
Journal of Software Engineering Research and Development, 2024, 12:12, doi: 10.5753/jserd.2024.3651
 This work is licensed under a Creative Commons Attribution 4.0 International License..

Uniqueness of suspiciousness scores: towards boosting
evolutionary fault localization
Willian de Jesus Ferreira [Federal University of Goiás | willianjferreira@gmail.com]
Plinio S. Leitao-Junior [Federal University of Goiás | plinio@inf.ufg.br]
Diogo Machado de Freitas [Federal University of Goiás | diogomfreitas92@gmail.com]
Deuslirio Silva-Junior [Federal University of Goiás | deuslirio.junior@gmail.com]
Rachel Harrison [Oxford Brookes University | rachel.harrison@brookes.ac.uk]

Abstract
Context. Software is subject to the presence of faults, which impacts its quality as well as production and mainte-

nance costs. Evolutionary fault localization uses data from the test activity (test spectra) as a source of information
about defects, and its automation aims to obtain better accuracy and lower software repair cost.Motivation.Our anal-
ysis identified that the test spectra commonly used in research exhibit a high ratio of sample repetition, which impairs
the training and evolution of Genetic Programming (GP) evolved heuristics. Problem.We investigate whether evo-
lutionary training based on the uniqueness of suspiciousness scores can increase the ability to find software faults
(defects), even in repeat-sample scenarios. Specifically, we examine whether the GP-evolved heuristic, which is
based on the distinguishability of program elements in terms of faults, is really competitive. Methodology. The
investigation formalized hypotheses, introduced three training strategies to guide the research and carried out an
experimental evaluation, aiming to reach conclusions regarding the assessment of research questions and hypothe-
ses. Analysis. The results have shown the competitiveness of all the proposed training strategies through evaluation
metrics commonly used in the research field. Conclusion. Statistical analyses confirmed that the uniqueness of
suspiciousness scores guides the generation of superior heuristics for fault localization.

Keywords: Fault Localization, SBSE, Search Based Software Engineering, Software Debugging, Genetic Programming

1 INTRODUCTION

The software debugging process requires costly resources,
such as time and human effort, to find the causes of soft-
ware failures. Fault Localization (FL) (Wong et al., 2016)
is an automated software debugging technique that aims to
guide human developers in identifying the cause of the fail-
ure so that it can be repaired. (Hailpern and Santhanam, 2002)
stated software debugging involves finding and fixing the
faulty code whose execution violates a known specification
and causes software to fail.
The automation of the process of locating faults has been

the subject of several studies in recent years, (Wong et al.,
2016). Many techniques are based on heuristics that use the
information obtained from the execution of tests (i.e. test
spectra) in order to calculate how suspicious each program
element is (i.e. how likely it is to be defective).
A test spectrum is obtained from the execution of a set

of test cases and usually refers to the control flow coverage
with respect to each program element for both negative tests
(test cases that cause the program to fail) and positive tests
(test cases where the program succeeds). Several methods are
based on test spectra, as they are sources of knowledge about
software faults. For example, the tester may keep an eye on
those program elements covered in negative tests.
Search-based fault localization (SBFL) (Leitao-Junior

et al., 2020) is the research field in which fault localization
is perceived as a search problem, such that test spectra are
used to train Genetic Programming (GP) evolved heuristics.
In this context, scientific literature on the understanding of
the use of search-based algorithms improves the capacity to

locate faults, presenting results that would not be obtained by
traditional methods (Leitao-Junior et al., 2020; Wang et al.,
2011; Wong et al., 2016; Yoo, 2012).
Our investigation analyzed test spectra from Defects4J

(Just et al., 2014), a fault localization benchmark composed
of real faulty programs. This benchmark is representative and
commonly used to evaluate search-based fault localization
approaches.
One of our findings is that less than 12% of program ele-

ments from the analyzed test data are distinguishable from
their training samples. This impacts the heuristics’ ability
to differentiate whether program elements are defective or
not. We discovered that the training data limits the effective-
ness of fault localization heuristics in experiments conducted
within the research field. This limitation is mainly due to
the redundancy of sample data, which leads to a consequent
degradation in learning capacity during the evolution of GP-
evolved heuristics using the canonical Genetic Programming
metaheuristic.
The knowledge of the occurrence of repeated samples in

the Genetic Programming training process prompted us to
consider whether an exploration based on how distinguish-
able program elements are in terms of defectiveness can gen-
erate competitive fault localization heuristics.
As a consequence of this analysis, we hypothesize that the

uniqueness of suspiciousness values (i.e. the uniqueness of
scores that rank program elements related to being faulty) is
a factor that potentially guides the generation of heuristics
through Genetic Programming, a search-based evolutionary
metaheuristic proposed by (Koza, 1992), in such a way that
it outperforms canonical GP-evolved heuristics for locating

https://orcid.org/0000-0002-5851-8270
mailto:willianjferreira@gmail.com
https://orcid.org/0000-0002-9082-5393
mailto:plinio@inf.ufg.br
https://orcid.org/0009-0006-9724-4408
mailto:diogomfreitas92@gmail.com
https://orcid.org/0000-0002-2921-3718
mailto:deuslirio.junior@gmail.com
https://orcid.org/0000-0002-0636-7546
mailto:rachel.harrison@brookes.ac.uk

Uniqueness of suspiciousness scores: towards boosting evolutionary fault localization Ferreira et al. 2024

software faults. In terms research questions: (i) Is the unique-
ness of suspiciousness values related to the ability to localize
faults in the context of GP-evolved heuristics? (ii) If so, is
the approach competitive compared to the baselines in the
research field?
To the best of our knowledge, this is the first time that the

uniqueness of suspiciousness values has been explored as an
element to potentially improve software fault localization.
The paper is structured as follows. Section 2 includes back-

ground and related work. Section 3 discusses the motiva-
tion for investigating data from the testing activity, which
is commonly used as the information source in evolutionary
methods of Fault Localization. The proposed method is intro-
duced in Section 4. Section 5 describes the empirical evalua-
tion conducted in order to evaluate the proposal. The results
obtained are discussed in Section 6. Section 7 deals with the
statistical analysis of the results, as well as the answers to
research questions and the appraisal of hypotheses. Threats
to validity are covered in Section 8. At the end, Section 9
addresses final comments.

