based on it represents a first feasibility assessment. The rea-
soning is that once we show how the architecture can be used
to build concrete instances, we can provide evidence on how
implementing its abstract components can foster reuse in
terms of structure and behavior. Furthermore, implementing
concrete Multi-UAV software enables functional and non-
functional evaluation of the architecture using the framework
as a surrogate. Relevant quality attributes include maintain-
ability, performance, and reliability.
Figure 1 presents the research method for achieving our

goals. The process contains activities described in the follow-
ing:

1. Literature review on software architectures for
UAVs: We looked for software architecture described
in the UAVs literature, as they represent the state-of-the-
art and likely discuss challenges for architecting Multi-
UAVs Systems. For this, we considered: the level of de-
tail, strategies adopted to satisfy non-functional proper-

ties, use of verification and validation techniques, em-
pirical evaluation, and use in real contexts, as all these
issues affect the architectural design forMulti-UAV sys-
tems.

2. Design of a reusable software architecture for coop-
erative Multi-UAV systems:We designed a general ar-
chitecture to work as a reference for theMysterio frame-
work and the Multi-UAV Systems developed based on
it. For this step, we analyzed the outcomes of the lit-
erature review. We studied these architectures and ex-
tracted information on components and responsibilities
from these architectures. We turned this information
into responsibilities that our architecture would need
to achieve. We created components based on these re-
sponsibilities and designed the first version of our ar-
chitecture. The architecture design was based on the C4
model2, using the three first levels: context, container,
and components. Figure 2 presents the context-level di-
agram, which allowed us to identify the boundaries of
Multi-UAV systems and their dependencies. It is essen-
tial to understand and set up communication and iden-
tify where each major system’s responsibility should
be placed, in addition to showing external dependen-
cies and possible external actors. The container level
presents deployment details, and lastly, at the compo-
nent level, the architecture is presented in detail. As we
implemented the framework, we refined and improved
the architectural design. At this stage, we identified con-
cerns about quality attributes that are relevant to these
systems, such as performance and reliability, in addition
to concerns about theUAVs themselves and the efficient
use of resources such as energy, sensors, and actuators.

3. Development of the Mysterio framework to support
the instantiation of the designed architecture:At this
stage, we designed and developed our Framework based
on our proposed architecture of Multi-UAV systems.
This way, we provide a reusable asset to the scientific
community, which is the Mysterio framework to sup-
port the development of cooperative Multi-UAVs sys-
tems in multiple domains.

4. Evaluation of the framework effectiveness through
implementing instances with cooperative missions
shared among UAVs using a simulation environ-
ment: This activity evaluated the proposed architecture
through framework instances. Thus, we performed com-
puter simulations in virtual scenarios using the OM-
NeT++ simulator to check if the Multi-UAV system
could act cooperatively for the execution of missions as-
signed to it. Initially, it was intended to analyze whether
the general objective of a system and the specific ob-
jectives of each UAV were achieved over the simu-
lation. This assessment aimed to verify if the system
was capable of overcoming the challenges of the mis-
sions to achieve its objectives. It was also important to
check whether there were implementation or architec-
tural flaws.

As an extension, this paper also adds three more activities:

1. Evolution of the architecture and framework based
2https://c4model.com

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

Figure 1. Research Method.

on previous evaluation:We provide an evolution of ar-
chitecture and Mysterio Framework. The stage of eval-
uating the framework by instances was fundamental
for this evolution. We have expanded our architecture
by incorporating two additional levels of the C4 dia-
gram in context and container, as we identified that the
component-level architecture of the C4 diagram did not
clearly indicate the appropriate placement of the frame-
work in the architecture. We modified some framework
interfaces to follow the evolved architecture.

2. Extension of the framework to integrate native sup-
port for computer simulations: When developing the
instances presented in Section 7, we relied on computer
simulations. Given the importance of computer simula-
tion for designing and developing Multi-UAV systems,
in this extended paper, we extended the Mysterio frame-
work to foster the development of Multi-UAV systems
in simulated environments, more specifically using the
OMNeT++ virtual simulator.

3. Evaluation of the extended version by developing
new instances: We developed a new instance presented
in Section 7.5 to evaluate this simulation support. The
result is encouraging, as we managed to reach the im-
plementation by reusing flexible components for OM-
NeT++ simulations.

5 The Mysterio Architecture
In this Section, we present a software architecture and
a framework called Mysterio focused on modularity and
reusability for the development of cooperative Multi-UAV
Systems. Our efforts in developing the framework were to
implement theMysterio architecture following solid architec-
tural design principles. Such architecture is designed under
the Layers style.
We designed components representing the responsibilities

identified in Table 1 and assembled our architecture. We de-
scribed the architecture using the C4 model, in which we de-
veloped context, container, and component-level models of
the architecture. C4 diagrams are semantically simpler than
UMLmodels, so it may be easier for software engineers with
little or no experience in UML to understand the architecture,
which may be the case for UAV developers. Also, the UML
diagrams corresponding to the most abstract levels of C4 (de-
ployment and components) are less used in industry. Finally,
the C4 model has gained attention in the industry.
C4 diagrams include user, containers, and internal and ex-

ternal components. Our context diagram was designed with
a system user and more components (in blue) referring to the
Multi-UAV system (framework instance) and gray compo-
nents referring to the specific software of each UAV (devel-
oped outside the framework).

In the context-level diagram (Figure 2), the proposed
architecture interacts with the main (human and computa-
tional) actors interacting with the Multi-UAV system. In the
container-level diagram (Figure 3), we present the first re-
finement, showing the fundamental containers (main mod-
ules with their own execution environment) that compose the
software architecture, in addition to the technology decisions.
The component diagram (Figure 4) expands the containers to
describe the components inside each container.
Analyzing our architecture from the bottom-up perspec-

tive (in Figure 4), the cyber-physical systems of the UAVs are
peripheral at the bottom, the system controller in the middle,
and the Framework Client at the top. The system controller
(core) starts with the database at the bottom. Then, on a layer
above, there is a Communication Bridge, the Repository, and
subsequently, the Status Manager. Further up, there are the
mission and task components (Task, Task Manager, Mission
Planner) until reaching in MysterioFacade and Framework
Client. To assess the proposed architecture, we implemented
four instances of Multi-UAV systems using the framework,
communicating with a virtual environment using the OM-
NeT++ simulator.
The proposal provides a reusable software architecture

