

Journal of Software Engineering Research and Development, 2024, 12:16, doi: 10.5753/jserd.2024.3745

 This work is licensed under a Creative Commons Attribution 4.0 International License.

From Textual to Formal Requirements: A Case Study

Using Spectra in Safety-Critical Systems Domain

Luiz Eduardo Galvão Martins [Universidade Federal de São Paulo | legmartins@unifesp.br]

Abstract

The requirements specification of any system is crucial for the correct development of the systems and soft-
ware. It becomes even more relevant in the development of safety-critical systems (SCS). This paper aims to
investigate the process of transforming requirements specification written in natural language (textual require-

ments) to requirements specification written in Spectra language (formal requirements). Spectra is a formal lan-

guage built to specify reactive systems. The case study carried out in this research focuses on the requirements
specification of a low-cost insulin infusion pump. The requirements were initially specified in natural language
and later transformed into Spectra language. During the transformation process, we investigated the poten tial use

of the Spectra language in the phase of requirements specification, identifying the difficulties in the transformation

process and its advantages, taking into account the software engineer's point of view.

Keywords: Textual Requirements, Formal Requirements, Spectra specification, Spectra Language

1 Introduction

Safety-Critical Systems (SCS) are increasingly present in the

daily lives of modern societies, which are becoming heavily

dependent on these systems. SCS are Man-made systems,

which are based on computational technology, in which

eventual defects or failures may cause accidents that put hu-

man life at risk or cause damage to the environment or prop-

erty (Hatcliff et al. 2014)(Leveson 2011)(Heimdahl 2007).

SCS are present in aviation systems, automotive systems,

control of industrial plants (chemical, oil, nuclear), medical

devices, railroad control, defense, and aerospace systems,

among others (Leveson 2011)(Nair et al. 2015).

The requirements specification of any system is crucial

for its correct development, and it becomes even more rele-

vant for the development of SCS (Sommerville 2015)(Miller

et al. 2006). Requirements Engineering is the discipline that

focuses on the development of techniques, methods, pro-

cesses, and tools that assist in the design of software and sys-

tems, covering the activities of elicitation, analysis, modeling

and specification, verification and validation, and manage-

ment of requirements (Sommerville 2015). The complete

specification of software requirements establishes the basis

for its architectural design and offers a description of the

functional and quality aspects that should guide the imple-

mentation and software evolution.

The adoption of formal methods for specifying the re-

quirements for SCS has been advocated by many researchers

in recent decades (Miller et al. 2006)(Martins and Gorschek

2016). One of the main acclaimed benefits is that the speci-

fied requirements would become complete, consistent, and

unambiguous, thanks to the rigor of formal methods. How-

ever, formal methods are still little used by SCS developers,

the reports of using such methods in literature usually apply

to illustrative exercises or pilot projects, not becoming an ex-

tensive practice within the SCS industry (Martins and Gor-

schek 2017). The reasons usually indicated for non-adher-

ence to formal methods are (Bozzano and Villafiorita

2006)(Hu et al. 2007): formal methods are difficult to use,

requiring prior knowledge of the specific mathematical lan-

guage; few people have the knowledge to properly under-

stand and use formal methods; formal languages are not suit-

able for raising requirements with system stakeholders, as

they are complex and have a long learning curve. The re-

quirements specification documents produced by profession-

als who develop critical systems and software worldwide are

still essentially based on natural language (textual require-

ments) (Martins and Gorschek 2016)(Martins and Gorschek

2017). On the one hand, this practice facilitates communica-

tion between stakeholders, on the other hand, it makes re-

quirements specifications subject to inconsistencies and am-

biguities (Liu et al. 1995)(Chen 2009)(Miller et al. 2006) .

