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Background: The life cycle of a technical debt from its identification to its payment is long and may include several
activities, such as identification andmanagement. There is a lot of research in the literature to address different sets of
these activities by different means. Specifically, several tools have already tackled such technical debt identification
problems. However, only a few studies empirically assessed those tools.Method: In this article, we carried a multi-
method research. We first surveyed the literature for the technical debt tools available and then we evaluated two of
them,which aim at identification of self-admitted technical debt. They are named eXcomment eDebtHunter.Results:
We found 97 tools employing different approaches to support technical debt life cycle management. Most of them
(59%) address only the high level task of management, instead of actually identify and pay the debt. Additionally,
as for our empirical evaluation of tools, our results show that DebtHunter found only 7% of debt identified by
eXcomment. In the other way around, eXcomment found 19.9% the debt found by DebtHunter. Besides, both tools
have low levels of precision and recall. Conclusion: It is hard to find technical debt through comments. Both tools
can find indicators of debt items, however they struggle on the precision and recall. In fact, although eXcomment
and DebtHunter diverge on the amount of debt identified, they seem to converge with regard to the type of debt
present in the system under evaluation.
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1 Introduction
Technical debt (TD) is a metaphor introduced by Cunning-
ham (1992) which indicates the shortcuts taken during the
software development activity that may affect the software
quality. Such shortcuts incur extra costs in the future in the
form of increased cost of change during software evolution
and maintenance. Technical debt items can occur in different
artifacts throughout the life cycle of a software project. The
presence of instances of technical debt can occur in two dis-
tinct ways: i) non-admitted – among other reasons1, due
to low quality code due to the lack of experience developers;
or ii) self-admitted (SATD) – when developers introduce
low quality code in the project deliberately aiming at priori-
tizing other tasks and report it in the comments or other arti-
facts.
In fact, technical debt items are certainly one of the most

investigated problems by the software engineering commu-
nity in recent years. However, the management of technical
debt still represents a major challenge in the community. For
instance, Rios et al. (2018) presented a tertiary study on the
topic, highlighting the types of technical debt, as well as the
point in the software life cycle they can occur along with the
management strategies present in the literature. In addition,
they provided a thorough overview of technical debt and its
implications for professional practice.
Although the presence of technical debt in a project might

be inevitable (Tom et al., 2013), preventive actions can be
taken so that debts do not get out of control, such as creating
test cases, clear definition of requirements, and good project
planning (Freire et al., 2020). One of the most used ways to
tackle this problem is the adoption of automated approaches

1The Technical Debt Quadrant, available at Fowler’s web page (https:
//martinfowler.com/bliki/TechnicalDebtQuadrant.html).

that can support these tasks (Avgeriou et al., 2021). Among
them, tools employing approaches based on static code anal-
ysis and source code comment mining stand out (Avgeriou
et al., 2021). However, regarding the high amount of tools
available in the literature (regardless of its license – either
commercial or research prototypes), Avgeriou et al. (2021)
argue this can become a problem for developers who wish
to select any of them for daily use. It is necessary to eval-
uate and compare existing tools to ensure the effectiveness
of these tools, as well as to facilitate the developers’ choice
process, in addition to assisting in their evolution process.

In this sense, several studies from the literature have tried
to evaluate such tools from different perspectives. Li et al.
(2023) proposed the identification of self-admitted technical
debt from four different sources: source-code comments, is-
sue tracking systems, pull requests, and confirmation mes-
sages. Avgeriou et al. (2021) used a qualitative group eval-
uation using three main criteria: characteristics, popularity,
and empirical validation. The results indicate that only Sonar-
Qube, DV8, and SonarGraph have been considered in empir-
ical studies regarding the TD index and that more studies are
needed to be able to quantify debt repayment efforts. In addi-
tion, although Fowler (2018) argues that code smells are not
problematic on their own, Gomes et al. (2019) highlighted
the relationship between code smell and self-admitted tech-
nical debt. They used automatic detection of code smells to
identify debts present in the code, since they are considered
indicators of the presence of technical debt.

However, when it comes to extraction of information
from software comments by mining repositories, the evalu-
ation and comparison of TD identification tools is not triv-
ial (Farias et al., 2021; Loiola et al., 2023). It requires a ro-
bust data set which must have unambiguous classification
of the classified debt items. In addition, a distinct data set
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is required for each automatic technical debt identification
approach. In a first attempt to build a self-admitted tech-
nical debt items data set, Maldonado and Shihab (2015)
used of source code comments in the identification of self-
admitted technical debt showing promising results. Software
comments represent a valuable source of information, once
they can describe the programming tactics used in a given
portion of the code. Besides, they can report bad coding prac-
tices or divergence from the accorded requirements. In fact,
Maldonado and Shihab (2015) manually identified and quan-
tified different types of self-admitted technical debt in open-
source systems. Their results showed themost common types
of debt that can be found in the comments are related to (i) de-
sign, (ii) defect, (iii) documentation, (iv) requirements, and
(v) test, respectively.

In this context, Oliveira et al. (2020) evaluated two tools:
SonarQube (which employs static code analysis) and SATD-
Detector (which employs source code commentmining). The
study identified the intersection between both approaches.
As results, it was found that only 19.47% of the debt items
were identified by both evaluated tools. In another study,
Loiola et al. (2023) evaluated the effect of the use of context
heuristics in the self-admitted technical debt mining in soft-
ware comments. They found the heuristics reduce the amount
of false positives, yet they were not enough to make the eval-
uated tool to reach good levels of precision.
In our previous work (Gomes et al., 2022), we investigated

the intersection of results from two self-admitted technical
debt identification tools bymining source code comments. In
this paper, we extend our previous work by both (i) includ-
ing a literature survey we performed prior to the empirical
study on the existing technical debt identification tools and
(ii) investigating a third research question regarding the ef-
fectiveness of the tools. For the sake of completeness, the re-
sults and discussions of the preliminary work have been repli-
cated in this paper. The results from the original study show
that out of the debt items classified by eXcomment, only 7%
of them DebtHunter also classifies as debt and that, of those
items that DebtHunter classified as debt, only 19.9% of them
eXcomment also classified. In fact, despite differing in the
amount of technical debt items, the tools seem to converge
regarding the types of debt present in the systems evaluated.
In addition, the research question addressed in this extension
show that both tools have low levels of precision and recall
in the task of classifying the debt items they manage to iden-
tify, and that they diverge when they incur into false positives
or false negatives.
In summary, this paper presents the following contribu-

tions:

(i) A bibliographic survey of the technical debt identifica-
tion tools available in the literature;

(ii) An empirical evaluation of two self-admitted technical
debt identification tools (eXcomment and DebtHunter);

(iii) The construction of an oracle with technical debt from
four open-source systems2;

(iv) A discussion of the errors of the evaluated tools to serve
as a basis for improvement for tools developers.

2Available at Zenodo Gomes et al. (2024)

The rest of the paper is organized as follows. Section 2
presents the work we deemed as related to ours. Section 3
presents the study planning, while the Section 4 presents our
survey of tools available in the literature and the Section 5
presents our empirical evaluation of two technical debt tools,
followed by Section 6 which presents the threats to validity.
Finally, Section 7 presents our concluding remarks, as well
as the future work.