for building cooperative Multi-UAV systems. This way, it
should be structured independently from the internal imple-
mentation of the involved UAVs (real or virtual), provid-
ing simple communication interfaces. Thus, it does not in-
clude support for developing the UAV’s internal architecture,
which could be achieved with other solutions like Ramos
et al. (2018), focusing on the systemic linkage and controls.
For the design of the Mysterio Architecture, an analysis

of several works found in the literature was first carried out;
among them, we selected the related works in Table 1 be-
cause these works described and showed the design of their
software architectures for UAVs. We captured useful infor-
mation from the architectures and their components. Not all
related works in this work presented the architecture design,
so it was not possible to verify them. With all the relevant
data extracted from each work, we organized the most com-
mon and non-common components and responsibilities into
groups. When analyzing these groups, we identified that the
non-common information was specific to each application
scenario. Thus, creating components that were only useful
for a specific scenario would not be consistent with the idea
of reusable software architecture.
After the analysis, with the most common and recurring

information from the architectures, we distilled the responsi-
bilities that every Multi-UAV system would need, including:
managing the status of UAVs, carrying out missions, creat-
ing tasks, and others. With this set of responsibilities, we
designed components representing those responsibilities and
assembled our architecture composed of all the components

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

Figure 2. Context-level diagram

Figure 3. Container-level diagram

coming from these responsibilities.
The architecture resulting from our work has a solid set of

components as it unites the strengths of existing architectures
along. The proposed architecture evolved as we instantiated
it for different scenarios using a framework implementing
the core responsibilities. The feedback from the particular
instances allowed us to improve and refine the architecture.
Regarding the responsibilities, they can be found in first col-
umn of the Table 1.
Returning to Table 1, we extracted component names as in

their original works. In this way, when assigning responsibil-
ities to the related work, we unite three cases in one that does
not present components. If the work does not cover a respon-
sibility (no discussion/mention), or we cannot identify which
component covers the responsibility, or even just discuss or
describe it in text, but does not say which component covers
the responsibility. We classify these cases in the table as ”-”.
We can mention three responsibilities that were less iden-

tified in the works analyzed to create Table 1. The first less
identified was ”Assign and change leader responsibility for
some UAV”. Given this, the workers opted to develop Multi-
UAV systems where the UAVs worked without having a

leader among them. In this way, topologies such as Star and
Mesh can be applied in the configuration of the UAV Sys-
tem. This responsibility was rarely seen in architecture, but
it is a very recurrent responsibility in the literature in general,
which is why we kept this responsibility on the list. Other
works mention this responsibility, but such works were not
selected to compose the table, as they do not present their
software architectures.
The second less identified responsibility was: ”Authenti-

cate UAVs in communication”, we can see that this responsi-
bility deals directly with the security of the Multi-UAV sys-
tem, however, many works did not have this concern. The
third least identified was ”Path planning”, this responsibil-
ity can be abstracted, depending on the application scenario
and the concerns and decisions that the architecture designer
takes. We can see that in search and rescue scenarios for peo-
ple, animals, and objects, as well as the use of UAVs that map
the environment, in some cases path planning is not required,
unlike scenarios such as the delivery of packages, among oth-
ers.
Other responsibilities such as ”Mission specification

and management”, ”Manage messages and communica-

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

Figure 4. Component-level architecture evolved by this work.

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

tion (UAVs, other node and control station)” and ”Self-
management” were the most identified responsibilities in the
cited works. These responsibilities can be considered essen-
tial, because somehow, almost all works were concerned to
put in their architectures.
The development of Multi-UAV systems using the pro-

posed architecture requires a base station to control the sys-
tem andUAVswith support for network communication. The
proposed architecture is agnostic regarding the UAVs model,
if they are real or virtual, heterogeneous or not. In the ar-
chitecture, the base station is the control center of the Multi-
UAV System, and through it, mission control, communica-
tion, status collection, and task assignment are performed for
all UAVs in the system.
We developed the framework in C++ since it is closer to

UAV implementations. The implementation uses the object-
oriented (OO) programming paradigm, with interfaces and
abstract classes as the hotspots or extension points of the
Mysterio framework. The framework development has been
carried out in parallel with the evaluation of the framework
and the technical adjustments in the architecture design. The
framework evaluation used Multi-UAV systems instances to
test it in specific scenarios.
According to the Mysterio architecture (Figure 4), the

component Communication Bridge is responsible for all
communication between the framework and the UAVs, pro-
viding an interface with default methods to allow connecting
and disconnecting UAVs to the framework, as well as send-
ing and receiving messages. The implementation of this com-
ponent is separated into three classes: i) the UAVProbe class
(deployed inside the UAV as a proxy) is responsible for com-
municating with the framework, and it must use the same
communication protocol of the Multi-UAV system to com-
municate; ii) when the UAVs communicate with Mysterio,
they send messages to the Communication class, which for-
wards received messages to other components, so they can
handle each specific type of information; iii) in turn, these
components such as the Status Manager or Task Manager,
need to extend the Communicable class.
Another important component of the architecture is the

Status Manager, which manages the UAVs’ status informa-
tion. In a Multi-UAV system, the general framework needs
to monitor data from the UAVs, and, by default, the Status
Manager collects information regarding battery, flight time,
altitude and location/geographical position, speed, payload,
availability (communication or tasks), and idleness. In the
case of heterogeneous UAVs, somemay not support all listed
properties, and the application may also need to extend this
class for additional properties.
One way to deal with the various status information is to

use a unified status class. This is the approach we use in the
Mysterio instances explained in the section 7, where each
piece of information considered as status must become an at-
tribute. If the developer using Mysterio prefers, there is a sta-
tus base class present in the framework. Extending this class
is an alternative for dealing with Status in Mysterio, as it al-
ready implements the Status Manager interface. In this way,
the developer only needs to add new attributes or methods
to the subclass. This subclass should be according to possi-
ble groupings of status attributes, avoiding implementing too

many classes because of the number of status attributes. Fur-
thermore, reuse would avoid a complete (re)implementation
of the Status Manager interface.
The TaskManager is responsible for managing and receiv-