2 BACKGROUND AND RELATED
WORK

Test spectra are a collection of data that provide a specific
view of the behavior of software during testing activities and
offer information on the number of positive and negative
tests in which program elements are executed. In this context,
four coverage variables are used to characterize a program el-
ement:

• es and ns represent the number of positive test cases
that do execute and not execute the observed element,
respectively;

• ef and nf represent the number of negative test cases
that do execute and not execute the observed element,
respectively.

Spectrum-based Fault Localization (SFL) (Wong et al.,
2016) techniques use such execution frequency of program
elements to calculate how likely they are to be faulty. On this
basis, each program element is assigned four values (related
to es, ns, ef and nf coverage variables) as input to a sus-
piciousness score function (i.e. input to a fault localization
heuristic). Then these scores are used to rank program ele-
ments with respect to being defective.

2.1 Fault localization heuristics based on test
spectra

Fault localization heuristics based on test spectra make up
one of the main research trends in automating the fault lo-
cation process. They are equations (functions) grounded on
studies that explore test spectra, and often called heuristics
developed by humans.
The Tarantula heuristic is the forerunner in this category

and was proposed by (Jones et al., 2009). The heuristic was
built in order to penalize code elements that are executed

more frequently by negative tests in relation to elements that
are less frequently executed by this type of test.
Another heuristic widely referenced in the literature is the

Ochiai coefficient, which was originally used to calculate ge-
netic similarity in molecular biology. Ochiai was introduced
as a fault localization heuristic by (Abreu et al., 2006). (Wong
et al., 2016) present the main heuristics used in studies of the
fault localization research field.

2.2 Evolutionary approaches to fault localiza-
tion

The fault location challenge can be treated as an optimiza-
tion problem, allowing search-based algorithms to be used
to fully or partially automate solutions on fault localization
(Leitao-Junior et al., 2020). Evolutionary approaches deal
with populations of individuals, which evolve over gener-
ations, where each individual is a potential solution to the
problem. Typically an individual represents a formula (i.e. a
heuristic) that aims to calculate the suspiciousness score, that
denotes the potential for a program element to be defective.
Researchers in the field often apply evolutionary ap-

proaches such as Genetic Algorithms (GA) (Wang et al.,
2011), (Campos et al., 2013), (Silva-Junior et al., 2020) or
Genetic Programming (GP) (De-Freitas et al., 2018), Sohn
and Yoo (2017), (Yoo, 2012), to derive heuristics for the pur-
pose of measuring the chances of each program element be-
ing defective. Both GA and GP are called metaheuristics.
Recent research seeks to enhance the effectiveness of evo-

lutionary approaches in terms of their ability to locate faults.
(Choi et al., 2018) formulated a multi-objective approach by
using GP to generate classification heuristics that not only
aim to place the failing program element in a higher posi-
tion in the ranking but also aim to assign scores as low as
possible to the program elements without faults. In addition
to control flow spectra, the competitiveness of GP-evolved
heuristics applied tomutation spectra is shown in (De-Freitas
et al., 2018). In (Silva-Junior et al., 2020) an evolutionary
algorithm to search sets of weights and combine heuristics
from different data sources is proposed (control flow and data
flow, as well as a hybrid strategy).

2.3 Genetic programming in fault localization
Genetic Programming (GP) is the most used metaheuristic
algorithm in the fault localization research field, mainly be-
cause of its ability to generate suspicion formulas applied to
the context (Leitao-Junior et al., 2020).
GP consists of the evolution of computer programs using

analogies with many mechanisms used by the evolution of
species and has evolutionary and mutative phenomena as a
reference.
GP uses data from known inputs (e.g. test spectra) and

outputs to generate GP-evolved heuristics. The first gener-
ation is created (in many cases, randomly), starting the GP
cycle. As in biology, new individuals in each generation in-
herit characteristics from their parents. At each generation,
individuals (i.e. fault localization heuristics) are evaluated
according to a fitness function to determine how well the in-
dividual is adapted. The cycle repeats until the stopping cri-

Uniqueness of suspiciousness scores: towards boosting evolutionary fault localization Ferreira et al. 2024

terion is reached. This criterion can be the maximum number
of generations or the peak of the fitness of the new individu-
als.
New individuals are generated to be part of the evolution-

ary process using parameters such as population size, num-
ber of generations, type of selection, crossing, mutation and
reproduction rate.
In summary, since GP-evolved heuristics are equations,

they are used to infer the probability that a program element
is defective. The GP-evolved heuristics take the test spec-
trum data as input to create the ranking of suspect elements.