2 Related Work
This section presents some research we deemed as related to
ours (Li et al., 2015; Bavota and Russo, 2016; Gomes et al.,
2019; Farias et al., 2020; Oliveira et al., 2020; Lenarduzzi
et al., 2022, 2021a). Next, we discuss them separately, first
the literature reviews, then the empirical studies.

2.1 Other Reviews
We identified other technical debt literature reviews already
published in the literature (Li et al., 2015; Alves et al., 2016;
Rios et al., 2018; Lenarduzzi et al., 2022; Murillo et al.,
2023). Out of them, only Avgeriou et al. (2021) focused on
the available debt management tooling. However, Li et al.
(2015); Alves et al. (2016); Rios et al. (2018); Lenarduzzi
et al. (2022); Murillo et al. (2023) also dedicated some atten-
tion to the topic as they address the identification of technical
debt items. Table 1 summarizes other reviews contributions.
Li et al. (2015) analyzed the technical debt concept on 94

existing research efforts and they proposed a classification
of ten technical debt types. They identified the quality at-
tributes compromised by technical debt and determined ac-
tivities and tools for technical debt management. Alves et al.
(2016) carried amapping study on the identification andman-
agement of technical debt items, which was recently updated
by Murillo et al. (2023). In the latter study, they studied the
evolution of the area in comparison with the former. They
found that researchers aremore likely to investigate new tech-
nical debt as general problem instead of an isolated problem,
in addition, they assess their new approach rather than com-
pare with available baselines. Rios et al. (2018) carried a ter-
tiary study on the current state of research on technical debt
in general. To what is worth, they explored what types of
approaches and tools are being proposed to assist in monitor-
ing technical debt superficially. Their result highlighted the
poorly explored points in the technical debt scenario.
Recently, Avgeriou et al. (2021) provided an overview of

the current landscape of technical debt measurement tools,
comparing features and the popularity of tools, as well as the
analysis of existing empirical assessments. Their review al-
lowed the comparison of several nine tools in the literature
aiming at assisting developers in the choosing of a tool that
meets their needs. Although, the scope of their study was lim-
ited to three most common types of technical debt, namely
code, design, and architecture, Murillo et al. (2023) fund that
most of the research carried on the identification of the tech-
nical debt items since 2015 address these kind of debt.
Murillo et al. (2023) study itself updated the mapping

study of Alves et al. (2016) on the identification and man-
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Table 1. Contributions by other literature reviews.

Reference Research Topic Analyzed
Period

Contributions

Li et al. (2015) Technical debt manage-
ment

1992 –2013 Determined activities and tools for technical debt management.

Alves et al. (2016) Technical debt identifi-
cation and management

2010 -2014 Listed strategies to identify or manage technical debt

Rios et al. (2018) Technical debt 2012-2018
Lenarduzzi et al. (2021a) Technical debt prioriti-

zation
2011-2020 Identified tools for technical debt prioritization.

Murillo et al. (2023) Technical debt identifi-
cation and management

2015-2022 An update of Alves et al. (2016).

agement of technical debt. With regarding the identification
of debt items, they were interested in the empirical studies,
artifacts, data sources, visualization techniques proposed in
the analyzed period. Additionally, they also discussed the
empirical evaluations and software visualization techniques
newly available in the period. Although they did mention
some tools available for these purposes, they do not discuss
their details in depth.

2.2 Empirical Studies
Bavota and Russo (2016) replicated the work of Potdar and
Shihab (2014) aiming at identifying the propagation and evo-
lution of self-admitted technical debt. For this purpose, more
than 600,000 commits and two billion comments were col-
lected. The results of the study showed that self-admitted
technical debt is diffuse, with an average of 51 instances per
system. It was also found that it is mainly composed of code
debt and requirements, and that debts increase over time due
to the introduction of new instances.
Gomes et al. (2019) investigated the relationship be-

tween code smells and self-admitted technical debt. They
selected three open-source projects written in Java: Ar-
goUML, JFreeChart and Apache Ant. Their results show
there was a strong correlation between self-admitted tech-
nical debt and code smells. Besides, in some cases, the use
of source code comments can complement information that
could not be obtained with the use of code smells alone.
Farias et al. (2020) carried out a study to identify TD

through source code comments in the project using their au-
tomated approach. They used their tool, named eXcomment,
which is able to mine the source code comments and it uses
natural language processing techniques along with a contex-
tualized vocabulary they developed. They managed to iden-
tify several types of debt in the comments of the systems eval-
uated.
In a similar initiative, Oliveira et al. (2020) conducted a

preliminary study to compare two different approaches to
identifying TD. The first one, the SonarQube tool and the
second one the SATDDetector. Their results indicate there
is a certain amount of debt that can be identified by both ap-
proaches, but the authors state that there is still a lack of stud-
ies for a greater accuracy of what these results really mean.
Lenarduzzi et al. (2021a) performed a literature review re-

garding strategies and tools for technical debt prioritization.

Code, architecture, and design were the most frequent types
of technical debt addressed. Afterwards, Lenarduzzi et al.
(2022) performed a analysis of six static analysis tools that
among other things, they aim to control quality issues like
technical debt: Better Code Hub, CheckStyle, Coverity Scan,
FindBugs, PMD, and SonarQube. Their key results show lit-
tle to no agreement among the tools and a low degree of pre-
cision aligning with with our results.
Comparing to the other studies, our study is the only one

to compare eXcomment and DebtHunter tools against each
other with regarding their agreement and effectiveness. It is
worth mention that, while evaluating such tools, we are com-
paring two different approaches to identify technical debt
items through the source code comments mining.

3 Study Setup

We performed this study in two phases: a literature review
and an empirical study. Figure 1 shows the study planning.
The literature review serves the purpose of identifying the
available tools for technical debt items identification. We dis-
cuss the results of the literature review in the Section 4. Out
of available tools, we selected two of them to perform the
empirical study, which we discuss in the Section 5.
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4 Survey of Technical Debt Tools
We reviewed the literature seeking to answer the following
question:

RQ1: What are the tools supporting the management of
technical debt items available in the literature?

More specifically, we want details on the purpose, license,
languages supported, type of debt addressed, and evaluation.
Thus, we specified the main question into sub-questions as
follows.

RQ1a: What are the purposes employed by the tools avail-
able in the literature in technical debt management?

RQ1b: What are the licenses for use and availability of the
tools available in the literature?

RQ1c: What programming languages or frameworks do the
tools available in the literature support?

RQ1d: Which tools propose to identify non-admitted or self-
admitted technical debt?

Next, we detail the selection process and results.

4.1 Studies Selection
We used the snowballing method for the literature review,
in which we start from some known articles and proceed by
following references back and forth from them. That is, to
identify articles cited by the known article and to identify ar-
ticles that cite the known article. We used a set of articles as
the basis for snowballing (Avgeriou et al., 2021). We took
them as a starting point because they carried out an in-depth
review of the literature regarding technical debt and specif-
ically on tools and identification of for different aspects of
the debt items life cycle.
In order to get to the final set of papers for this review,

we enumerated all references (R) and citations (C) – by the
end of 2022, in the page of the publisher – of the base article
Avgeriou et al. (2021). First of all, we attempted to retrieved
all the papers, 44 in total (12 R + 32 C). Unfortunately, four
citation papers we did not manage to overcome the paywall
(C1, C7, C11, and C13). The citation C10 is the paper itself,
which is still mistakenly accounted as a citation in publisher
page by the time of writing (end of 2023). Thus, 5 papers
were filtered. Then, we performed the scanning and skim-
ming of the collected papers and filtered those that we did not
find any tool of interest. At the end, besides the base paper,
thirteen papers were selected for a full reading and data ex-
traction. Table 2 summarizes this filtering process followed
until we reach the final set of papers, which are enumerated
in the Table 3. The other references are available in the repli-
cation package Gomes et al. (2024).