ing task information. The Tasks component represents tasks
assigned to the UAVs, which can be implemented in two dif-
ferent ways. One way is to handle built-in pre-programmed
tasks, in which the behavior of UAVs is already implemented,
and the tasks passed from the framework to the UAVs contain
just the information necessary for the UAV to interpret the
built-in actions, the location, and the time to execute them.
The other way would be using command attributes in the
task, where the commands are described in a language (like
a DSL) the UAVs understand and execute as indicated. Both
ways are implemented in the Tasks component and available
in the framework for the programmer.
Mission Planner handles missions and tasks. This compo-

nent has autonomy in mission management. A mission is
made up of a list of tasks assigned to UAVs. This component
provides a default implementation, not requiring the frame-
work programmer to code additional implementation unless
there is some specific behavior like algorithms tasks prioriti-
zation and orchestration.
In general terms, the developer uses our architecture to as-

sign tasks to the UAVs following the flow of a mission: i)
starting from the instantiation of a set of tasks; ii) the UAVs
must be selected to be assigned in the system; then, iii) the
tasks are dispatched to the UAVs through of the communi-
cation component; iv) the tasks are performed by the UAVs
that later return the task with a status of finished.
The Repository is responsible for handling the base sta-

tion database. This component provides an interface with the
methods that must be implemented to manage relevant data
for missions through the Mysterio framework. It is responsi-
ble for data persistence, both retrieving data from and stor-
ing data in the database. By default, implementing the repos-
itory interface persists mission information (such as identi-
fier, involved UAVs, date and time), status data, and tasks
assigned to each UAV. This information must be persisted
in the selected database. Therefore, it is up to the architect
to choose an appropriate Database Management System. To
persist specific information for each instance, the developer
must add specific methods by extending the implementation
class and/or the repository interface.
Finally, the framework has the default RepositoryMySQL

class that implements all the methods of the Repository inter-
face for the MySQL database. This class is available in the
Mysterio Framework class set, but the developer must create
another class to handle another DBMS if desired. Finally, it
is worth noting that RepositoryMySQLwas widely reused in
the framework instances, written in Section 7.

6 Framework Instantiation

This section presents the updated version of the Mysterio in-
stantiation process based on the new extension for simulation
support. Also, it presents the new API for this extension.

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

6.1 Instantiation Process

In the Mysterio Framework, the Communication Bridge and
Status Manager components are interfaces that the developer
of an instance of the framework must implement in their way,
however, in the framework’s class set, there is a status class
implemented, in case the user wants to extend it.
Figure 5 presents a sketch of our software architecture

used for instance 2 (Electro), presented in Section 7.2. Com-
ponents in blue represent elements of the Mysterio frame-
work and components in white were created specifically
for the instance. In Figure 5, the MessageSender, Mes-
sageReceiver, UAVRegistry, SocketMessageReceive and
SocketMessageSender are auxiliary components to the com-
munication component. These components were created sep-
arately in the instance and they used sockets and threads at
the developer’s choice to facilitate separation into classes.
In applications based on the Mysterio framework, the pro-

cess of handling and assigning each task is centralized so the
creation and certification of a task starts at the Task Manager.
This component assigns an identification for each task and
also verifies if a task is valid, i.e., when it has already been
certified (already have a valid Task ID). But if its basic prop-
erties (task type, task ID, or assigned UAV) are changed by
another component that is not Task Manager, this task must
be considered invalid. This way, it is possible to know if a
given task has been compromised. Another component han-
dling task is the Mission Planner which holds all valid tasks
instantiated in the application. Furthermore, this component
is responsible for forwarding the tasks through the commu-
nication component to the UAVs.
The flow of amission inMysterio is as follows: In this step,

the instance developer passes the task type and selected UAV
to the Task Manager component to create a task and assign
it. Starting with the Task Manager, this component creates
the requested task using the provided information. Then, this
component automatically creates and associates an ID for the
task. After, the Task Manager sends the task to the Mission
Planner component, which manages all tasks in the mission
and assigns them to the UAV. After that, Mysterio dispatches
these tasks through the communication component to the cor-
responding UAVs and it receives status updates for each task,
especially when tasks are completed.
The implementation of the framework client and Myste-

rioFacade is at the user’s discretion. This implementation
should be done at the end of the instantiation process to inte-
grate all the other components already implemented. In our
architecture,MysterioFacade is the intermediary between the
other components with the Framework Client, facilitating the
integration with it. This way, the developer is adapting the
components that integrate Mysterio with a client/an interface
that better fits the needs of the user of the Multi-UAV system.
The other components, such as Task Manager, Mission Plan-
ner, and Tasks have their default implementation provided by
Mysterio, but it is not an obstacle for the developer to extend
and customize these classes.
The Repository, for example, is another interface that must

be instantiated by the developer according to the selected
database, as it works as an abstraction layer between the other
components and the database.

Using this component, the mission, task, and status data
of UAVs are required to be persisted to manage UAVs. Other
types of data can be persisted depending on the application’s
need or scenario. In Section 7, we present the created in-
stances. In these, RepositoryMySQL was widely reused for
data persistence.
In Figure 6, the Mysterio framework instantiation process

is illustrated. It starts with the implementation of the com-
munication interfaces. Then, the extending or full reuse of
the status classes, and after the developer reuses or imple-
ments mission and tasks components (Tasks, Task Manager,
and Mission Planner). Finally, the developer should extend
the MysterioFacade with the additional operations that will
be exposed to the framework client, and implement or reuse
the Repository classes. White blocks represent steps the pro-
grammer implements the provided interfaces and has mostly
his code. Blue blocks are steps for extending and reusing the
code already implemented in the framework.