3 MOTIVATION
Data from the testing activity - test spectrum - is frequently
used as an information source in fault localization heuristics
in 2 categories: developed by humans and evolved by evolu-
tionary methods. Specifically, by applying a set of test cases,
the values of spectrum variables (i.e. ef, ep, nf, np) are col-
lected from each program element, as described in Section
2.
The test spectrum is an integral part of benchmarks, which

are used in the development and evaluation of fault localiza-
tion approaches. For instance, in (Leitao-Junior et al., 2020)
the benchmarks preferred by studies on search-based meth-
ods are presented, and Defects4J (Just et al., 2014) was
found to be one of the most popular in the search field.
This section focuses on Defects4J , which is a representa-

tive benchmark of real faults and real programs, and presents
an analysis of the test spectrum of that benchmark. The ob-
jective is to identify factors within test spectrum entries that
may potentially degrade the performance of heuristic-based
approaches. By understanding these elements, we aim to ex-
plore and incorporate them into the development of new and
improved heuristics.

3.1 Defects4J

Defects4J was proposed by (Just et al., 2014) as a framework
that offers a database and a project structurewith real faults in
Java projects, in line with the statement by (Lu et al., 2005): a
good benchmark should be able to demonstrate the strengths
and weaknesses of each tool.
The goal of (Just et al., 2014) was to provide data for

replicable studies, with robust and easy integration for soft-
ware testing research. The benchmark consists of a collec-
tion of reproducible bugs and a support infrastructure to
promote advances in software engineering. In its initial re-
lease,Defects4J has 357 real faults for five open-source pro-
grams, namely: JFreeChart, Closure Compiler, Commons
Math, Joda-Time and Commons Lang.
Table 1 introduces some features of each Defects4J pro-

gram in version 1.1.0. The table presents the number of de-
fective versions per program and the average number of ele-
ments.
We adopted the Defects4J repository created and made

available by (Pearson et al., 2017), as data source for the anal-
ysis and to carry out experiments in the present investigation.

Table 1. Defects4J programs
Program Chart Closure Lang Math Mockito Time

Number of versions 26 133 65 106 38 27
Mean of Elements 4168 16714 832 2266 1820 5078

3.2 Test spectrum analysis

This subsection analyzes the test spectrum, highlighting the
uniqueness of its entries. A set of definitions is also intro-
duced, which will be useful in clarifying the paper’s proposal
(Section 4).
Definition I - (program version). Several versions of a

program are produced during the software cycle, as a con-
sequence of its evolution. Let V P be the set of versions of
Program P . And let vi be one of such versions (i.e. vi is a
program version), since vi ∈ V P .
Definition II - (faulty program version). A version of

Program P is said to be a faulty version if it has behavior
other than the specification of P .

Definition III - (program element). In software testing
and debugging research, a program is decomposed into ele-
ments, in order to study properties of each element. Let EP

be the set of elements of ProgramP , and let ej be one of such
elements since ej ∈ EP (i.e. ej is a program element).
Definition IV - (faulty element). In a faulty version of

ProgramP , there are one or more elements inP , called faulty
elements, which are identified as the cause of the program’s
failure.
In the context of fault localization heuristics, a pro-

gram element ej ∈ EP is usually perceived in various
granularities (perspectives), namely: command, control
flow block, class method, data flow association, mutant,
among others. The focus of the analysis will determine the
perspective adopted for the program element. For example,
the contents of Table 1 adopt command as the granularity for
program element, somean of elements denotes average num-
ber of commands among the various versions of the program.

Definition V - (test spectrum entry). A test spectrum entry
is the quadruple [ef, es, nf, ns] that refers to the values of
spectrum variables. TSE(e, v) is a function to compute the
quadruple related to program element e of faulty program
version v (TSE stands for test spectrum entry).
Definition VI - (uniqueness of test spectrum entries).

The uniqueness of test spectrum entries refers to the number
of distinct [ef, es, nf, ns] quadruples related to all program
elements. uTSE(v) is a function to compute the uniqueness
value to program version v (uTSE stands for uniqueness of
test spectrum entries).

A test spectrum entry represents the data collected from
spectrum variables, concerning a particular element of a pro-
gram version, by applying a set of test cases. Thus, the num-
ber of test spectrum entries refers to the number of elements
of the program version being analyzed. uTSE is limited by
the number of test spectrum entries, and usually there are re-
peated entries in the test spectrum, so a uTSE value is typi-
cally lower than TSE. The reasons for this are diverse, such
as: control flow dependence (i.e. two or more elements are
always executed by the same test cases, regardless of the test

Uniqueness of suspiciousness scores: towards boosting evolutionary fault localization Ferreira et al. 2024

cases) and low quality of the test cases (i.e. benchmark test
cases can not distinguish two or more elements when they
have no control flow dependence).
Definition VII - (uniqueness ratio of test spectrum en-

tries - uTSE ratio). The uTSE ratio refers to how unique test
spectrum are entries with respect to the number of program
elements (the ratio ranges from 0.00 to 1.00, and higher val-
ues are better).
In the ideal scenario, the test spectrum consists of unam-

biguously distinct samples representing program elements.
In other words, the best uniqueness ratio of test spectrum en-
tries is 1.00, but that is theoretical due to control flow depen-
dencies as well as non-executable program elements. This
ideal means that each program element should have a unique
test spectrum entry, so program elements are distinguishable
from one another by the test case set.
Figure 1 shows the analysis of Defects4J regarding the

uniqueness of test spectrum entries. Far from the ideal case,
the figure portrays a real scenario of benchmarked programs
(each circle represents a program). The abscissa axis denotes
the number of the program element (i.e. the number of test
spectrum entries), the ordinate axis refers to the uniqueness
ratio of test spectrum entries, and size of each circle is propor-
tional to the absolute number of distinct test spectrum entries
to that program.
Figure 1 also shows the uniqueness ratio is less than 0.12

for all programs, which reveals that in general, most test spec-
trum entries are not able to locate software fault precisely.
Related to circle sizes, Closure has the highest number of
distinct test spectrum entries, but its uniqueness ratio is less
than 0.06, whichmeans less than 6%of elements have unique
entries in the test spectrum. In that sense, Mokito and Time
have better samples related to the others.