4.2 Data Extraction
For data extraction, the selected articles were read in full af-
ter the selection steps discussed in Section 4.1. In this step,
we sought to extract information about the tools that support
technical debtmanagement. In addition, relevant information
about them was extracted, such as source code license (i.e.

Table 2.Article selection steps to review the existing technical debt
tools in the literature.

Step References Citations Total

Base Article R1 – R12 C1 – C32 1 + 44
Filter 1 R1 – R12 C2–C6, C8, C9,

C14, C15 – C32
1 + 39

Filter 2 R2, R6, R7, R9 C9, C14, C16,
C18, C23, C24,
C25, C27, C31

1 + 13

R: Reference; C: Citation.

the tool has open source code), as well as its availability (i.e.
the tool was found available to be used), in addition to the
programming language it supports. It was also possible to
extract information about the purpose employed by the tools
regarding the context of the debt life cycle.

4.3 Review Results
Throughout this review, we found 101 tools employing dif-
ferent approaches tho support debt management. As an exam-
ple, Avgeriou et al. (2021) that aimed at provide an overview
of the current landscape of TD measurement, only consid-
ered 26 and analyzed only 9 tools and the study of Rios et al.
(2018) mentioned only 41. We now present such tools from
the perspective of criteria established by our research ques-
tions. Tables 4, 5, and 6 present such tools and follow the
same structure. The column “Tool” presents the name of the
identified tools. The column “O” indicates which tools are
licensed as open-source. The column “A” indicates which
tools available for use. The column “L” indicates which pro-
gramming languages the tools support. Finally, the column
“P” indicates the purpose of the tool in relation to the con-
text of the debt life cycle, which can be: (i) identification, (ii)
management, (iii) testing or (iv) visualization.

4.3.1 RQ1a: on the purpose of the tools

Identification, Visualization, or Testing: Table 4 shows
the results regarding the purpose of identification, visual-
ization or testing. Considering the identification, we found
only 8% (9/101) of the tools propose exclusively to identify
the existing debts in the project, and most of them use ap-
proaches based on static code analysis for the identification
of debts. Regarding the visualization of technical debt, it was
possible to identify that only 2% (3/101) of the tools employ
purposes related to the visualization of debts in the project, in-
dicating that this type of approach is still little explored by the
tools. It was also observed that test case management tools
are still little explored. They represented only 3% (4/101)
of the total. Test case management tools provide support to
the development of test cases. Somehow, they help develop-
ers to avoid test debt. For instance, the “Parasoft Jtest” tool
that optimizes JUnit test cases and while it improves the test
coverage of the project.

Management: It was observed that 58% (59/101) of the
tools have the purpose of management, i.e. they do not ad-
dress any specific type of technical debt. In fact, they focus
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Table 3. Selected papers for review.

ID Title Reference

R2 Technical Debt Indexes Provided by Tools: A Preliminary Discussion Fontana et al. (2016)
R6 A survey on code analysis tools for software maintenance prediction Lenarduzzi et al. (2020)
R7 A systematic mapping study on technical debt and its management Li et al. (2015)
R9 A tertiary study on technical debt: Types, management strategies, research trends, and

base information for practitioners
Rios et al. (2018)

C9 On the Lack of Consensus Among Technical Debt Detection Tools Lefever et al. (2021)
C14 A critical comparison on six static analysis tools: Detection, agreement, and precision Lenarduzzi et al. (2022)
C16 SDK4ED: A platform for technical debt management Ampatzoglou et al. (2022)
C18 analyzeR: A SonarQube plugin for analyzing object-oriented R Packages Chandramouli et al. (2022)
C23 Exploring Technical Debt Tools: A Systematic Mapping Study Freitas et al. (2022)
C24 Customizable visualization of quality metrics for object-oriented variability implemen-

tations
Mortara et al. (2022)

C25 Technical Debt in Service-Oriented Software Systems Nikolaidis et al. (2022)
C27 TD Classifier: Automatic Identification of Java Classes with High Technical Debt Tsoukalas et al. (2022)
C31 A systematic literature review on Technical Debt prioritization: Strategies, processes,

factors, and tools
Lenarduzzi et al. (2021b)

Table 4. Identification, Visualization or Testing tools.

Tool O A L P

CAST 2 2� Many I
RE-KOMBINE 2 2 Not identified I
Sonar TD plugin 2� 2� Java I
JSpirit 2� 2� Java I
MAT 2 2 Java I
SATD Detector 2� 2� Java I
TD-Tracker Tool 2 2 Java I
DebtHunter 2� 2� Java I
Code Christimas Trees 2 2 Not identified V
Structure101 2 2� Java, .NET V
ParasoftJtest 2 2 Java. C, C++, .NET T
IBM appScan 2 2� Java T
ParasoftdotTEST 2 2 Java, C/C++, .NET T
Titan 2 2 Java T
VariMetrics 2� 2� Java V

O: Open-source; A: Available; L: Language(s) supported; P: Purpose;
I: Identification; V: Visualization; T: Testing;

on tracking and monitoring it. As in the tool CheckStyle,
which supports writing code following a coding standard,
which can be an important factor for controlling debt in a
software project. Another tool, FxCopAnalyzer can be inte-
grated with the Visual Studio IDE or used in a standalone
mode. It can provide visual and interactive feedback to de-
velopers, making it easier the identification and correction
of problems related to the code quality. Thus, such tools sup-
port developers to write code that conforms with predefined
coding rules. In other words, such functionalities help devel-
opers to avoid code debt.

In addition, tools that use static code analysis to identify
deep problems related to software quality stand out, such

as architecture-smells and code-smells. As in the tool inFu-
sion, which uses static code analysis to detect code-smells
and architecture-smells present in the project and in the CAF-
FEA,which allows to identify and prioritize problems related
to architecture debts, such as the lack of modularization, in-
appropriate use of design patterns or components, besides
the lack of documentation. These tools use a consolidated
set of metrics related to code quality assessment, which al-
lows a more comprehensive and reliable evaluation of the
developed code.

Multi-purpose or Unidentified: 19% (20/101) of the tools
are multi-purpose with regard to the technical debt life cycle.
For instance, SonarQube in addition to performing the identi-
fication of debts, it has functionalities related to the manage-
ment and visualization of technical debt in the project. An-
other example is the Understand tool that allows the code
analysis through visualization metrics in its integrated de-
velopment environment. This tool support developers in the
comprehension, maintenance, and documentation of source
code.
Finally, we could not identify the purpose of 5% (6/101)

tools. This indicates that, although there are many tools cited
in the literature, there is still a lack of information avail-
able about them regarding the construction and approach em-
ployed, which may make it difficult for researchers to evalu-
ate existing tools or to continue the work carried out by pre-
vious research and development.