6.2 Simulation-supported Development of
Multi-UAV Systems

The development of robots, including their software, de-
mands support from simulation environments during the de-
sign time. Multi-UAV systems are not an exception as the
devices may be destroyed during the tests if something does
not work properly, incurring additional costs.
During the development of this work, we intensively used

simulation environments to support the assessment of the ar-
chitecture and the framework. It allowed us to reflect on the
process and to understand that integrating simulation capabil-
ities in the Mysterio framework is beneficial for profession-
als and researchers designing Multi-UAV systems. In this
sense, we extended the framework with the essential con-
structs for defining and connecting OMNeT++ simulations.
We extended the framework to support computational sim-

ulations in OMNeT++. If the user of the framework wants
to develop Multi-UAV systems in another simulator or non-
virtual UAVs, these interfaces are optional. This way, we de-
veloped a new set of interfaces aimed at UAVs from computa-
tional simulations for this simulator.We provide the interface
set consisting of three independent interfaces: UAVFlight,
UAVCommunicator, and UAVEnergy. In Figure 5, we can
see a sketch of our architecture using these new interfaces.
These interfaces can be understood in Omnet++ as modules
and together they represent a UAV in the computational simu-
lation.We chose to provide these interfaces separately, as this
made them independent of each other and it is up to the frame-
work user to reuse or implement their code. The UAVCom-
municator interface is responsible for managing UAV com-
munication. It realizes the communication with the UAVs
of the System, as it is linked with the UAVProbe interface
making the communication between the UAV and the base
station possible. The UAVFlight interface is responsible for
managing the UAV’s control and carrying out all of its flight
mechanics. The UAVEnergy interface is responsible for man-
aging the UAV battery level. Through OMNeT++, it is possi-
ble to carry out communication between these interfaces (as
modules), in case the user of the framework wants to carry
out the complete integration of the three interfaces. It is worth

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

Figure 5. Electro Instance Architectural Design.

Figure 6. Framework instantiation process.

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

mentioning that the independency of the interfaces can elim-
inate the mandatory implementation of modules only in the
OMNeT++ simulator. We warn that for real implementations
or in another simulator, concerns such as flight control, com-
munication, and energy management of UAVs are necessary.
InMysterio architecture, there are twomajor distinct archi-

tectural configurations: with and without simulation support.
An attempt to combine them into a single design may lead
to misunderstanding. Therefore, it is recommended to create
a single design representing the complete architecture cohe-
sively and consistently, where we include the details of the
new virtual simulation interfaces with OMNeT++. In case
one is not using the OMNeT++ virtual simulator, it is not
necessary to implement the simulation extensions, so disre-
gard the simulator/OMNeT++ details in the component-level
software architecture design 4. This architecture description
is meant to highlight the flexibility and adaptability of these
two approaches, as well as provide a more accurate under-
standing of the architecture and its components.

6.3 Conditions to adopt Mysterio
Having a framework and not developing a system from
scratch always seems a positive alternative. Although there
are some frameworks for boosting the development of sin-
gle UAVs, Multi-UAV systems do not have the same level
of support yet. That is the main motivation for developing
the Mysterio architecture and framework. However, as with
any architectural and reuse solution, adopting Mysterio as a
framework also comes with conditions and trade-offs.
Regarding Mysterio’s architecture, it is necessary to have

a topology in which it is mandatory to have at least one base
station to control the Multi-UAV System since the Mysterio
components will be present mostly in the base station. Myste-
rio’s software architecture does not cover UAV systems that
do not have a base station, like in some drone swarms archi-
tectures. Furthermore, our architecture, as well as the frame-
work, supports heterogeneous UAV nodes; however, it does
not provide support for other types of vehicular or static un-
foreseen nodes. Extending the architecture in this sense de-
mands additional design and development decisions.
The Mysterio framework has its interfaces implemented

using the C++ programming language, as this is the technol-
ogy Mysterio was implemented with. This dependency on
C++ implies that developers must be familiar with the lan-
guage. Also, the implementation of constituent UAVs must
use or bind with C++ to deploy the UAV probes. The choice
of C++ as the framework’s technological base brings bene-
fits, as it is a widely used language in technology and is com-
monly used in robotics and UAV systems. Finally, in terms
of simulation, this support is dependent on the OMNeT++
simulator and the NED language.

7 Examples of Mysterio Instances
We developed four instances to work to support understand-
ing and assess the framework’s feasibility. All these work
through simulations with UAVs performing missions and
tasks in virtual scenarios. The simulator used for computer

simulations was OMNeT++ version 5.4.1 with INET version
4.0. The framework and instances are available on GitHub 3.
The operating system running the simulation was Ubuntu
18.04 LTS, and the machine running the whole system is an
Intel Core i7-10750H CPU 2.60GHz x 6 and 4GB of RAM.
To test each instance, a scenario referring to an open envi-

ronment was built, with a car stopped inside the scenario for
the instances Connor and Electro, in addition to a sheep for
the Marko instance. In these instances, some UAVs were re-
sponsible for mapping the place, while one was responsible
for covering the target (car or sheep).
Figure 7 shows the features present in each framework in-

stance. We increase the complexity of the features in subse-
quent instances, allowing us to test the development capabili-
ties for the Multi-UAV systems the framework provides. The
system developed for the Connor instance is less complex
than those developed for later instances. This way, the system
had homogeneous UAVs, tasks without requirements and re-
planning, and missions with non-ordered tasks. The devel-
oper did not need to develop such a robust system and used
UAVs without distinction of capabilities since each UAV can
perform any assigned task.
In Electro, Marko, and Osborn instances, the developed

system was able to use heterogeneous UAVs, as the program-
mer made it more intelligent and equipped with many capa-
bilities. Hence, these instances create tasks with certain re-
quirements to be achieved by a UAV. In addition, these sys-
tems perform the re-planning of tasks and knowwhen a UAV
or a group of them could or could not perform a certain task.
Not all UAVs can be enabled to perform a task due to their
own or other UAVs’ limitations. Such systems also allowed
for more elaborate missions with tasks that follow a depen-
dency order (one task can only be performed after another)
in which they were determined. Finally, the framework also
supports synchronous tasks, as used in the Osborn instance
presented in Section 7.4.
The instances were built iteratively, evaluating the frame-

work, and increasing the complexity and challenges of the
scenarios. Thus, our evaluations sought to show the capabil-
ities provided by the Mysterio framework in the instances.
Given that, the instances solve important/relevant problems
of real applications such as swarm control (in both), patrol
(Connors and Electro), search and rescue (in Marko), for-
mation flight (Osborn), and Consensus algorithms (Osborn).
The completeness level of a Multi-UAV system varies with
the complexity of the problem the system needs to solve.

7.1 The Connor instance
In this instance, two similar UAVs with the same hard-
ware and system technological capabilities (Figure 8), that
is, UAVs without hierarchical or technological differences
were selected to compose the Multi-UAV system developed
through the framework. These UAVs were controlled by
functions provided by the framework on the base station that
was called remotely through the Framework Client (control
interface) that allowed the UAVs to perform mission tasks.
The scenario had only an open field with the presence of

3https://github.com/savionasc/mysterio

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

Figure 7.Main characteristics of the instances developed with Mysterio.