3.3 Suspiciousness values analysis
This subsection introduces definitions that support the under-
standing and the development of the proposal presented in
Section 4.
Definition VIII - (suspiciousness value). As seen ear-

lier, the suspiciousness value denotes how suspicious (likely)
a program element is to be defective. It ranges from 0.00
to 1.00, and higher values mean greater suspiciousness.
SV (h, e, v) is a function to compute such a value for the
heuristic h, related to program element e of faulty version
v (SV stands for suspiciousness value).
Definition IX - (uniqueness of suspiciousness values).

The uniqueness of a suspiciousness value refers to the num-
ber of distinct suspiciousness values related to all program
elements. uSV (h, v) is a function to compute such a value
for heuristic h, related to faulty version v (uSV stands for
uniqueness of suspiciousness values).
Table 2 illustrates some of the definitions introduced so

far. In this example, the program has 10 elements (e1, e2, ...,
e10), where e7 is the faulty one. The uniqueness of test spec-
trum entries is six (uTSE = 6), as there are six unique com-
positions of spectrum variables (quadruple [ef, es, nf, ns]).
Distinctively, the uniqueness of suspiciousness values is five
(uSV = 5), as there are five distinct suspiciousness values.
In Table 2, Elements e7 and e8 share the same suspiciousness

value (both are 0.89), despite their test spectrum entries being
different ([2, 10, 0, 77] and [1, 11, 0, 76], respectively). That
means the fault localization heuristic (i.e. the suspiciousness
function) was not able to distinguish e7 and e8 with respect
to the odds of being defective.

Table 2. Examples of test spectrum entries and suspiciousness val-
ues.

Element ef es nf ns Susp
Value

e1 1 0 1 86 1.00
e2 1 0 1 86 1.00
e3 1 2 1 84 0.96
e4 1 10 0 77 0.90
e5 1 10 0 77 0.90
e6 1 10 0 77 0.90
e7 2 10 0 77 0.89
e8 1 11 0 76 0.89
e9 1 11 0 76 0.89
e10 0 4 1 83 0.00

DefinitionX - (uniqueness ratio of suspiciousness values
- uSV ratio). The uSV ratio refers to how unique suspicious-
ness values are with respect to the number of program ele-
ments (the ratio ranges from 0.00 to 1.00, and higher values
are better).
Both uniqueness ratios (Definitions VII and X) represent

proportions (i.e. values in the range [0, 1]) with respect to the
number of program elements:

• uTSE ratio and uSV ratio of a program version are
the values of uTSE and uSV divided by the number
of elements of that version, respectively;

• uTSE and uSV ratios of a program are averages over
its versions.

In order to analyze the uSV ratio, five human-developed
heuristics (see Table 3) were selected as they perform in re-
cent works such as (Pearson et al., 2017) and (Zheng et al.,
2018), and they are reference baselines in the research field
according to (Wong et al., 2016), namely: Tarantula (Jones
et al., 2009), Ochiai (Abreu et al., 2006), Jaccard (Abreu
et al., 2007), Zoltar (Janssen et al., 2009), and Barinel
(Abreu et al., 2009). Furthermore, Genetic Programming-
based heuristics (GP-evolved ones) (Yoo, 2012), (De-Freitas
et al., 2018), (Sohn and Yoo, 2017) were applied as an evo-
lutionary baseline.
Figure 2 presents the uSV ratio of someDefect4j programs:

Chart, Time, and Lang. Note that heuristics compute a partic-
ular value of the uSV ratio for each program (e.g. the figure
shows three different uSV ratios for Zoltar), and the uSV
ratio of a program computed by human-developed heuristics
are similar to each other. Even in the best scenario (i.e. GP-
evolved heuristics applied to the Time program), less than 6%
of the program elements are distinguishable as to whether
they are suspected to be defective.
Figure 3 analyses the uSV ratio against the uTSE ratio for

the Time, Chart and Lang programs, such that each series
(line) refers to a program. That radar chart presents values

Uniqueness of suspiciousness scores: towards boosting evolutionary fault localization Ferreira et al. 2024

Figure 1. uTSE ratio of Defects4J Programs.

Table 3. Human-developed fault localization heuristics.
Heuristic Equation

Tarantula
ef

ef+nf

ef
ef+nf + es

es+ns

Ochiai
ef√

(ef + nf) ×
(
ef + es

)
Jaccard

ef

ef + nf + es

Zoltar
ef

ef + nf + es + 10000×nf×es
ef

Barinel 1 − es

es + ef

of (uSV/uTSE), that shows how much the uSV ratio pre-
serves uTSE ratio (higher values are better).

In Figure 1 the uTSE ratio of the Chart program is 1.69%,
i.e. any fault localization heuristic, which is based on the test
spectrum entries, can obtain at most a distinct suspiciousness
values of 1.69% in relation to the number of program ele-
ments (as a consequence, most program elements have the
same suspiciousness value as other elements). However, ac-
cording to Figure 3, Ochiai reduces the uniqueness ratio by
49%, that is, this heuristic is able to distinguish only 0.83%
of the program elements with respect to being defective (49%
of 1.69% is about 0.83%). In this case, as Chart has 4168 ele-
ments (see Table 1), there are just 35 distinct suspiciousness
values for all program elements (0.83% of 4168 elements is
equal to 35 elements). That scenario potentially reduces the
fault localization effectiveness.