4.3.2 RQ1b: licenses of use and availability

Only 29% (30/101) of the identified tools are both open
source and available for use. Nevertheless, although they are
open source and available, (i) some tools are commercial
tools, which means they may have paid functionalities or ser-
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Table 5. Tools with purpose of management of technical debt.

Tool O A L

analyzeR 2� 2� R
inFusion 2 2� Not identified
CodeSonar 2� 2� Java, C, C++
Polyspace 2 2� C, C++
CheckStyle 2� 2� Java
Klocwork 2 2 Java, C, C++,

C#
JLint 2 2 Java
Lattix 2 2� Java, C, C++
Fortify Satic Code Ana-
lyzer

2 2� Many

ConQAT 2� 2� Java, C#, C++,
ABAP, ADA

Ndepend 2 2� .NET
LDRA testbed 2 2� Java
Axivion Bauhaus Suite 2 2� Java, ADA,

C/C++ e C#
Source meter 2� 2� Java, C/C++,

C#, Python e
RPG

Imagix 2 2� Java, C, C++
Codacy 2 2� JavaScript,

Java, PHP,
Python, Ruby,
Swift, C/C++

SIG Software Analysis
Toolkit

2 2� Not identified

Google CodePro Ana-
lytix

2 2� Not identified

iPlasma 2 2 Java, C/C++
Eclipse Metrics 2� 2� Java
Rational AppScan 2 2� Java, .Net,

Javascript
PHPMD 2� 2� PHP
FxCop 2 2� .NET
CodeXpert 2 2 Not identified
CAST Software’s Ap-
plications Intelligence
Platform (AIP)

2 2� Java, .NET,
C/C++, Fortran

STAN 2 2� Java
Better Code Hub 2 2� Many

O: Open-source; A: Available; L: Language(s) supported.

Tool O A L

Resource Standard Met-
rics

2 2� C/C++, C# e
Java

RBML compliance
checker

2� 2� Java, .NET

A tool to identify bad
dependencies

2 2 C/C++

SonarQube COBOL
Plugin

2� 2� COBOL

CLIO 2 2 Java
CodeVizard 2 2 Java, C#
Designite 2� 2� Java
CodeInspector 2 2 Many
CodeMRI 2 2� Java
DV8 2 2 Not identified
SQuORE 2 2� Many
SymfonyInsight 2 2� Many
Archinaut 2� 2� Java
CBRI-Calculation 2� 2� Perl, Python
DBCritics 2 2 PL/SQL
TEDMA 2 2 Java, R
BPMNspector 2� 2� Java
ARCAN tool 2 2� Java
SAApy 2� 2� Python
Code Analysis 2 2� Many
FITTED 2 2 Java
JCaliper 2� 2� Java
ProDebt 2 2 Java, .Net, e

Objective-C
DebtGrep 2 2 C/C++ e assem-

bly
Hansoft 2 2� Many
Jacoco 2� 2� Java
Jira Software 2 2� Many
Redmine 2� 2� Ruby
SonarCloud 2 2� Many
TeamScale 2 2� Java, C#,

C/C++,
JavaScript,
e ABAP

Visual studio FxCop-
Analyzer

2 2� .NET

Scitool understand 2 2� Many

O: Open-source; A: Available; L: Language(s) supported.

vices, e.g. SonarQube; (ii) some are dormant, due to the lack
of a community responsible for its maintenance, including
the management of dependencies, which can lead unusable
or hard to be evolved or even to be evaluated by other re-
searchers. It is hard, if not impossible, to evaluate something
you cannot use. We believe this is one of the main reasons
behind low number of evaluation studies. Theses facts rein-
force the call for attention on the sustainability of research
software (Venters et al., 2018). In addition, 38% (39/101) are

only available for use, but they do not have an open source
license, such as the tool AnaconDebt that allows to evaluate
the cost of refactoring and the interest incurred on technical
debt, although it is available, it is not open source and the in-
terest estimation approach on the debt is confidential. More-
over, we could not identify neither the license type nor the
availability of 31% (32/101) of the tools. This fact might in-
dicates the lack of interest on the continuation of research on
the approaches used and their development.
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Table 6. Tools with several purposes and tools did not identify its
purpose.

Tool O A L P

SonarGraph 2 2� Java, C, C++,
C#, Python

I, G

SonarQube 2� 2� Many I, G, V
FindBugs 2 2� Java G, T
Coverity 2� 2� Java, C, C++ G, T
PMD 2� 2� Java G, T
Jarchitect 2 2� Java G, V
NCover 2 2� .NET G, T
Cobertura 2 2 Not identified G, T
Software Maps tool 2 2 Not identified G, V
Technical Debt Evalu-
ation (SQALE) plugin
for SonarQube

2 2� Many I, G, V

DebtFlag 2 2 Java I, G
CodeScene 2 2� Many G, V
AnaConDebt 2 2 Not identified I, G
eXcomment 2� 2� Java G, I
Visminer TD 2� 2� Java I, G, V
DeepSource 2 2� Java G, I
Themis 2 2 Java G, I
Build Game 2 2 Not identified NI
Georgios Tool 2 2 Not identified NI
Requirements Specifi-
cation Tool

2 2 Not identified NI

TD tool 2 2 Not identified NI
Dependency Tool 2 2 Not identified NI
MIND 2 2 Not identified NI
CAFFEA 2 2 Not identified I, G
SDK4ED 2� 2� Java, C, C++ I, G, V
SmartCLIDE Eclipse
Theia Extension

2� 2� Many I

TD Classifier 2� 2 Java I, V

I: Identification; V: Visualization; G: Management; NI: Unidentified. O: Open-
source; A: Available; L: Language(s) supported. P: Purpose;

4.3.3 RQ1c: supported languages

Several tools provide support for only one specific language,
yet some of them support more than one language. In fact,
54% of the tools support Java, which is the most popular
supported language among the tools. Other languages well
supported are C++ 19%, C 18%, and C# 7%. Most of the
14% of the tools supporting many programming languages
are commercial tools. Unfortunately, we did not find infor-
mation about the languages supported in 16% of the tools
evaluated. The predominance of a single specific language
might not be a good indicator, since they can not be used in
different domains. In fact, together with the lack of availabil-
ity, their applicability and portability in the future may be at
risk. On the hand, language-specific tools can be seen as an
advantage so they can perform an in-depth analysis.

4.3.4 RQ1d: on the identification of self-admitted and
non-admitted debt

Regarding the non-admitted technical debt, we found that
73% (74/101) address aspects of technical debt other than
the identification itself, such as software metrics and code
standards checking. This can be explained given the fact that
there is a consolidated set of metrics for measuring code qual-
ity. Another explanation for the amount of tools related to
code quality is that the knowledge in technical debt is still be-
ing consolidated in the software development context (Alves
et al., 2016). In fact, only 16% (17/101) of the tools pre-
sented approaches to the identification of non-admitted tech-
nical debt. These tools mainly use software metrics and static
source code analysis. In addition, some tools, such as JSpirit,
they identify technical debt items in the project by finding
code-smells.
Regarding the identification of self-admitted technical

debt, we found 4% (5/101) of the identified tools propose to
identify self-admitted technical debt, relying on approaches
based on collecting source code comments through text min-
ing and natural language processing techniques. With regard-
ing to the classification of the debt found, the tools rely
mostly on pattern matching such as in the MAT, using tags
of comments (i.e. TODO, FIXME, XXX, and HACK) to identify
debt. The small amount of tools might indicates that there
is still room to further research on the identification of self-
admitted technical debt. For instance, while proposing a new
SATD identification tool they might consider compare the
new approach with the MAT baseline Guo et al. (2019).