UAVs and a car parked near the center of the scenario. Each
UAV started by covering the environment until the taskswere
assigned. For one of the UAVs, it was assigned a task to cir-
culate the car in the scenario. The second UAV that was also
covering the scene was given a similar task, but to traverse
the entire environment changing the flight pattern around the
entire patrol-shaped area on the block. From this instance,
building a Multi-UAV System predominantly reusing the
codes already available in the framework was possible.

Figure 8. Connor Instance: Two UAVs performing tasks in the simulation.

7.2 The Electro instance
In this instance, two UAVs were used that perform tasks as-
signed by the base station (framework), but the UAVs used
are heterogeneous, unlike the Connor instance that used ho-
mogeneous UAVs. In this second instance, Electro, the first
UAV received a common UAV capability and the second
had its subordinate capability, where it was practically on
standby. In the system, the subordinate keeps waiting for any
communication; and it is always able to replace the next UAV
that needs to be replaced, either when that UAV’s battery
is low, or forcefully when the framework orders and sends
the task to the subordinate to take the first UAV’s place in
whichever task the first one is executing. In this scenario, the
first UAV performs tasks similar to the tasks in the previous

Figure 9. Electro Instance: UAV[1] replacing UAV[0].

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

scenario, covering the environment and around the car, un-
til its battery is close to fully discharged. Then, it alerts the
system/base station about its battery status and returns to the
base station. Predictably, the system orders the replacement
UAV to perform the task, which immediately gets ready to
execute the task. After performing the task, the UAV returns
to the base station and waits for another replacement request.
In this instance, the entire architecture and framework codes
were reused, and new codes were produced in a way that fol-
lows the same Mysterio architecture, showing its versatility
in accepting new codes and solving problems in the scenario
activities.
Finally, Figure 9 presents a collage of five images of the

UAV’s performance. Images are numbered to indicate their
order. In images 1 and 2, the UAV[0] is going around the
car, and the UAV[1] is on standby awaiting orders from the
base station, as it has no tasks to perform. As the UAV[0]
was executing its task, its battery was low and it sent an alert
message to the base station. In image 3, the UAV[0]makes an
emergency landing in a predefined position by the base sta-
tion and is replaced by the UAV[1]. The base station sent the
task already started to the UAV[1]; that is, this UAV resumed
the task in the same position and state in which the task was,
and continued until the task was completed (images 4 and 5
in Figure 9).

7.3 The Marko instance
In the third instance (Figure 10), five UAVs (four workers
and one parent) and a sheep were present in the scenario. The
user assigns only one task for the UAV parent at the base
station, to fetch the sheep and command the workers to sur-
round it. Initially, the parent UAV starts doing its search un-
til it finds the target (sheep). Then, it communicates with the
workers and proceeds.When approaching the sheep, it forces
the sheep to stop until the other UAVs surround it. In this
instance, all the internal capabilities of the framework were
reused, extending and generating new code for all classes
from the base structure. It is worth mentioning that for this
instance we have more instance-specific code, that is, user
code. This way, the application uses all the framework com-
ponents by extending abstract classes or implementing inter-
faces, with no direct call.

Figure 10.Marko Instance: Mission to find and surround a target.

When carrying out the mission of this instance, messages
were exchanged between the base station and the parent
UAV, as well as between the parent UAV and the worker
UAVs. The OMNeT++ simulator allows recording message
exchanges, so we activate this property to record message
exchanges between UAVs during the execution of the simu-
lation. Figure 11 shows the moment when the parent UAV ex-
changes messages between the worker UAVs to pass an order

to be executed by each worker UAV. This chart was gener-
ated by a tool internal to OMNeT++ called Sequence Chart,
which graphically displays the reading of data recorded on
message exchanges. Through this chart, we identified that
the communication of theMulti-UAV system during the com-
puter simulation happened as planned. Other charts can be
generated such as scatter charts and histograms.

Figure 11.Message exchanges between UAVs - Marko Instance

7.4 The Osborn instance
We developed a fourth instance, called Osborn, to implement
a cooperative Multi-UAV system implementing the refer-
ence scenario from (Kuriki and Namerikawa, 2014). The au-
thors proposed a consensus-based collision-avoidance strat-
egy based on an artificial potential approach and tested it in
flight and formation scenarios. For that, the authors used four
UAVs, one leader, and three workers, where worker UAVs
flew following the leader. The UAVs flew in formation and
ran the consensus algorithm and artificial potential fields to
avoid collisions, providing escape solutions for UAVs flying
vertically.
We use ten UAVs, one parent, and nine workers in our in-

stance. When running the Multi-UAV system in the scenario,
the user needs to assign through the framework (representing
a base station) a given group formation and flight tasks to the
UAVs. At any time, the user can order the UAVs to change
formation. External to the framework, UAVs use the consen-
sus algorithm to avoid collisions, as described in the related
work. This consensus algorithm helped the UAVs to avoid
collisions with each other during flights and formations. In
addition, the Multi-UAVs system developed dealt with the
same scenario described in his work. Figure 12 shows two
different times when UAVs entered two distinct formations.

Figure 12. Osborn Instance: UAVs in 2 different formations.

To reach a consensus, the UAVs needed to communicate
with each other to prevent possible collisions. Furthermore,
in the scenario, UAVs always fly respecting the assigned for-
mation. In this instance, the Mysterio Framework is achiev-
ing its goals through reuse to develop newCooperativeMulti-
UAVs systems and extending its structure to accommodate
external or complementary algorithms.

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

In the implementation of instances (Connor, Electro,
Marko, and Osborn), where their source code is mostly user
code, just a little portion of new code was added, and a good
amount of lines were reused when compared to the system’s
class structure already implemented in the Mysterio frame-
work. This is because Mysterio architecture provides an en-
tire coding base for classes, as expected that for each sce-
nario, problem, or user need, specific extensions and addi-
tional modifications must be produced in Mysterio-derived
classes. Table 2 presents data fromMysterio Framework and
each instance. The columns show the number of classes (#
Classes), and the count of lines of code (LoC). Finally, the
last column shows how many lines were reused from the
Mysterio Framework in each instance and the percentage of
lines reused (Reused LoC (%)).