A possibility to increase the interest of SCS developers in

adopting formal methods for specifying their systems and

software would require using a process capable of helping

practitioners transform the requirements specified in natural

language into requirements specified in formal language. The

study presented in this paper aims to investigate the develop-

ment of such a process in order to easily, quickly, and safely

transform SCS requirements written in natural language to

specifications written in Spectra language. Spectra is a for-

mal specification language for reactive systems, a category

in which SCS normally falls. Spectra supports temporal con-

structs and others that allow system engineers and software

engineers to make concepts such as monitoring and counting

explicit in their specifications (Maoz and Ringert 2021a). We

chose Spectra as the formal language for this study, moti-

vated by the novelty of this language and its potential to in-

crease the productivity of software engineers throughout the

software development lifecycle.

In addition to the formal language, Spectra proponents

provide a tool environment for synthesizing Spectra specifi-

cations for Java code, enabling software development to be

truly driven by specifications. Along with this paper, we pre-

sent and discuss the results obtained from a case study per-

formed in a SCS domain, particularly in the domain of med-

ical devices. The case study focused on the requirements

specification of a low-cost insulin infusion pump under

https://orcid.org/0000-0002-7266-5840

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

development with a Brazilian company. The requirements

were initially specified in natural language and later trans-

formed into Spectra language. We tried to answer the follow-

ing research questions throughout the case study: What steps

are necessary to convert textual requirements specification

into Spectra specification? What is the learning curve of

Spectra? What are the benefits and difficulties in the trans-

formation process? Does Spectra language properly capture

the semantics of the textual requirements?

The remainder of this paper is organized as follows: In

Section 2, we present background and related work; in Sec-

tion 3, we present the methodology adopted to conduct the

study; in Section 4, we present the case study carried out; in

Section 5 we discuss the results obtained from the case study,

and in Section 6 we present the conclusion and final remarks.

2 Background and Related Work

2.1 Definitions

In order to set the scope and make clear the adopted terms

used in this research, and to ensure consistency throughout

this paper, we present the following definitions, organized in

alphabetical order:

Formal Language. A language used by software engi-

neers to specify constraints and operations of the system ac-
curately and unambiguously. A formal language is based on
mathematical constructs.

Formal requirements. A set of system or software re-
quirements specified using a formal language.

Natural Language. It is an informal language used by

software engineers to write software requirements docu-
ments.

Spectra language. A formal specification language for
reactive systems, the category that critical systems typically
fall into.

Spectra specification. A software specification pro-

duced using Spectra language.
Textual requirements. A set of system or software re-

quirements specified using a natural language.

2.2 Spectra

The Spectra language is a formally verified software/system

specification language developed for modelling reactive sys-

tems (Maoz and Ringert 2019)(Maoz and Ringert 2021a).

Reactive systems are systems that continuously interact with

their environment and respond to external events in real

time, such as air traffic control systems, industrial automa-

tion, and software embedded in vehicles. Important features

of the Spectra language are the following: (i) Formal Speci-

fication: It allows to specify system and software in a formal

and precise manner, facilitating the automatic verification of

desired properties; (ii) Model Checking: Using Spectra, we

can check whether a system model meets specified require-

ments, this is done through formal verification techniques,

such as model checking, to ensure that the system satisfies

all specified properties; (iii) Automation: The language was

designed to be compatible with automation tools, allowing

the automatic generation of tests and the synthesis of con-

trollers that guarantee compliance with requirements; and

(iv) Support for Reactive Systems: It was specifically de-

signed to deal with the complexity of reactive systems, of-

fering constructs that facilitate the modelling of dynamic be-

haviours and continuous interaction with the environment.

Spectra supports temporal constructs, as well as other

constructs that allow systems engineers and software engi-

neers to make concepts like tracking and counting explicit in

their specifications (Maoz and Ringert 2019) (Maoz and

Ringert 2021a) (Maoz and Ringert 2021b). The following is

a list of the main features available in the Spectra language:

Module declaration. Every Spectra specification docu-

ment is treated as a module. Each module is defined as a sep-

arate file.

Variable declarations. The variables defined in the

specifications can be classified in two ways: as environment

variables or as variables controlled by the system. Both can

be Boolean, Int, or Enumeration types.