5 Empirical Evaluation
The objective of this study is the evaluation of tools for the
identification of technical debt items by mining source code
comments, from the perspective of software engineers,with
respect to the the effectiveness of the tools evaluated taking
into consideration the intersection of debt items they can find.
Thus, the following research questions were defined:

RQ2:What is the intersection between the automatic self-
admitted technical debt identification approaches of the
eXcomment and DebtHunter tools?

RQ3:How are the debt items identified by the eXcomment
and DebtHunter tools distributed?

RQ4: What is the effectiveness of eXcomment and
DebtHunter in identifying technical debt?

5.1 Evaluated Tools
We selected two tools to our evaluation study: DebtHunter
(Sala et al., 2021) and eXcomment (Farias et al., 2020). The
authors of this study did not participate in the development
of any of the tools here evaluated. They were selected be-
cause of three reasons: (i) they are two out of three from the
tools found in our literature review that use the same tech-
nique to identify the technical debt – source comment min-
ing; (ii) they represent the state-of-the-art of mining source
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comments (out of those tools identified in our literature re-
view); and (iii) by convenience, since we have already eval-
uated the evolution of eXcomment in another study of ours
(Loiola et al., 2023). We wanted to use also a third tool is
called SATDetector. However, its results output prevented
us to perform the study manually as we wanted to and we
did not managed to find a way around to work all three.
The DebtHunter tool uses natural language processing and

machine learning. The classification is performed in two
steps: (i) Binary classification, where comments that have or
do not have self-admitted technical debt are identified, and
(ii)multi-class classification, where comments that have debt
are classified according to the type of debt they express. The
tool also has two use cases, they are: (i) Comment marking,
in this case the classification is performed based on themodel
pre-trained by DebtHunter and (ii) training a new model,
in this mode the tool receives as input classified comments,
which are used to train a new model. For the purpose of this
case study, the tool was only used in the first use case.
The eXcomment tool uses text mining techniques to col-

lect comments that may indicate the presence of technical
debt. To this end, the tool uses a contextualized vocabulary
to identify technical debt in source code comments Farias
et al. (2020). The tool chooses the comments that relate to
at least one pattern of the contextualized vocabulary. Finally,
the patterns found in each comment are analyzed to classify
them among the different types of technical debt the tool is
prepared to.

Table 7. Target systems characterization.

System
(Version)

Domain LOC LC CVE CVD

Lottie
(v3.5.0)

Android li-
brary

49.441 2.704 500 808

RocketMQ
(v4.8.0)

Messages
and
Streaming

109.261 22.798 1.203 2.215

Trift
(v0.14.1)

Data trans-
portation

311.606 75.494 1.065 1.350

Arduino
(v1.8.16)

Development
environ-
ment

149.055 62.643 1.265 1.202

LOC: Lines of code; LC: Comment lines; CVE: eXcomment valid comments;
CVD: DebtHunter valid comments.

5.2 Target Systems

We used four target systems: RocketMQ, Lottie, Trift, and
Arduino. We choose systems from different domains and
sizes, open-source, and written in the programming language
Java. The language constraint is created by the evaluated
tools. Table 7 presents a brief characterization of the se-
lected target systems, including size in lines of code (LOC),
amount of lines of comments (LC), valid comments eXcom-
ment (CVE) and valid comments DebtHunter (CVD). Valid
comments indicate all comments that the tools included in
their search for technical debt items during their run.

5.3 Oracle
We followed the scheme illustrated in Figure 2 to build our
oracle. In the first step, the first two authors carried out the
manual inspection of each comment from the source code
of each target system considered independently. During this
step, the evaluators identified, if any, there was a presence
of technical debt in each comment, selecting only one of the
types of debt presented in Table 8. In case no debt was found,
the comment was classified as “without debt”. In the second
step, we manually compared both classifications from each
evaluator to identify whether there was a consensus about
the classification or not. In case consensus, the classification
of the comment was added to the final oracle. On the other
hand, in case of divergence, we resort to a third step in which
we submitted the comment to a third evaluator to solve the
conflict and than the comment was add to the final oracle.We
calculated the Kappa coefficient to measure the agreement
between the evaluators, which result in an agreement of 0.38.
According to the scale proposed by Landis and Koch (1977),
this score corresponds to a fair strength of agreement.

Final
Oracle

E1 E2

Step
1

E1 E2

Step
2

consensus?
No

E1 E2

Step
3

E3

Yes

Figure 2. Oracle construction scheme illustrated. (Adapted from Gomes
et al. (2023))

5.4 Metrics
We considered four metrics for the analysis of the results: pre-
cision, recall, f 1-score, and accuracy. We compared the out-
put of the evaluated tools against the oracle built to calcula-
tion of these metrics. These metrics are defined in terms of
true positive, true negative, false positive, and false negative.
True positives (TP) indicate correct classifications where the
tools classify the comment as technical debt, and the oracle
confirms that it was indeed a debt. However, if the tools clas-
sify the comment as not being technical debt, but the oracle
classifies it as technical debt, it is a false negative (FN). If the
tools classify the comment as not containing technical debt
and the oracle confirms that it did not contain technical debt,
it has a true negative (TN). However, if the tools classify the
comment as technical debt and the oracle classifies it as not
being technical debt, then it is a false positive (FP).
The precision indicates the ratio between the true positives

(TP) by the sum of the amount of false positives (FP) and
true positives. In the scope of this paper, precision indicates
the fraction of correctness in the classification of debt items
when compared to the classification of the tools with the or-
acle. Equation 1 shows the calculation of this metric.

precision = TP

TP + FP
(1)
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The recall represents the number of hits of the tools in the
identification of TD items. Thus, the metric represents the
fraction of technical debt items effectively identified by the
tools. Equation 2 shows the calculation of this metric.

recall = V P

V P + FN
(2)

The f 1-score metric is an harmonic mean between preci-
sion and recall, which represents the ratio between the num-
ber of elements and the sum of the inverses of these elements.
It can vary according to the values of precision and recall.
Therefore, if the values of precision and recall are high, the
harmonic mean will also be high, otherwise it will be low.
The f 1-score metric is calculated according to Equation 3.

f1 − score = 2 ∗ precision ∗ recall
precision + recall

(3)

The accuracy metric can be represented by the ratio of
correct classifications over all classifications that have been
made. In the scope of this work, accuracy represents the frac-
tion of correct classifications of valid comments, whether
correct for the presence or absence of technical debt. The
metric is calculated according to Equation 4.

accuracy = TP + TN

TP + TN + FN + FP
(4)

5.5 Data Collection

We ran the eXcomment and DebtHunter tools on the target
systems to collect the data we need to answer our three re-
search questions. However, each tool identifies a different set
of technical debt types. While the eXcomment (Farias et al.,
2020) proposes the identification of nine different types of
debt (Documentation Debt, Requirements Debt,Defect Debt,
Design Debt, Test Debt, Architecture Debt, Build Debt,Code
Debt, and People Debt), the DebtHunter (Sala et al., 2021)
identifies only five (the first five enumerated for eXcom-
ment). Therefore, we considered only the five types of debt
found in both tools for this study. Table 8 defines each of
them.
It is worth mentioning that, when analyzing the types of

debt considered for identification by the tools, a small differ-
ence in nomenclature was noticed. What eXcomment con-
siders Requirements Debt, DebtHunter considers Implemen-
tation Debt in the same way as the dataset taken as reference
Maldonado and Shihab (2015) for its construction. For stan-
dardization purposes, we will only use Requirements Debt
from this point on, as defined by Rios et al. (2018) and taken
by reference in the eXcomment.