Instance # Classes LoC Reused LoC (%)
Mysterio 28 1250 -
Connor 56 2293 1120 (48,84%)
Electro 60 2593 1185 (45,70%)
Marko 61 2814 1212 (43,07%)
Osborn 64 3320 1250 (37,65%)

Table 2. Reused code per instance.

Each instance used all the framework components, evi-
dencing the usefulness of the components of the framework
architecture. Regarding using instances as a preliminary eval-
uation, we achieved positive results because, in all instances,
we could successfully develop a cooperativeMulti-UAVSys-
tem, reusing the base code. In Table 2, a meaningful amount
of the code for each instance came from the code provided by
theMysterio Framework. As expected, most components are
essential for building a cooperative Multi-UAV system. In
this specific case of our instances, all components modeled
by the architecture were reused. The proposed architecture
does not intend to represent all the necessary components
for all possible Multi-UAV systems since each has unique
scenarios, problems, or characteristics that may require addi-
tional components.
Finally, by analyzing reuse percentages in-depth, we ob-

served the components that most cover reuse percentages
are the communication (Communication Bridge), task (Task
Manager, Tasks), and mission (Mission Planner) compo-
nents. The percentage of reuse decreases as the complexity
and lines of code of the instances increase (Table 2). This
way, the framework does not specialize on specific problems
but on what is essential for Multi-UAV Cooperative Systems.
Furthermore, the Mysterio architecture and framework sup-
port extensions and adaptations, allowing the user to build
their systems in a structured way.
As in the UAV literature, as well as in the works of (Arafat

and Moh, 2019; Gupta et al., 2015; Bekmezci et al., 2013),
the choice of topology for a Multi-UAV System is funda-
mental. This way, we illustrate in Figure 13 which topolo-
gies were used in Mysterio instances. The Connor and Elec-
tro instances were developed following the star topology.
In Marko, the system used Multi-Star, and Osborn adopts
the Flat Mesh topology. In addition, it is worth noting that
we were able to develop Multi-UAV systems in three clas-
sic topologies. It is important to mention that the Mysterio

Framework is not topology-specific, so other topologies can
be developed through the framework.

7.5 Simulation-supported Instance
For this, we implement one new instance based on the Con-
nor instance from Section 7. In this case, our purpose was to
promote an instance dedicated to virtual UAVs, so we used
our new extension focused on simulation in OMNeT++.
In this instance, we use an OMNeT++ property useful

for simulating HeterogeneousMulti-UAV Systems. Through
this property, we can choose whether the simulated UAVs
use unified files representing the UAVs or separate files. Us-
ing unified files brings some advantages such as:

• Control of UAVs in a grouped way;
• Minor code to be developed;
• More agility in the development of simulations.

We also identified a disadvantage when using unified files,
it makes the code conversion to real UAVs more complex if
the user of the framework wants it. Using the property with
separate files brings the following identified advantages:

• The UAV code is individual and easy to understand;
• Require less complexity in adapting the code for real
UAVs.

In addition, we identified some disadvantages of using the
property in this way, as it requires more code for the program-
mer to develop and brings less agility in the development of
computer simulations.
It is important to understand that this property is internal to

the OMNeT++ simulator, but it has not been exposed in the
literature and the examples found on the internet. It allows
the programmer to decide the best way to implement com-
putational simulations in two different ways. The first way
allows standardizing the UAV simulation files, but the code
implemented by the programmermust know how to deal with
different UAVs, situations, and behaviors when dealing with
heterogeneous UAVs. The second way is to define different
files for different UAVs. This way, the user specifies what
each UAV specifically can do. Both forms are useful, but
each has advantages and disadvantages to analyze in simu-
lation modeling.
Through this work, we also produced a specification en-

titled ”Guidelines for simulating Multi-UAVs with ’OM-
NeT++.” This guide is available on GitHub, and to ac-
cess it and see more information, access the link available
at: https://github.com/savionasc/mysterio/tree/
main/guide/. Through this guide, we address some simu-
lation issues, but it is worth noting that the focus is more
specifically on OMNeT++. From the topics in the guide, top-
ics related to simulations in general, features provided for
simulation of multi-UAV systems using OMNeT++, how to
define topologies (Figure 7 of Section 7), and choosing be-
tween discrete and continuous simulations. We also provide
instructions for the main functionalities that can and are use-
ful for Multi-UAV Systems simulations in this simulator. We
also provide details on exporting simulation data and choos-
ing the topology for the Multi-UAV System among the clas-
sic topologies (star, multi-star, flat mesh e hierarchical mesh)

https://github.com/savionasc/mysterio/tree/main/guide/
https://github.com/savionasc/mysterio/tree/main/guide/

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

Figure 13. Instances topologies

Figure 14. Instances files

found in Gupta et al. (2015). Finally, we detail how to con-
figure the two forms of the property illustrated in Figure 14.

7.6 Limitations and Threats to Validity
Our research adopts a pragmatist worldview (Petersen and
Gencel, 2013). In this perspective, our work proposes practi-
cal and applicable solutions to the problems faced by Multi-
UAV Systems. The developed instances and the architecture
and framework consistently provide relevant and useful as-
pects to meet users’ needs to develop Multi-UAV systems.
However, they also have some limitations that are discussed
in this section.
Regarding internal validity, the main assumption is that

the Mysterio architecture and framework support the reuse
of code and design. The instances provide an initial set of ev-
idence, still limited, that these solutions are providing some
assistance as shown in Section 7.4. However, the fact that
the authors implemented the instances themselves is a threat
to internal validity. We made available all the developed in-
stances and frameworks showing the amount of reused code
and, consequently, design decisions. Finally, we understand
an evaluation with external practitioners knowledgeable in
developing Multi-UAV systems is still required.
The main variables possibly threatening construct valid-

ity are the main characteristics (Figure 7) and using the
amount of reused lines of codes (Table 2). It would be easy
to trace those characteristics to concrete components of the
instances and to account for components, classes, or design
decisions reused for creating the instances. This way, we can-
not anticipate additional threats to construct validity.