Assumptions and guarantees. The behavior of the en-

vironment, observable by the variables controlled by the en-

vironment, is described through assumptions. The required

behavior of the system is described by means of guarantees.

PastLTL operators. PastLTL operators evaluate formu-

las over past interactions between the system and the envi-

ronment. The available operators are PREV, ONCE, HIS-

TORICALLY, SINCE, TRIGGERED.

Predicate definitions. Predicates allow encapsulation

and reuse of parameterized Boolean expressions.

Monitor definitions. Monitors are used to track events

over time.

Counter definitions. The following operations can be

applied to counters: inc, dec, reset, overflow, underflow.

Pattern definitions. Standard definitions can be used to

reuse specification units.

Weight definitions. The language allows the definition

of integer weights on states and transitions of a specification.

The specifications produced with the Spectra language

can be analyzed by a set of software tools (Spectra Tools),

which include the synthesis of controllers that satisfy the

produced specifications, since these specifications are real-

izable (Bozzano and Villafiorita 2006)(Ma'ayan 2022)

(Ma'ayan and Maoz 2023). Spectra Tools will automatically

attempt to find and produce an implementation that satisfies

the GR(1) specification (Bloem 2012)(Amram et al. 2022)(

Gorenstein et al. 2024). A GR(1) specification consists of

assumptions, which must be satisfied by the environment,

and guarantees, which must be satisfied by the system, i.e.,

by the synthesized implementation. For more details see

https://smlab.cs.tau.ac.il/syntech/spectra/ .

2.2 Related Work

Sayar and Souquières (2019) proposed development patterns

to formalize requirements describing constraints and se-

quences. The formal method used by them is the Event-B

method. However, they believe that any formal method can

be used with the development patterns proposed by them.

Throughout the paper, they present and discuss two patterns:

https://smlab.cs.tau.ac.il/syntech/spectra/

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

(1) a conditional pattern Dev-if that describes a constraint on

the system functionality; and (2) a sequential pattern Dev-

seq that “helps the developer to automatically introduce the

order between existing operations of a given system” [18].

They show two examples of how to apply the proposed pat-

terns in a hemodialysis case study.

Cabral and Sampaio (2008) propose a strategy that auto-

matically translates use cases written in a controlled natural

language (CNL) into the specification in CSP process alge-

bra. The system requirements are organized as use cases

written in CNL using imperative and declarative sentences.

Imperative sentences allow writing the actions performed by

the system actors, while declarative sentences describe char-

acteristics, constraints, and states of the system. The gram-

matical rules adopted to write use cases are defined based on

the knowledge bases that map verbs to CSP channels and

verb complements to values of CSP datatypes.

Jin et al. (2010) propose a concern-based approach to

generating formal requirements specification from textual

requirements document, which applies “separation of con-

cerns during requirements analysis and utilizes concerns and

their relationships to bridge the gap between textual require-

ments statements and formal requirements documentation”.

The formal specification generated is mainly represented by

tabular expressions. Throughout the paper, a light control

system is used to show the application of the approach.

Walter et al. (2017) propose a solution to detect redun-

dant specifications and test statements described in struc-

tured natural language. They present and discuss formaliza-

tion process for requirements specification and test state-

ments, allowing them to detect redundant statements and re-

duce the efforts for specification and validation. The formal-

ization process is based on the Specification Pattern Systems

and Linear Temporal Logic. They evaluated the process in

the context of Mercedes-Benz Passenger Car Development.

Ma'ayan and Maoz (2023) conducted an exploratory case

study in which they followed students in a semester-long

university workshop class on their end-to-end use of a reac-

tive synthesizer, from writing the specifications to executing

the synthesized controllers. Along this case study they col-

lected more than 500 versions of more than 80 specifica-

tions, as well as more than 2500 Slack messages written by

the class participants. Based on the collected data they pro-

pose guidelines in the directions of language and specifica-

tion quality, tools for analysis and execution, process and

methodology, all towards making reactive synthesis more

applicable for software engineers.