5.6 Syntheses

This section presents the method used to report the results re-
garding the research questions RQ2, RQ3, and RQ4 obtained
during the comparison between the tools.

Table 8. Description of the self-admitted technical debt types con-
sidered in this study.

Documentation Debt: It refers to problems found in the soft-
ware documentation such as absence of documentation, inade-
quate, or incomplete documentation.
Requirements Debt: It refers to the activities that the develop-
ment team has to implement and how the implementation will
be carried out.
Defect Debt: Refers to known defects, which the team agrees
should be corrected.
DesignDebt: Refers to bad coding practices that violate the prin-
ciples of object orientation.
Test Debt: Refers to issues that may affect the quality of testing
activities.

5.6.1 Research Questions 2 e 3

This section presents the method used to synthesize the re-
sults obtained for research questions RQ2 and RQ3. The syn-
thesis of results consisted in identifying the intersection be-
tween the approaches to identifying TD items. For this, the
outputs of both tools (i.e., the comments that the tools actu-
ally pointed out as evidence of TD) were compared in two
steps. First, the comments classified by eXcomment were
compared with the classification of DebtHunter. Second, the
comments classified by DebtHunter were compared with the
eXcomment classification. This form of comparison was nec-
essary because no more efficient way of comparing the out-
puts manually was identified. The results obtained after com-
paring the outputs of the tools will be analyzed from the per-
spective of two distinct groups:

Group 1: comments that both tools pointed TD – this group
will be referenced as G1;

Group 2: comments that only one of the tools pointed to TD
– this group will be referred to as G2.

In G1, there were comments classified with the same
types of debt by both tools (subgroup G1equals) and also
comments classified with divergence between the tools (sub-
groupG1different). For example, the Lottie system contains the
following comment:

/* These flags were in Canvas but they
were deprecated and removed. TODO:
test removing these on older versions
of Android.*/

In this case, while eXcomment pointed out that the com-
ment contains Test Debt and Code Debt, DebtHunter pointed
out that it contains aDesign Debt. That is, both tools pointed
out that the comment contains debt, however, of different
types. Thus, the comment would be included in the group
(G1different) and would not be included in the group (G1equal).

In G2, there were comments that were considered by the
second tool free of technical debt (G2free), as well as, there
were comments that were considered invalid (i.e. not consid-
ered for classification – G2invalid). Figure 3 shows a schema
that organizes all four mentioned subgroups of G1 (G1equals
and G1different) and of G2 (G2free and G2invalid).
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Figure 3. Subgroups division used on the presentation and discussion of
results.

5.6.2 Research Questions 4

To answer RQ4, the outputs of the evaluated tools were man-
ually compared with the constructed oracle. Details of its
construction were reported in Section 5.3. At the end of the
comparison step, we calculated the four different metrics dis-
cussed in Section 5.4.

5.7 Results and Discussion
The results presented below provide an overview of the ef-
fectiveness of the two automated approaches in identifying
and classifying technical debt items in software projects eval-
uated in this work.

5.7.1 RQ1: on the intersection between eXcomment and
DebtHunter

Table 9 presents the results of the comparison between both
tools from the perspective of the two defined groups. Col-
umn “E” denotes the comparison between the classification
of debt items from eXcomment with the classification from
DebtHunter. Similarly, column “D” denotes the comparison
between the classification of debt items from DebtHunter
with the classification from eXcomment.

As results of the intersection analysis between approaches,
we found that eXcomment detected a total of 233 technical
debt items, this summing all debt items detected in all tar-
get systems analyzed. In turn, DebtHunter detected a total of
85 technical debt items (Table 10). Regarding the analysis of
the G1 group, we observe that DebtHunter obtained an aver-
age intersection of 7% in relation to the debt items classified
by eXcomment. On the other hand, eXcomment obtained an
average intersection of 19.9% in relation to the debt items
classified by DebtHunter.
The result obtained in the Trift system stands out, where

no cases were identified in which both tools classified as debt
(G1). In our view, one of the factors that explain this behavior
is the content of the comments found in Trift. For example, in
14 of the 15 Requirements Debt found by DebtHunter went
to the comment “TODO(mcslee): implement”. However,
as eXcomment uses textual standards for debt identification
Farias et al. (2020), the standards defined by the tool’s heuris-
tics do not recognize debt items in a comment containing a
single word (“implement”).
As for the analysis of the G2free group, of the debt items

pointed out by eXcomment, on average, 79.3% of them
DebtHunter classified as “technical debt free”. Similarly, of
the debt items indicated by DebtHunter, 27.1% of them eX-
comment classified as “technical debt free”. Finally, as for

the subgroupG2invalid, of the debt items classified by eXcom-
ment, 13.7% of them DebtHunter considered invalid. On the
other hand, of the items classified as debt by DebtHunter,
63.6% were considered invalid by eXcomment.

Table 9.Comparative analysis of the intersection of results between
DebtHunter e eXcomment.

Lottie RocketMQ Trift Arduino
Group

E D E D E D E D

G1 2 2 2 2 0 0 18 18
– G1differents 2 2 1 1 0 0 12 12
– G1equals 0 0 1 1 0 0 6 6
G2 36 8 30 15 53 19 92 32
– G2free 31 3 26 0 40 5 87 20
– G2invalid 5 5 4 15 13 15 5 12

E: comparison of the classification of debt items by eXcomment with regarding to
DebtHunter; D comparison of the classification of debt items by DebtHunter with
regarding to eXcomment.

After analyzing the debt items classified by the tools, we
found that eXcomment has a higher percentage of intersec-
tion in relation to the debt items identified by DebtHunter.
On average, out of the debt items identified by eXcomment,
DebtHunter was able to identify only 7% of them (G1total–
E). On the other hand, out of the debt items identified by
DebtHunter, the eXcomment tool was able to identify 19.9%
of them (G1total–D).
In general, the evaluation results showed that eXcomment

tends to be more sensitive in identifying debt items than
DebtHunter. On average, DebtHunter considered that there
was no debt (G2free – E) in 79.3% of the comments contain-
ing debt according to eXcomment. On the other hand, on av-
erage, eXcomment considered that there was no debt (G2free
– D) in only 27.5% of the comments containing debt accord-
ing to DebtHunter.
We also noticed that DebtHunter tends to consider fewer

invalid comments compared to eXcomment. On average,
DebtHunter considered invalid (G2invalid – E) only 13.7%
of the comments that eXcomment considered valid. On the
other hand, on average, eXcomment considered 63.6% of
the comments considered valid by DebtHunter as invalid
(G2invalid – D).