In terms of external validity, we provide instances with
multiple characteristics and evolving in complexity. How-
ever, relevant aspects are still not evaluated in the current
state of our work. All the developed instances that support
the assessment of the Mysterio framework and architecture
use computer simulations with OMNeT++. Given that, we
cannot predict or claim the results will be the same using
real-life UAVs. This would demand evaluation encompass-
ing all the challenges related to Sim-to-Real (Chebotar et al.,
2019).
Finally, regarding reliability, the instance implementation

still relies on the authors. However, all scenarios were based
on scenarios from Multi-UAV systems available in the lit-
erature. Particularly for the Osborn instance (Section 7.4
), we capture even the consensus algorithm from (Kuriki
and Namerikawa, 2014), showing the feasibility of using the
Mysterio framework to support the implementation of sys-
tems with reference algorithms.

8 Conclusions
Due to the importance of Multi-UAV systems, there is a need
to support the architectural design and reuse when develop-
ing cooperative Multi-UAV systems.
Along with the motivation of our work, the software archi-

tecture and all the framework code developed in this research
are open and available to be reused by the scientific commu-
nity. Through the four instances developed and presented in
Section 7, we understand that we have achieved an initial
architecture and a framework enabling the development of
Cooperative Multi-UAV Systems, fostering design and code
reuse. The proposed architecture and framework serve as a
basis for developers to reuse and develop their cooperative
Multi-UAV systems or even evolve the Mysterio framework.
Therefore, developers do not need to develop these systems
from scratch, saving time and effort and providing simulation
capabilities, an essential tool for UAV systems development.
In future work, we intend to assess its use with knowledge-

able UAV developers. Thus, we will avoid implementation
biases of Mysterio authors in new instances. As we devel-
oped our work, we understood the importance of the OM-

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

NeT++ simulator for developing computer simulations and
constructingMulti-UAV systems.We intend to use the frame-
work for future work to develop Multi-UAV systems in other
simulators.

Additionally, we plan to improve the next evaluations, in-
cluding other quality attributes that still need to be evaluated,
such as performance and robustness. Given the importance of
evaluating the performance of these systems, we plan towork
with professionals in vehicular networks to evaluate perfor-
mance using various network protocols for UAVs. Robust-
ness is another attribute that should be considered since sev-
eral complex aspects of Multi-UAV can be introduced as po-
tential sources of failure concerning distributed systems char-
acteristics like communication and synchronization and tol-
erance to hardware faults. Finally, architectural aspects such
as testability were not explicitly analyzed even considering
we focused on maintainability and reuse. A future question
in this direction would be ’How simple is it to test the soft-
ware with Mysterio compared to not having Mysterio?’ This
assessment can be of great relevance in preventing recurring
problems in reusable software and helping us identify possi-
ble flaws in the reuse of Mysterio.

Acknowledgements
This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brazil (CAPES) - Finance
Code 001 and the Brazilian National Council for Scientific and
Technological Development (CNPq), grant #130194/2020-4.

References
Arafat, M. Y. and Moh, S. (2019). Routing protocols for un-
manned aerial vehicle networks: A survey. IEEE Access,
7:99694–99720.

Asmare, E., Gopalan, A., Sloman, M., Dulay, N., and Lupu,
E. (2012). Self-management framework for mobile au-
tonomous systems. Journal of Network and Systems Man-
agement, 20(2):244–275.

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C.
(2004). Basic concepts and taxonomy of dependable and
secure computing. IEEE transactions on dependable and
secure computing, 1(1):11–33.

Bandala, A. A., Dadios, E. P., Vicerra, R. R. P., and Lim,
L. A. G. (2014). Swarming algorithm for unmanned
aerial vehicle (uav) quadrotors–swarm behavior for aggre-
gation, foraging, formation, and tracking–. Journal of Ad-
vanced Computational Intelligence and Intelligent Infor-
matics, 18(5):745–751.

Bass, L., Clements, P., and Kazman, R. (2012). Software
architecture in practice (third edit., p. 624).

Bekmezci, I., Sahingoz, O. K., and Temel, Ş. (2013). Flying
ad-hoc networks (fanets): A survey. Ad Hoc Networks,
11(3):1254–1270.

Briggs, F. (2012). Uav software architecture. In Infotech@
Aerospace 2012, page 2539. Researchgate.

Cai, G., Chen, B. M., and Lee, T. H. (2011). Unmanned ro-
torcraft systems. Springer Science & Business Media.

Cavalcante, A. S. N. and De França, B. B. N. (2022). The
mysterio framework for developing cooperative multi-uav
systems. In Proceedings of the 16th Brazilian Symposium
on Software Components, Architectures, and Reuse, pages
11–19.

Chebotar, Y., Handa, A., Makoviychuk, V., Macklin, M.,
Issac, J., Ratliff, N., and Fox, D. (2019). Closing the
sim-to-real loop: Adapting simulation randomization with
real world experience. In 2019 International Conference
on Robotics and Automation (ICRA), pages 8973–8979.
IEEE.

Chen, H., Wang, X.-m., and Li, Y. (2009). A survey of au-
tonomous control for uav. In 2009 International Confer-
ence on Artificial Intelligence and Computational Intelli-
gence, volume 2, pages 267–271. IEEE.

Daniel, K., Dusza, B., Lewandowski, A., and Wietfeld, C.
(2009). Airshield: A system-of-systemsmuav remote sens-
ing architecture for disaster response. In 2009 3rd Annual
IEEE Systems Conference, pages 196–200. IEEE.

Doherty, P., Granlund, G., Kuchcinski, K., Sandewall, E.,
Nordberg, K., Skarman, E., and Wiklund, J. (2000). The
witas unmanned aerial vehicle project. In ECAI, pages
747–755.

Gupta, L., Jain, R., and Vaszkun, G. (2015). Survey of impor-
tant issues in uav communication networks. IEEECommu-
nications Surveys & Tutorials, 18(2):1123–1152.

Hayat, S., Yanmaz, E., and Muzaffar, R. (2016). Survey on
unmanned aerial vehicle networks for civil applications: A
communications viewpoint. IEEE Communications Sur-
veys & Tutorials, 18(4):2624–2661.

Hong, C. and Shi, D. (2018). A control system architecture
with cloud platform for multi-uav surveillance. In 2018
IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computing, Scalable Computing
& Communications, Cloud & Big Data Computing,
Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages
1095–1097. IEEE.