Gorenstein, Maoz, and Ringert (2024) present two con-

tributions to deal with Non-Well-Separation (NWS). In the

first contribution they show how to synthesize systems that

avoid taking advantage of NWS, i.e., do not prevent the sat-

isfaction of any environmental assumption, even if possible.

In the second contribution the authors propose a set of heu-

ristics for the fast detection of NWS. They carried out eval-

uations over benchmarks from the literature showing the ef-

fectiveness and significance of their contributions.

3 Methodology

In order to investigate the transformation of textual to formal

requirements, we chose to apply a qualitative research ap-

proach adopting a case study (Wohlin et al. 2012)(Robson

2002) as the strategy to reach the research goals. This study

aims to obtain an in-depth understanding of the difficulties

and benefits of using the Spectra language to specify the

software requirements of a SCS. Table 1 shows the research

questions that drove our investigation.

Table 1. Research Questions.

3.1 Study Design

This investigation was divided into three parts: planning, ex-

ecution, and analysis.

Planning. As part of the planning of the study, we de-

cided to adopt a case study as a research approach. The case

study was conducted in a medical device domain. Two peo-

ple participated in the case study. The profiles of the partic-

ipants are presented as follows:

• Participant P1:
o Background in software engineering with more

than 20 years of experience in requirements spec-
ification and software development.

o High knowledge about the requirements of the

chosen system (insulin infusion pump). Five years
of experience in insulin infusion pump software
development.

o No previous skills in Spectra language.

• Participant P2:

o Background in computer science and software en-
gineering with more than 15 years of experience
in formal methods.

o No previous knowledge about the requirements of
the chosen system (insulin infusion pump).

o More than eight years of experience with Spectra
language.

Research Questions Aims

RQ1: What steps are neces-

sary to convert textual re-

quirements specification to

Spectra specification?

To understand the main learn-

ing elements, concepts, and

tasks to be executed to convert

a textual requirements specifi-

cation to a Spectra specifica-

tion.

RQ1.1: How long does it

take?

To measure the learning curve

of Spectra and compare the

time necessary to produce a

Spectra specification in relation

to the textual specification.

RQ2: What are the benefits

and difficulties?

To identify the main benefits

and difficulties in adopting

Spectra language to write for-

mal requirements specifica-

tions.

RQ3: Are the semantics of

the textual requirements

well captured by Spectra?

To analyze the power of Spec-

tra in capturing the semantics

of textual requirements.

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

The variables managed and observed along the case
study were the following:

• System requirements knowledge (independent);

• Spectra skill (independent);

• Effort to write the textual requirements (dependent);

• Effort to write the Spectra specification (dependent);

• Captured semantics (dependent).

Execution. The execution of the case study was divided

into four steps: (i) To write the textual requirements of the

chosen system; (ii) To get a background of Spectra language;

(iii) To transform the textual requirements into a Spectra

specification, and (iv) To validate the Spectra specification.

The details of the execution of the case study are presented

in Figure 1.

Analysis. A quantitative and qualitative analysis of the

results was performed. A quantitative analysis was per-

formed considering the time spent writing the textual re-

quirements, learning the basics of Spectra, and writing Spec-

tra specifications. A qualitative analysis was performed fo-

cusing on the difficulties of using Spectra and the benefits of

using it as a tool for a formal requirements specification.

3.2 Threats to Validity

The main threat to the validity of this study is related to the

biases of the case study participants. The results obtained are

obviously dependent on the experience and capabilities of

the two participants who carried out the case study. How-

ever, since we do not intend to generalize the results to other

cases, we believe that the results are helpful for an analysis

of the use of Spectra language in the formal requirements

specification in safety-critical systems context. Moreover,

the extensive experience of the case study participants, both

in software requirements specification and in software spec-

ification with the Spectra language, are factors that

strengthen the obtained results.

4 Case Study

In this section, we describe the case study performed.