In summary, the intersection of debt items clas-
sified by the eXcomment andDebtHunter tools
is small (less than 20%) in relation to the num-
ber of items pointed out by each of them.

5.7.2 RQ2: on the debt items distribution

Table 10 presents the type of debt and the amount of techni-
cal debt items identified by each tool in the target systems.
The column “type of debt” shows the type of debt that the
items represent, while the column “T” indicates which tool
this debt occurred, and the column “TOTAL” indicates the to-
tal debt by type in each tool. The following columns indicate
in which system the technical debt items occurred. Finally,
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the row “TOTAL” indicates the total of technical debt items
identified in each tool.
Analyzing the distribution of the types of debt identified

by both tools, there were few or no items of the types Docu-
mentationDebt and Test Debt.While only eXcomment found
Test Debt, neither tool identified Documentation Debt items.
On the other hand, both tools found several items of Design
Debt, Defect Debt and Requirements Debt. While eXcom-
ment found more items of Defect Debt, Design Debt, and
Requirements Debt (descending order), DebtHunter found
more items of Design Debt, Requirements Debt, and Defect
Debt (descending order).
Analyzing these results in perspective of the size of the

target systems, it was observed that eXcomment identifies a
higher number of technical debt items per line of code than
DebtHunter. On average, while eXcomment identified 4.9
debt items per 10K lines of code, DebtHunter identified only
1.68 items. On the other hand, regarding the number of valid
comments of each system, we also found that eXcomment
identified a higher number of debt items than DebtHunter.
On average, while eXcomment identified 5.9 technical debt
items per 100 valid comments, DebtHunter identified only
1.2 items.

In summary, the distribution of debts found by
the eXcomment and DebtHunter tools are con-
centrated in Design Debt, Defect Debt, and Re-
quirements Debt

.

Table 10. Quantity of debt items identified by each tool in each
target system.

Type of Debt T L
ot
tie

R
oc
ke
tM

Q

Tr
ift

A
rd
ui
no

TO
TA

L

Design Debt
EX 6 3 6 14 29
DH 5 16 4 30 55
EX 15 19 27 51 112

Defect Debt
DH 0 0 1 3 4
EX 5 2 2 8 17

Requirements Debt
DH 4 0 15 7 26
EX 0 0 0 0 0

Documentation Debt
DH 0 0 0 0 0
EX 1 0 0 0 1

Test Debt
DH 0 0 0 0 0
EX* 38 32 53 110 233

TOTAL
DH 9 16 20 42 85

EX: eXcomment;DH: DebtHunter;T: Tools; *:The existing difference in the total
o debt items identified by eXcomment in each system is explained by the items of
a debt types DebtHunter can not identify.

5.7.3 RQ3: on the effectiveness of eXcomment and
DebtHunter on the identification of technical debt

Metrics: Tables 11, 12, 13 show the results of both tools
eXcomment and DebtHunter in detecting technical debt
items in the target systems analyzed according to the pro-
posed metrics. The columns present, respectively, the types
of debt identified, the tool that identified the debt, the num-
ber of debt items identified in the oracle(Qi), and the results,
in percentage, of the metrics of interest. Debt types that were
not found in the oracle were represented with “−” since the
calculation of their metrics would not be possible. In addition,
the analysis of the metrics of the RocketMQ system could
not be conducted due to the scarcity of debts identified by
the tools, which made it impossible to calculate the metrics
of interest.

Precision and recall depend directly on the amount of TP,
which results in zero percent of both metrics in some types
of debt, since the systems identified few or no TP. Similarly,
the f 1-score is known to depend directly on the precision and
recall. The fact that both metrics were set to zero in some
cases influences the result of the f 1-score. Finally, the accu-
racy corresponds to the total number of correct predictions of
technical debt items in relation to the total number of predic-
tions made by the tools. Therefore, it depends directly on the
TP and TN values. As the systems identified few or no TPs,
the number of TNs is almost as higher as the number of valid
comments. Thus, it resulted 100% accuracy for some cases
based only on the number of TN, which is calculated through
the difference between the number of valid comments and
the number of debt classifications made by the tools. For ex-
ample, in the case of Test Debt for the Lottie, eXcomment
identified only one FN resulting in 499 TN. Thus, the accu-
racywould be calculated by the quotient of the amount of TN
by all the quantities expected in the system (i.e. TP, FP, FN
and TN), resulting, inaccurately, in an accuracy of 100%.

Table 11. Results eXcomment and DebtHunter in the identification
of debt items on Lottie (in %).

Type of Debt Qi T P C F1 A

Requirements Debt 1
EX 0 0 0 99
DH 0 0 0 100
EX 7 33 11 97

Defect Debt 3
DH 0 0 0 100

0
EX − − − −

Design Debt
DH − − − −
EX 0 0 0 100

Test Debt 1
DH 0 0 0 100

0
EX − − − −

Documentation Debt
DH − − − −

EX: eXcomment; DH: DebtHunter; T: Tool;Qi: Quantity of debt items; P: preci-
sion; C:recall; F1: f 1-score; A: accuracy

Recurrent Debts: The results show eXcomment to bemore
likely to identify Defect Debt compared to the DebtHunter.
Besides, both of themwere considerably imprecise in all clas-
sification. Considering all the target systems analyzed, eX-
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Table 12. Results eXcomment and DebtHunter in the identification
of debt items on Trift (in %).

Type of Debt Qi T P C F1 A

Requirements Debt 2
EX 50 100 66 100
DH 0 0 0 100
EX 10 66 17 98

Defect Debt 4
DH 0 0 0 100

1
EX 0 0 0 100

Design Debt
DH 0 0 0 100
EX 0 0 0 100

Test Debt 1
DH 0 0 0 100

4
EX 0 0 0 100

Documentation Debt
DH 0 0 0 100

EX: eXcomment; DH: DebtHunter; T: Tool;Qi: Quantity of debt items; P: preci-
sion; C:recall; F1: f 1-score; A: accuracy

Table 13. Results eXcomment and DebtHunter in the identification
of debt items on Arduino (in %).

Type of Debt Qi T P C F1 A

Requirements Debt 5
EX 0 0 0 99
DH 0 0 0 100
EX 12 30 17 97

Defect Debt 13
DH 100 7 14 99

8
EX 0 0 0 99

Design Debt
DH 50 12 20 99
EX − − − −

Test Debt 0
DH − − − −

3
EX 0 0 0 100

Documentation Debt
DH 0 0 0 100

EX: eXcomment; DH: DebtHunter; T: Tool;Qi: Quantity of debt items; P: preci-
sion; C:recall; F1: f 1-score; A: accuracy

comment presented an average of only 7% of precision in
the detection ofDefect Debt debt. Yet, eXcomment achieved
only 32% of coverage on average in the identification of
Defect Debt debts. This fact, indicates that despite marking
manyDefect Debt debts, it is not very assertive in identifying
this type of debt. In addition, eXcomment obtained, on aver-
age, a f 1-score of 11% and an accuracy of 97% in relation to
the identification of default debts.
It is worth mentioning that, DebtHunter identified techni-

cal debt only in Arduino. It identified both Defect Debt and
Design Debt. While identifying Defect Debt, DebtHunter
reached precision of 100%. However, as DebtHunter scored
only a single TP and no FPs such precision results is mis-
leading. It only reached 7% of recall and 14% of f 1-score.
Finally, DebtHunter reached 99% accuracy in the identifica-
tion of both Defect Debt and Design Debt. Moreover, results
show it reached 50% of precision, 12% of recall, and 20% of
f 1-score in identifying Design Debt.