3.4 Hypotheses toward boosting GP-evolved
heuristics

Based on the previous analysis, this subsection introduces
hypotheses aiming to contribute to the effectiveness of evo-
lutionary approaches for fault localization.
(Yoo et al., 2017) presented an empirical and theoretical

study that provides evidence on the competitiveness of GP
against the best heuristics developed by humans. The study
claims that GP has developed a formula with virtually the
best performance, and no human could ever design a formula
that would outperform it.
In line with competitiveness of GP-evolved heuristics

(Yoo et al., 2017), Figure 3 shows that GP preserves the
uniqueness ratio of TSE better than human-developed heuris-
tics, as computed values of (uSV/uTSE) are the highest per
program (81%, 79% and 65% of uTSE for Chart, Time and
Lang programs, respectively).
The analysis above leads us to the following hypotheses:

• HypothesisH1: The closer the uSV ratio is to the uTSE
ratio, the better the fault localization ability. In other
words, higher values of the fraction (uSV/uTSE) im-
prove the efficacy to locate faults.

• HypothesisH0: The value of the uSV ratio does not
impact fault localization.

The following sections present an method aimed at evalu-
ating hypotheses against the Defects4J benchmark, through
a protocol that includes supporting research questions, em-
pirical analysis and null-hypothesis significance testing.

4 METHOD
Our method involves the addition of a new component -
uniqueness suspiciousness value (uSV) - to the learning pro-
cess of the Genetic Programming (GP) metaheuristics. This

Uniqueness of suspiciousness scores: towards boosting evolutionary fault localization Ferreira et al. 2024

Figure 2. uSV ratio of Defects4J programs (Chart, Time and Lang).

Figure 3. (uSV/uT SE) of Defects4J programs (Chart, Time and Lang).

component is leveraged to guide the training of fault local-
ization methods through the promotion of individuals with
higher uSV and, consequently, improvement of GP-evolved
heuristics performance concerning locating faults.
Basically, we use an evolutionary strategy in which in-

dividuals (solutions) with smaller fitness function are priv-
ileged for the genetic operators (crossover, mutation and se-
lection). Figure 4 illustrates the basic flow of the canonical
GP metaheuristic, but with the insertion of uSV variable to
the heuristics evolution.
On incorporating the uSV variable effect to the fitness

function, we use a commonmeasure (e.g. number of program
elements up to first fault location) but divided by (uSV ∗ w)
where w ∈ {1, 3, 5, 7, uSV 2}. After preliminary analysis,
we observed that values 3, 5, and 7 yielded results that were

identified as more promising, prompting us to select them
for set w. Then we have proposed three training approaches
aiming to assess the raised hypotheses (H0 and H1):

• GP/(uSV ∗ 3), the canonical GP fitness function is di-
vided by three times uSV .

• GP/(uSV ∗ 5), the canonical GP fitness function is di-
vided by five times uSV .

• GP/(uSV ∗ 7), the canonical GP fitness function is di-
vided by seven times uSV .

All approaches above promote individuals with higher uSV ,
since any denominator greater than one in the fitness formu-
lae results in better-adapted individuals (i.e. individuals with
lower fitness function are prioritized).

Uniqueness of suspiciousness scores: towards boosting evolutionary fault localization Ferreira et al. 2024

Figure 4. Basic flow of the GP metaheuristic with the new method.

5 EMPIRICAL EVALUATION
We performed an empirical analysis through an experiment
to investigate the following research questions:

• RQ-1: Is the proposed approach competitive for locat-
ing software faults?

• RQ-2: Is the uniqueness of suspiciousness values a fac-
tor that guides the generation of effective evolutionary
approaches for fault localization?

5.1 Experiment design
The following aspects were defined when designing the ex-
periment:
Baseline. The research field has shown that Genetic Pro-

gramming (GP) can generate more effective fault localiza-
tion heuristics than those proposed by humans (De-Freitas
et al., 2018), (Sohn and Yoo, 2017), (Yoo, 2012), (Yoo et al.,
2017). So we chose GP-evolved heuristics as the baseline ap-
proach.
Benchmark. We use the Dejects4J benchmark as it rep-

resents real faults in real programs, and it has been explored
in the research field, as justified in Subsection 3.1. We’ve
selected Chart, Time and Lang programs, in line with the in-
vestigation in Subsection 3.3.
Environment. All experiments were performed on De-

bian GNU Linux version 10. We use DEAP 1 (Distributed
Evolutionary Algorithms in Python) framework version
1.3.1 to implement the GP. The algorithms were run using
Python 2 version 3.7.3.
GP parameters. We conduct experiments to explore the

appropriate GP parameters regarding the trade-off between
the effectiveness of fault localization and the cost of the train-
ing process until we reach the following. The population size
is 100 individuals, and it was started randomly; Individuals

1http://deap.readthedocs.io
2http://python.org

have a tree with a minimum height of 4 and a maximum of 8;
GP is configured with a size 3 tournament selection operator;
a crossover operator with a rate of 0.8; a subtree replacement
mutation operator with a rate of 0.07 and a point mutation
operator with a rate of 0.03. The stopping criterion is set at
50 generations.

Tie-break of suspiciousness values.We have applied the
worst-case strategy for the tie-break: if two or more pro-
gram elements have the same suspiciousness score, then all
of them are in the worst tied position. For example, if an ele-
ment is ranked fifth, but its suspiciousness score ties with two
other elements, then all three elements are ranked seventh.

Cross Validation and Repeated Runs. To deal with over-
fitting, we run the experiments by applying 10-fold cross-
validation. To reduce the stochastic effect, the experiment
was repeated 10 times.