4.1 Context

The case study was carried out in a safety-critical system do-

main related to developing a medical device. The chosen

system was developing a low-cost insulin infusion pump

(LCIIP), which is under development in a Brazilian company

in cooperation with participant P1. The first step of the case

study was to write the requirements of the LCIIP in a format

of textual requirements. The textual requirements were writ-

ten by P1 and reviewed by P2. The second step was to get

started with Spectra Language by P1, which had no previous

contact. The third step was to transform the textual require-

ments specification into Spectra specification. This step was

performed in cooperation between P1 and P2. The fourth

step was the validation of the Spectra specification, which

was performed for both participants. Steps 3 and 4 were per-

formed in an iterative loop. The flow of the steps is shown

in Figure 1. The entire case study was carried out in three

months, with full time participation of P1 and part time par-

ticipation of P2.

Figure 1. The steps of the execution of the case study.

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

4.2 Textual Requirements of the LCIIP

The textual requirements specification is organized into two

parts: a glossary of terms used in the specification and the

functional requirements of the LCIIP. The functional re-

quirements are identified by numbers. For each requirement,

the time spent (in minutes) was recorded during the specifi-

cation.

Glossary and Acronyms:

• Basal infusion: It is a continuous insulin infusion, which

should run 24 hours/day until the insulin reservoir is

empty (TIUR <=10.0). The basal infusion follows the

basal profile previously configured by the user.

• Basal profile: It is divided into 24-time slots (from #0 to

#23) corresponding to the 24 hours of the day. The user

should configure the insulin units to be infused along

each hour of the day. The system will infuse the insulin

for 24 hours according to the basal profile defined by the

user, changing the amount of insulin each hour of the day

according to the user definition.

• Bolus infusion: It is a fast insulin infusion, which occurs

according to the user's needs. Bolus infusion is actioned

by the user.

• FMI: Frequency of micro infusion along one hour. FMI

= (IU/6) x 60 MI/hour. It should be calculated for each

time slot.

• Insulin reservoir: It was adopted a 3ml syringe as an in-

sulin reservoir. The syringe is filled by the user. 300 IU

is the syringe's full capacity. It must be filled with the

full capacity.

• IU: Insulin units. Allowed range: 0 <= IU <= 6.0, which

means that 6 IU is the max limit for one hour of infusion

(0.1 IU/min), considering only the basal infusion.

• IUB: Insulin units for bolus infusion.

• IUR: Insulin units remaining (for each time slot).

• LCD: Liquid crystal display.

• LSS: Last status of the system. Values: “first use”; “nor-

mal”; “changing battery”.

• MI: Micro infusion. A MI occurs according to the FMI

(the step motor runs N steps every M seconds). Every

micro infusion corresponds to 0.1 IU. One IU corre-

sponds to 0.01ml of insulin.

• MIC: Micro infusion counter. Every MI implies MIC =

MIC +1.

• T: Saved current time (hour + minutes).

• TBMI: Time between micro infusions. TBMI =

3600/FMI seconds.

• TIUR: Total insulin units remaining (for the whole res-

ervoir).

• TLB: Time when occurred the last bolus infusion.

• TR: Time when the system is restarted.

• TRS: Time remained stopped (TRS = TR – T)

• TSLB: Time since last bolus infusion (TSLB = current

time – TLB).

Functional Requirements:

1. Turn on (7 min.)

Description: The user pushes the “power on/off” button

to turn on the system. If the battery is correctly placed

and is charged, then the system is initialized.

1.1 Initialize system (1h25min.)

Description: The system should check LSS:

• Case LSS = “first use” then the system should:

o To get the confirmation from the user that

the plunger is at the start position (this is

manually done by the user) and the reser-

voir is connected.

o To set TIUR = 300.

o To show the TIUR on the LCD.

o To wait for the user command.

• Case LSS = “changing battery” then the system

should:

o To recovery TIUR.

o To show the TIUR on the LCD.

o If continuous infusion was running before to

change the battery, then to perform FR4,

else to wait for the user command.