Hrabia, C.-E., Hessler, A., Xu, Y., Brehmer, J., and Albayrak,
S. (2018). Efffeu project: Efficient operation of unmanned
aerial vehicles for industrial fire fighters. In Proceedings
of the 4th ACM Workshop on Micro Aerial Vehicle Net-
works, Systems, and Applications, pages 33–38.

Kekec, T., Ustundag, B. C., Guney, M. A., Yildirim, A., and
Unel,M. (2013). Amodular software architecture for uavs.
In IECON 2013-39th Annual Conference of the IEEE In-
dustrial Electronics Society, pages 4037–4042. IEEE.

Krichen, L., Fourati, M., and Fourati, L. C. (2018). Com-
munication architecture for unmanned aerial vehicle sys-
tem. In International Conference on Ad-Hoc Networks
and Wireless, pages 213–225. Springer, Springer.

Kuriki, Y. and Namerikawa, T. (2014). Consensus-based co-
operative formation control with collision avoidance for a
multi-uav system. In 2014 American Control Conference,
pages 2077–2082. IEEE.

Mahmoud, S. Y. M. and Mohamed, N. (2015). Toward a
cloud platform for uav resources and services. In 2015
IEEE Fourth Symposium on Network Cloud Computing
and Applications (NCCA), pages 23–30. IEEE.

Simulation-supported development for cooperative Multi-UAV Systems with the Mysterio framework Cavalcante et al. 2023

Motlagh, N. H., Taleb, T., and Arouk, O. (2016). Low-
altitude unmanned aerial vehicles-based internet of things
services: Comprehensive survey and future perspectives.
IEEE Internet of Things Journal, 3(6):899–922.

Navarro, I. and Matía, F. (2012). An introduction to swarm
robotics. Isrn robotics, 2013.

Paunicka, J. L., Mendel, B. R., and Corman, D. E. (2005).
Open control platform: A software platform supporting
advances in uav control technology. Software-Enabled
Control: Information Technology for Dynamical Systems,
pages 39–62.

Petersen, K. and Gencel, C. (2013). Worldviews, research
methods, and their relationship to validity in empirical
software engineering research. In 2013 joint conference of
the 23rd international workshop on software measurement
and the 8th international conference on software process
and product measurement, pages 81–89. IEEE.

Ramos, B. L., Franca, B., Montechi, L., and Colombini, E.
(2018). The rocs framework to support the development
of autonomous robots. relatório técnico. Instituto de Com-
putaçao. Universidade Estadual de Campinas (Unicamp),
Tech. Rep.

Ryan, A., Xiao, X., Rathinam, S., Tisdale, J., Zennaro, M.,
Caveney, D., Sengupta, R., and Hedrick, J. K. (2006). A
modular software infrastructure for distributed control of
collaborating uavs. In AIAA Guidance, Navigation, and
Control Conference and Exhibit, page 6455.

Sathyaraj, B. M., Jain, L. C., Finn, A., and Drake, S.
(2008). Multiple uavs path planning algorithms: a com-
parative study. Fuzzy Optimization and Decision Making,
7(3):257.

Scherer, J., Yahyanejad, S., Hayat, S., Yanmaz, E., Andre,
T., Khan, A., Vukadinovic, V., Bettstetter, C., Hellwag-
ner, H., and Rinner, B. (2015). An autonomous multi-uav
system for search and rescue. In Proceedings of the First
Workshop onMicro Aerial Vehicle Networks, Systems, and
Applications for Civilian Use, pages 33–38.

Sharma, V., Sharma, N., and Rehmani, M. H. (2019). Con-
trol over skies: Survivability, coverage and mobility laws
for hierarchical aerial base stations. arXiv preprint
arXiv:1903.03725.

Silano, G. and Iannelli, L. (2021). Mat-fly: an educational
platform for simulating unmanned aerial vehicles aimed to
detect and track moving objects. IEEE Access, 9:39333–
39343.

Sinsley, G., Long, L., Niessner, A., and Horn, J. (2008). In-
telligent systems software for unmanned air vehicles. In
46th AIAA Aerospace Sciences Meeting and Exhibit, page
871.

Tachinina, O., Lysenko, O., and Alekseeva, I. (2017). Path
constructing method of unmanned aerial vehicle. In
2017 IEEE 4th International Conference Actual Problems
of Unmanned Aerial Vehicles Developments (APUAVD),
pages 254–258. IEEE.

Tisdale, J., Ryan, A., Zennaro, M., Xiao, X., Caveney, D.,
Rathinam, S., Hedrick, J. K., and Sengupta, R. (2006). The
software architecture of the berkeley uav platform. In
2006 IEEE Conference on Computer Aided Control Sys-
tem Design, 2006 IEEE International Conference on Con-

trol Applications, 2006 IEEE International Symposium on
Intelligent Control, pages 1420–1425. IEEE.

Tisdale, J. P. (2008). Cooperative sensing and control with
unmanned aerial vehicles. University of California, Berke-
ley.

Vasudevan, A., Kumar, D. A., and Bhuvaneswari, N. (2016).
Precision farming using unmanned aerial and ground vehi-
cles. In 2016 IEEE Technological Innovations in ICT for
Agriculture and Rural Development (TIAR), pages 146–
150. IEEE.

Vincent, P. and Rubin, I. (2004). A framework and analysis
for cooperative search using uav swarms. In Proceedings
of the 2004 ACM symposium on Applied computing, pages
79–86.

Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H., and
Bettstetter, C. (2018). Drone networks: Communications,
coordination, and sensing. Ad Hoc Networks, 68:1–15.

Yu, Q., Cheng, L., Wang, X., Bao, P., and Zhu, Q. (2018).
Research on multiple unmanned aerial vehicles area cov-
erage for gas distribution mapping. In 2018 10th Interna-
tional Conference on Modelling, Identification and Con-
trol (ICMIC), pages 1–5. IEEE.

	Introduction
	Software Architecture for UAVs
	Related Works
	Research Method
	The Mysterio Architecture
	Framework Instantiation
	Instantiation Process
	Simulation-supported Development of Multi-UAV Systems
	Conditions to adopt Mysterio

	Examples of Mysterio Instances
	The Connor instance
	The Electro instance
	The Marko instance
	The Osborn instance
	Simulation-supported Instance
	Limitations and Threats to Validity

	Conclusions