5.2 Evaluation metrics

To assess the effectiveness of the proposed approach, we
compared their results against those produced by the baseline
(the GP metaheuristic). To this end, we use two evaluation
metrics that are widely used in fault localization, according
to the meaning described below. The lower the value com-
puted by both metrics, the better the performance in locating
faults.

Wasted Effort (wef@n): This denotes the number of ele-
ments investigated until locating a fault, but considering only
n first positions of the suspiciousness ranking.

Exam: This represents the proportion of investigated el-
ements, in relation to the number of program elements, un-
til finding a fault (i.e. the program size impacts the metric
value).

Uniqueness of suspiciousness scores: towards boosting evolutionary fault localization Ferreira et al. 2024

Figure 5. Approaches evaluation: (uSV/uT SE) of Defects4J programs (Chart, Time and Lang).

6 RESULTS
Figure 5 extends Figure 3 by including the proposed ap-
proach: GP/(uSV ∗ 3), GP/(uSV ∗ 5) and GP/(uSV ∗
7) training approaches. As expected, all such GP-evolved
heuristics improved the value of (uSV/uTSE) as they in-
cluded uSV maximization to guide the training process. So
the proposed approach raises the value of (uSV/uTSE) to
close to 1.0, and beats the baseline approach (the GP meta-
heuristic).
The values computed by the Exam metric to the consol-

idated perspective of Chart, Time and Lang programs are
shown in Figure 6. The abscissa axis lists the heuristics in de-
scending order of performance. All three training approaches
yield better results than the baseline approach. The values in
the chart represent the average with respect to all programs’
versions. For instance, in GP/(uSV ∗ 3) about 3.6% of pro-
gram elements are inspected until a fault is located, against
4.2% of the baseline approach.
In Figure 7 we present wef@n (wasted of effort) of Time

program, but considering n ∈ {5, 10} (we omit other pro-
grams because of space concerns). The proposed approach
again achieves better results related to the other approaches.
For example, when inspecting five and ten elements of Time
program versions, GP/(uSV ∗ 7) wasted on average 3.77
and 6.73 elements until locating a fault, respectively (against
3.92 and 6.93 of the baseline approach).

7 STATISTICAL ANALYSIS
Although the results presented in the charts (Figures 5 to 7)
seem promising, they need further analysis to increase confi-
dence in the results obtained.
In order to deal with the stochastic effect that is inherent

in the evolutionary approaches as well as to raise the find-

ings reliability, two statistical tests were applied: Wilcoxon
pair comparison test and Vargha & Delaney Â12 test, as rec-
ommended by (Arcuri and Briand, 2014). We applied both
tests to the results from the evaluation metrics used in the
experiment: Exam andWasted effort (wef@n).
The Wilcoxon test is used to determine whether there is

a statistically significant difference between the results pro-
duced by the different methods (p-value less than 0.05). The
test has exposed that the three training approaches present re-
sults of both evaluation metrics with equivalent significance
to the baseline (GP metaheuristic). This finding reveals the
competitiveness of the approach.

Table 4. Statistical Analysis - Exam - Varga e Delaney Â12

Program Approach Tarantula Ochiai Jaccard GP
GP/(uSV*3) 0.47 0.51 0.50 0.48

Chart GP/(uSV*5) 0.60 ⇑ 0.62 ⇑ 0.62 ⇑ 0.61 ⇑
GP/(uSV*7) 0.57 ⇑ 0.60 ⇑ 0.60 ⇑ 0.59 ⇑
GP/(uSV*3) 0.49 0.50 0.49 0.51

Lang GP/(uSV*5) 0.48 0.49 0.48 0.50
GP/(uSV*7) 0.49 0.50 0.50 0.52
GP/(uSV*3) 0.52 0.52 0.52 0.55

Time GP/(uSV*5) 0.51 0.51 0.51 0.54
GP/(uSV*7) 0.50 0.51 0.51 0.53

Table 4 presents the outcomes of Vargha & Delaney Â12
test for the Exam metric, with respect to each Defects4J
program. The symbol ⇑ indicates the cases where the ap-
proach is statistically superior to the baseline (the GP meta-
heuristic) and some human-developed heuristics (Tarantula,
Ochiai and Jaccard). The table contents highlight the com-
petitiveness of the proposed approach, and show its superior-
ity for the GP/(uSV ∗ 5) and GP/(uSV ∗ 7) with respect
to all evaluation metrics, when applied to Chart program.
Table 5 displays results for Wasted effort (wef@n). The

study considered scenarios where the faulty element is close

Uniqueness of suspiciousness scores: towards boosting evolutionary fault localization Ferreira et al. 2024

Figure 6. Approaches evaluation: Exam measure of Defects4J programs (Chart, Time and Lang - consolidated results).

Figure 7. Approaches evaluation: wef@n measure of the Time program (n ∈ {5, 10}).