• Case LSS = “normal” then the system should:

o To recovery TIUR.

o To show the TIUR on the LCD.

o To wait for the user command.

2. Start continuous infusion (2 min.)

Description: The user pushes “Start button”. The system

runs continuous infusion.

2.1 Run continuous infusion (2h44min.)

Description: Continuous infusion is performed driven

by the basal profile previously defined by the user. The

system gets corresponding IU from the basal profile and

calculates FMI and TBMI. Every TBMI, a MI must be

performed. After each MI, the IUR and the TIUR should

be calculated and showed on the LCD. After each MI:

IUR = IUR – 0.1 and TIUR = TIUR – 0.1.

• At every full hour change, the system must override

the IU and the IUR and recalculate FMI and TBMI.

• Every minute to perform FR8.

• Every minute to perform FR10.

• Every MI implies MIC = MIC +1.

3. Stop continuous infusion (31 min.)

Description: Continuous infusion can be stopped for

three reasons: (1) "Stop" button is pushed by the user;

(2) "Change" button is pushed by the user; and (3) Bolus

infusion is confirmed by the user. When the continuous

infusion is stopped, the system should save current time

T (hour + minutes) for further recovery.

4. Restart continuous infusion (1h07 min.)

Description: The system should restart when the user

pushes “Restart button”; or when bolus infusion is fin-

ished (in the case of the continuous infusion has stopped

because of the bolus infusion). When continuous infu-

sion restarts, time T (hour + minutes when the system

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

was stopped) should be recovered. Then the system

should:

• To get the current time (hour + minutes) when the

system is restarted (TR).

• To calculate how long the system remained stopped

(TRS = TR - T) and show TRS on the LCD.

• To perform FR2.1.

5. Turn off (5 min.)

Description: The user pushes “power on/off” button for

more than 5 seconds. The user shall confirm if he/she

really wants to shut down the system. Set LSS = “nor-

mal” and store TIUR whenever shut down the system.

6. Configure basal profile (25 min.)

Description: The user pushes "basal profile" button. If

the continuous infusion is running, it must be stopped.

For each hour of the day (from #0 to #23), the user

should set IU to be infused.

• Allowed range: 0 <= IU <= 6.0.

• After IU is set, set IUR = IU (for each time slot).

• The user shall set all 24-time slots to complete a

profile. The user is forced to inform IU of each time

slot.

• After time slot #23 is filled, the system should:

o To show the TIUR (main screen).

o To wait for the user command.

7. Set bolus infusion (10 min.)

Description: The user pushes the "Bolus" button to turn

on the bolus infusion mode. The user should set IUB to

be infused. The system asks the user for confirmation.

• 0 < IUB <= 30.0.

• TSLB >= 1h.

7.1 Confirm bolus infusion (11 min.)

Description: The user pushes the "Enter" button to

confirm the bolus infusion. After confirmation, the

system should:

• To perform FR3.

• To proceed with the bolus infusion.

• To update TIUR (TIUR = TIUR – IUB)

• To save TLB.

• If the system was running continuous infusion

before bolus infusion, then perform FR4, else:

o To show the TIUR on the LCD.

o To wait for the user command.

7.2 Cancel bolus infusion (4 min.)

Description: The user pushes the "Cancel" button to

cancel the bolus infusion. If the bolus infusion has

started, it cannot be canceled anymore.

8. Check battery level (5 min.)

Description: Every minute, the system should check the

battery level, and the battery icon should be updated.

8.1 Turn on battery alarm (14 min.)

Description: If the battery level is less or equal to

10% charged, then the system should:

• To ring the alarm sound.

• To show a message on the LCD.

8.2 Turn off battery alarm (7 min.)

Description: If the battery level is greater than 10%,

then the system should turn off the battery alarm.

9. Change component (19 min.)

Description: The user pushes “Change” button. The user

may choose “battery”, “reservoir”, or “cancel” option.

9.1 Change battery (13 min.)

Description: The system should:

• If the continuous infusion is running, then per-

form FR3.