Debts in relation to valid comments and lines of code: we
observed that, considering only correct classifications, both
tools identified similar amount of debt items with regard-
ing to the valid comments. On average, eXcomment iden-
tifies 1.16 debt items for every 100 valid comments, while

DebtHunter identifies only 1 item. Moreover, when taking
into account the size in lines of code of the target systems,
we identified, on average, 0.90 items every 10K lines of code,
covering only the types of debts considered for this study.

Analysis of errors: Figure 4 presents a set of Sankey dia-
grams showing a mapping from the wrong classification of
comments to the expected classification according to the or-
acle. We included an interactive version of such diagrams in
the replication package Gomes et al. (2024). While Figures
4a, 4c, 4e, and 4g map the errors of eXcomment, the Figures
4b, 4d, 4f, and 4hmap the errors of DebtHunter. More specif-
ically, while the tools´ classifications are located on the left
side of the Sankey diagram, the oracle classifications are on
the right side. Additionally, these diagrams use arrows of dif-
ferent widths and colors to illustrate where and how the tools
mistakenly classified the systems valid comments according
to the oracle.
We decide to include such analysis because of the amount

of false positives and false negatives, as it can be seen in the
figures. The diagrams allow us to intuitively identify patterns
of errors in the identification of technical debt. In fact, we can
understand from the diagrams that while eXcomment incur in
a significant number of false positives while classifying De-
fect Debt, DebtHunter incur in a significant number of false
positives while classifying Design Debt. Additionally, it can
be seen that DebtHunter incur relativelymore false negatives,
as we noticed due to the lack of true positives in most target
systems. Overall, the errors of the analyzed tools differ sig-
nificantly, which suggest that both approaches need further
research to improve how they to work in an acceptable man-
ner.

In summary, the tools demonstrated some abil-
ity to identifyDefect Debt andDesign Debt, but
with low precision and recall. Moreover, they
had great difficulty in identifying the other
types of debt under evaluation, namely Doc-
umentation Debt, Test Debt and Requirements
Debt.

6 Threats to Validity
In any research study, threats to validity are common. In the
following, we discuss some of the threats of this study, as
well as the steps taken to bypass or minimize their effects.

Conclusion validity: it is concerned with the relationship
between treatment and outcome. Unfortunately, both
the number of target systems and the amount of debt
found manually in each system is not sufficient for a
general conclusion. However, we sought to evaluate
them carefully with impartiality to reach best conclu-
sion relying only on the gathered data and well known
metrics. Additionally, to minimize the fatigue on the
manual inspection of the comments to build our oracle,
we relied on two independent evaluation, as well as third
one to eventually resolve divergence on the manual clas-
sification.
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(a) eXcomment – Lottie (b) DebtHunter – Lottie

(c) eXcomment – RocketMQ (d) DebtHunter – RocketMQ

(e) eXcomment– Trift (f) DebtHunter – Trift

(g) eXcomment – Arduino (h) DebtHunter – Arduino
Figure 4. Sankey diagrams of tool errors against the oracle on each target system.
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Internal validity: it is concerned whether there is a causal
relationship between treatment and outcome. In this
case, we selected open source target system from dif-
ferent domains to avoid and tools we did not developed
to improve our internal validity.

Construct validity: It refers to the extent to which the ex-
periment setting reflects the theory. To address the con-
struction validity we selected systems from different
sizes so it could better represent other software. Ad-
ditionally, one of the researchers working on the ora-
cle construction is undergraduate and he has little ex-
perience on the software development. We minimize
this threat by conducting independent evaluations by re-
searcher of different levels of experience. Another point
of threat is the extension of the literature review of tools.
We selected papers only by scanning and not an full
reading since there is several systematic literature re-
views on the topic. Additionally, we could not access
4 references for the full reading and extraction of possi-
ble information. Such fact may cause our results to be
incomplete or imprecise. However, we tried our best to
get all tools we could find during the review.

External validity: All for target systems small of medium-
sized systems. Thus, there is no guarantee that the re-
sults presented by them can be generalized. Addition-
ally, the observations presented cannot be generalized
to other development contexts, nor to other software do-
mains.

7 Conclusion and Future Work
In this study, we reviewed technical debt tools in the liter-
ature with regard to their the phase they can be used in he
management of the technical debt life-cycle, their availabil-
ity, the programming languages supported and the type of
technical debt they focus. The review yielded a set of tools
available in the literature, from which we selected two of
them to perform an empirical evaluation. The evaluation took
into consideration (i) the intersection of their classifications,
(ii) the distribution of technical debt items identified by both
of them, and (iii) the effectiveness of each of them. Our re-
sults raised evidence of the effectiveness of the eXcomment
and DebtHunter tools in identifying and classifying technical
debt as well as their weaknesses.
As the empirical evaluation in this paper extends a pre-

vious one, we now integrate the findings of both studies.
In the original study (Sections 5.7.1 and 5.7.2), while re-
sults showed that DebtHunter debt classification overlaps the
classification of the eXcomment classification by 7%, they
also showed that the eXcomment classification overlaps the
DebtHunter classification by 19.9%. Additionally, despite
the disagreement between eXcomment and DebtHunter re-
garding the amount of TD items present in each of the tar-
get systems, the tools seem to converge regarding the types
Design Debt, Defect Debt and Requirements Debt. In the ex-
tension study (Section 5.7.3), eXcomment and DebtHunter
mostly identified Defect Debt and Design Debt in the target
systems. On top of that, we found they have low precision
and recall on the identification of these types of debt.

Although both tools use state-of-the-art technologies to ex-
tract and classify the content of the source code comments,
they still could not recognize the different types of debt with
high level of reliability. We believe that use the code com-
ments as the only source of evidence to all types of debtmight
be a problem due to the nature of each type and the amount of
useful information in the comments itself. In fact, our Sankey
diagram analysis found different pattern of errors in each tool.
While eXcomment incur more frequently in false positives,
DebtHunter incur more frequently in false negatives. More-
over, we found that DebtHunter were less effective in iden-
tifying technical debt when compared to eXcomment. Nei-
ther of the tools evaluated managed to identify Requirements
Debt, Test Debt, and Documentation Debt. These facts high-
light the need for improvements in both approaches to in-
crease precision and recall on the the debt items identifica-
tion, as well as different types of debt.
As future work, it is possible to investigate the behavior of

the tools in more target systems of other domains and sizes
to build more sound evidence for our conclusions and raise
evidence for the differences in pattern of error. In addition, it
is possible to evaluate other tools available in the literature
with the same purpose, as well as to carry out the construction
of a more robust oracle, using more systems and classified by
experts in Technical Debt.
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