Table 5. Statistical Analysis - wef@n - Varga e Delaney Â12

Program wef@n GP/(uSV*3) GP/(uSV*5) GP/(uSV*7)
n = 5 0.50 0.50 0.48

Chart n = 10 0.50 0.50 0.50
n = 15 0.51 0.54 0.50
n = 5 0.50 0.49 0.54

Lang n = 10 0.53 0.50 0.55
n = 15 0.53 0.50 0.54
n = 5 0.55 0.54 0.54

Time n = 10 0.59 ⇑ 0.60 ⇑ 0.57 ⇑
n = 15 0.58 ⇑ 0.58 ⇑ 0.57 ⇑

to the top in the suspiciousness ranking, namely n ∈
{5, 10, 15}. In all programs, the fault localization ability of
the approach was statistically similar to the baseline. How-
ever, all training approaches have outperformed the baseline
in most scenarios of the Time program.
Therefore, considering the discussion presented so far, we

can answer the research questions:

• RQ1: Is the proposed approach competitive for locating
software faults?
Figures 6 and 7 show better effectiveness of the pro-
posed approach in relation to baseline and human-
developed approaches. Competitiveness was confirmed
through statistical tests in all scenarios and superiority
in several of them.
Thus the proposed approach is competitive, per-

forming similar or better than the baseline.
• RQ2: Is the uniqueness of suspiciousness values a fac-
tor that guides the generation of effective evolutionary
approaches for fault localization?
The three training approaches consistently (i.e. in all
scenarios) guided competitive (i.e. similar or better)
heuristics relative to the baseline, concerning fault lo-
cating.
Thus the uniqueness of suspiciousness values is ef-
fective for the guidance of fault localization ap-
proaches.

On the hypotheses raised in Subsection 3.4: The analysis
of Figure 5 refutes Hypothesis H0, as we found a correlation
between high values of uSV and the improvement of the abil-
ity to locate faults; Also, HypothesisH1 is then preliminarily
confirmed through systematic empirical analysis and statisti-
cal tests. So the closer the uSV ratio is to the uTSE ratio,
the better for locating faults.

8 THREATS TO VALIDITY

We have adopted strategies to mitigate threats to the valid-
ity of the experimental evaluation and its findings. They are
listed below and categorized based on (Barros andDias-Neto,
2011).

Uniqueness of suspiciousness scores: towards boosting evolutionary fault localization Ferreira et al. 2024

Internal threats. To be reproducible, all experiment pa-
rameters were explicitly addressed. The open-source DEAP
framework was used to implement the GP algorithm and
its infrastructure. We use real programs with real faults as
Software Engineering is a practical and world-connected sci-
ence. Construct threats. Metrics commonly used in the re-
search field were applied in order to foster the validity of
the approaches’ effectiveness measures. We adopted worst-
case strategies to resolve ties of suspiciousness scores be-
tween program elements. External threats. To promote con-
fidence and quality of findings, the training instances were
carefully selected and studied (Section 3), but the experiment
was conducted in real Java software (Defects4j), so new in-
stances in other languages can promote greater generaliza-
tion.Conclusion threats. Experiments were run at least 10
times for each instance (program version) in order to deal
with stochastic variation and 10-fold cross-validation strat-
egy for generating robust evolutionary GP-evolved heuris-
tics. The analysis used the average of the observed results
regarding the many execution cycles and program versions.
Evaluations considered a robust benchmark (the canonical
GP) as the baseline and several human-made heuristics. Hy-
pothesis and statistical tests were used to show significance
to the results.

9 FINAL REMARKS
The present study was based on the analysis of test spec-
tra of Defects4J benchmark, which are commonly used as
a source of information on existing software faults. For in-
stance, we found out that less than 12% of the test spectra
entries have unique values regarding distinguishing program
elements. The analysis identified a high sample repetition in
the training of fault location GP-evolved heuristics, poten-
tially impacting their ability to locate faults.
Although the repetition of samples in the test spectra is dis-

advantageous concerning the training process, regarding the
evolutionary generation of fault localization heuristics, this
motivated us to use the uniqueness of suspiciousness value
(scores) as a factor that can boost the fault-finding ability of
these heuristics. In other words, we hypothesize that high val-
ues of the uniqueness of this score can generate more effec-
tive fault localization GP-evolved heuristic.
In this sense, hypotheses were formalized, research ques-

tions were stated, a proposal was defined and empirically
evaluated, evidence was assessed as to its statistical signif-
icance, and threats to validity were addressed. The proposal
includes three GP training approaches, all of which seek to
promote heuristics that have higher uniqueness of suspicious-
ness scores.
On the empirical assessment, a state-of-the-art baseline

(canonical Genetic Programming metaheuristic) and evalu-
ation metrics widely used in the research field (Exam and
Wasted Effort) were employed in order to reduce findings’
threats of validity. The results showed the competitiveness
of the training strategies and statistically confirmed that the
uniqueness of suspiciousness scores guides superior heuris-
tics for fault localization.
In future work, further experiments are pertinent, includ-

ing the use of other benchmarks from the research field
(Hirsch and Hofer, 2022) and the incorporation of additional
data sources (e.g., data flow and mutation spectra). Expand-
ing the dataset will not only validate the robustness of our
findings but also uncover any potential limitations. More-
over, leveraging additional data sources could enhance the
precision and reliability of suspiciousness scores, leading to
more effective fault localization strategies.
Beyond the inclusion of diverse benchmarks and data

sources, there is also potential for developing new algorithms
that optimize the computation of suspiciousness scores.

References
Abreu, R., Zoeteweij, P., and c. Van Gemund, A. J. (2006).
An evaluation of similarity coefficients for software fault
localization. In 2006 12th Pacific Rim International Sym-
posium on Dependable Computing (PRDC’06), pages 39–
46.

Abreu, R., Zoeteweij, P., and Gemund, A. J. C. v. (2009).
Spectrum-based multiple fault localization. In Proceed-
ings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering, ASE ’09, pages 88–99,
Washington, DC, USA. IEEE Computer Society.

Abreu, R., Zoeteweij, P., and van Gemund, A. J. C. (2007).
On the accuracy of spectrum-based fault localization.
In Testing: Academic and Industrial Conference Prac-
tice and Research Techniques - MUTATION (TAICPART-
MUTATION 2007), pages 89–98.