• To save TIUR.

• To set LSS = “changing battery”.

• To Shut down the system.

9.2 Change reservoir (14 min.)

Description: The system should:

• If the continuous infusion is running, then

perform FR3.

• To collect the plunger at the starting position.

• To get confirmation from the user that the res-

ervoir was changed.

• To set TIUR = 300.

• If continuous infusion was running, then to

perform FR4.

9.3 Cancel (1 min.)

Description: The system should show the TIUR

(main screen).

10. Check reservoir level (9 min.)

Description: Every minute, the system should check

the reservoir level, and the reservoir icon should be up-

dated.

10.1 Turn on reservoir alarm (10 min.)

Description: If the TIUR <=10.0, then the system

should:

• To ring the alarm sound.

• To show a message on the LCD.

10.2 Turn off reservoir alarm (4 min.)

Description: If TIUR >10.0, then the system should

turn off the reservoir alarm.

4.3 Textual Requirements Validation

The textual requirements were written by P1, based on five

years of his experience in the development of a low-cost in-
sulin infusion pump prototype in cooperation with a Brazil-
ian company. The requirements validation was based on an
inspection process. The textual requirements presented in
section 4.2 were specifically written for this case study. P1
produced the first version of the textual requirements, which

was reviewed by P2. The intention at this stage of the re-
quirements validation was to assure that P2 could com-
pletely understand the requirements of the LCIIP.

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

Figure 2. Formal requirements specification of the LCIIP using Spectra.

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

As stated in section 3.1, P2 had no previous knowledge
about requirements of the LCIIP. After a few interactions of
the inspection process, the textual requirements received few

adjustments becoming clearer to P2.
During the inspection process, P2 read the requirements

document, highlighting the points that raised doubts or diffi-
culty in understanding. The main doubts raised by P2 were
not about the requirements themselves, but rather about
some concepts specific to the problem domain, such as basal

infusion, bolus infusion, basal profile and micro infusion.
A glossary of terms (presented in section 4.2) was created

and included in the requirements document with the inten-
tion of making these concepts explicit.

4.4 Getting started with Spectra

As explained in Section 3.1, P1 had no previous experience

with Spectra language. In order to get started with Spectra,

P1 invested seven hours studying the document “Spectra

Language & Spectra Tools User Guide” [4]. This introduc-

tion to Spectra allowed to P1 starting with the first Spectra

specifications. A total of 37 hours were invested in learning

during the case study: 23 hours (P1 alone) + 14 hours (su-

pervised). The supervision was provided by P2.

4.5 Formal Requirements using Spectra

The textual requirements specification drove the whole

Spectra specification of the LCIIP. Spectra specification is a

formalization of the requirements of the LCIIP. Figure 2

shows the formal specification using Spectra for the func-

tional requirements FR1, FR1.1, FR2, FR2.2, FR7, FR7.1,

and FR7.2 of the LCIIP.

5 Results and Analysis

In this section, we present and analyze the results from the

case study. The analysis is organized according to the re-

search questions presented in section 3.

5.1 Steps to Convert Textual Requirements

Specification into Spectra Specification (RQ1)

Spectra specification for the LCIIP was built along with the

case study. This formal specification was based on the tex-

tual requirements specification created previously. Taken

into consideration the structure of the Spectra language, the

steps presented in Figure 3 were carried out to build a Spec-

tra specification for the LCIIP. The whole Spectra specifica-

tion for the LCIIP was written along with several iterations

of the loop presented in Figure 3.

The loop presented in Figure 3 is a simple and well-de-

fined process that we proposed to transform/convert textual

requirements specification into Spectra specification. As ex-

plained in Section 2, an important concept in Spectra is the

separation between system and environment. The variables

managed in Spectra should be defined as system variables or

environment variables. System variables are ruled by guar-

antees, and environment variables are ruled by assumptions.

Each step of the process presented in Figure 3 is explained as

follows.