Arcuri, A. and Briand, L. (2014). A hitchhiker’s guide to sta-
tistical tests for assessing randomized algorithms in soft-
ware engineering. Softw. Test. Verif. Reliab., 24(3):219–
250.

Barros, M. d. O. and Dias-Neto, A. C. (2011). 0006/2011
- threats to validity in search-based software engineering
empirical studies. RelaTe-DIA, 5(1).

Campos, J., Abreu, R., Fraser, G., and d’Amorim, M. (2013).
Entropy-based test generation for improved fault localiza-
tion. In 2013 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 257–
267.

Choi, K., Sohn, J., and Yoo, S. (2018). Learning fault
localisation for both humans and machines using multi-
objective gp. In Colanzi, T. E. and McMinn, P., edi-
tors, Search-Based Software Engineering, pages 349–355,
Cham. Springer International Publishing.

De-Freitas, D. M., Leitao-Junior, P. S., Camilo-Junior, C. G.,
and Harrison, R. (2018). Mutation-Based Evolutionary
Fault Localisation. In 2018 IEEE Congress on Evolution-
ary Computation (CEC), pages 1–8.

Hailpern, B. and Santhanam, P. (2002). Software debugging,
testing, and verification. IBM Systems Journal, 41(1):4–
12.

Hirsch, T. and Hofer, B. (2022). A systematic literature re-
view on benchmarks for evaluating debugging approaches.
Journal of Systems and Software, 192. Cited by: 0; All
Open Access, Hybrid Gold Open Access.

Janssen, T., Abreu, R., and van Gemund, A. J. (2009). Zoltar:

Uniqueness of suspiciousness scores: towards boosting evolutionary fault localization Ferreira et al. 2024

A spectrum-based fault localization tool. In Proceedings
of the 2009 ESEC/FSE Workshop on Software Integra-
tion and Evolution@ Runtime, SINTER ’09, pages 23–30,
New York, NY, USA. ACM.

Jones, J. A., Harrold, M. J., and Stasko, J. T. (2009). Visual-
ization for Fault Localization. In in Proceedings of ICSE
2001 Workshop on Software Visualization, pages 71–75.

Just, R., Jalali, D., and Ernst, M. D. (2014). Defects4j: A
database of existing faults to enable controlled testing stud-
ies for java programs. In Proceedings of the 2014 Interna-
tional Symposium on Software Testing and Analysis, IS-
STA 2014, page 437–440, New York, NY, USA. Associa-
tion for Computing Machinery.

Koza, J. R. (1992). Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. MIT
Press, Cambridge, MA, USA.

Leitao-Junior, P. S., Freitas, D. M., Vergilio, S. R., Camilo-
Junior, C. G., and Harrison, R. (2020). Search-based fault
localisation: A systematic mapping study. Information
and Software Technology, 123:106295.

Lu, S., Li, Z., Qin, F., Tan, L., Zhou, P., and Zhou, Y. (2005).
Bugbench: Benchmarks for evaluating bug detection tools.
In In Workshop on the Evaluation of Software Defect De-
tection Tools.

Pearson, S., Campos, J., Just, R., Fraser, G., Abreu, R., Ernst,
M. D., Pang, D., and Keller, B. (2017). Evaluating and
improving fault localization. In 2017 IEEE/ACM 39th In-
ternational Conference on Software Engineering (ICSE),
pages 609–620.

Silva-Junior, D., Leitao-Junior, P., Dantas, A., Camilo-Junior,
C., andHarrison, R. (2020). Data-flow-based evolutionary
fault localization. In Proceedings of the ACM Symposium
on Applied Computing, pages 1963–1970.

Sohn, J. and Yoo, S. (2017). FLUCCS: Using Code and
Change Metrics to Improve Fault Localization. In Pro-
ceedings of the 26th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, ISSTA 2017, pages
273–283, New York, NY, USA. Association for Comput-
ing Machinery. event-place: Santa Barbara, CA, USA.

Wang, S., Lo, D., Jiang, L., Lucia, and Lau, H. (2011).
Search-based fault localization. In 2011 26th IEEE/ACM
International Conference on Automated Software Engi-
neering, ASE 2011, Proceedings, pages 556–559.

Wong, W., Gao, R., Li, Y., Abreu, R., and Wotawa, F. (2016).
A survey on software fault localization. IEEE Transac-
tions on Software Engineering, 42(8):707–740.

Yoo, S. (2012). Evolving human competitive spectra-based
fault localisation techniques. In Fraser, G. and Teixeira de
Souza, J., editors, Search Based Software Engineering,
pages 244–258, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Yoo, S., Xie, X., Kuo, F.-C., Chen, T. Y., and Harman, M.
(2017). Human competitiveness of genetic programming
in spectrum-based fault localisation: Theoretical and em-
pirical analysis. ACM Trans. Softw. Eng. Methodol., 26(1).

Zheng, Y., Wang, Z., Fan, X., Chen, X., and Yang, Z. (2018).
Localizing multiple software faults based on evolution al-
gorithm. Journal of Systems and Software, 139:107 – 123.

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Fault localization heuristics based on test spectra
	Evolutionary approaches to fault localization
	Genetic programming in fault localization

	MOTIVATION
	Defects4J
	Test spectrum analysis
	Suspiciousness values analysis
	Hypotheses toward boosting GP-evolved heuristics

	METHOD
	EMPIRICAL EVALUATION
	Experiment design
	Evaluation metrics

	RESULTS
	STATISTICAL ANALYSIS
	THREATS TO VALIDITY
	FINAL REMARKS