1. Identify variables of interest: The identification of

variables of interest is the starting point for the process of

transforming textual requirements into Spectra specification.

These variables must be identified from the textual require-

ments. Such variables will be handled as system variables or

environment variables.

2. Create system variables: The creation of system var-

iables is already part of the transformation of textual require-

ments into Spectra specification. These variables are the con-

trol variables of the system or software that is being formally

specified. They will be used throughout the specifications of

the guarantee.

3. Create environment variables: The creation of envi-

ronment variables defines the variables that, although not

controlled by the system or software, interact with it and will

be used in specifying the assumptions.

4. Create guarantees: Guarantees will be the rules that

will control the system or software being specified. These

rules must be extracted from an interpretation of the func-

tional and non-functional requirements present in the textual

requirements.

Figure 3. Main steps to convert textual requirements specification into

Spectra specification.

5. Create assumptions: Assumptions must be created

based on the analysis of non-functional requirements present

in the textual requirements specification. Assumptions are

rules that describe the environment’s behavior.

6. Adjust and create new guarantees: After carrying

out the previous steps, a minimum Spectra specification has

already been produced. However, the correct interaction be-

tween the created rules (assumptions and guarantees) will re-

quire a process of refining these rules, based on a correct in-

terpretation of the textual requirements. Both specifications

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

(textual and Spectra) feed themselves throughout this refine-

ment process.

In Figure 2, every rule initiated with gar means it is a

guarantee. One difficulty we found during this process was

to create rules to maintain consistency among the guarantees.

Step 6 of the loop was executed several times until all con-

flicts among the guarantees were solved.

5.2 Time Spent for Specification (RQ1.1)

One dependent variable we measured along with the case

study was the time spent on specification. We measured the

time spent on textual requirements specification and the time

spent for Spectra specification. Figures 4 and 5 show the re-

sults in terms of the time for specifications. Figure 4 shows

the comparison between the time spent for specification

when used both approaches: the traditional approach based

on textual specification and the innovative approach based

on Spectra specification. As we can see in Figure 5, the total

time spent for textual requirements specification was 512

minutes and 743 minutes for Spectra specification. Consid-

ering all the requirements, the time for specification using

Spectra was 45% greater than using textual specification.

The average rate of time spent between the two approaches

was 1.45. Considering that the use of Spectra demanded a

learning curve, we already expected that the time spent on

specification using Spectra would be greater than using nat-

ural language (textual specification). However, it was a sur-

prise that the average ratio between both approaches was just

1.45.

The sequence of requirements presented in Figure 4 fol-

lows the chronology they were specified using Spectra. We

started the Spectra specification with FR1 because of two

reasons: (1) it seemed natural starting with the first require-

ments of the list presented in Section 4.2; and (2) it was con-

sidered a functional requirement of average complexity (ap-

propriate for the first incursion with Spectra language).

Table 2. Changes in Textual Requirements During the Formal Specification.

Rq

Change

(after the validation of the textual requirements) Trigger

FR3

Reasons for stopping the system: "alarm battery is

on" and "alarm reservoir is on" were removed. Formal specification of the guarantee "stopContinuousInfusion."

FR3

Reasons for stopping the system: "bolus infusion is

confirmed by the user" was included. Formal specification of the guarantee "stopContinuousInfusion."

FR4

Reasons for restart the system: "bolus infusion is

finished" was included.
Formal specification of the guarantee "restartContinuousInfusion." The

need to create the system variable "bolusInfusionIsOff."

FR2.1

More details for run continuous infusion: IUR =

IUR – 0.1 and TIUR = TIUR – 0.1.

Need to create system variables to specify the guarantee "runContinuousIn-

fusion."

FR8.2

We changed "If battery alarm is on and the battery

level is greater than 10% charged, then the system

should turn off the battery alarm." to "If the battery level

is greater than 10%, then the system should turn off the

battery alarm."

Improvement and simplification of the guarantee "checkBatteryLevel."

NFR2

Creation of a new NFR : "Battery level never goes

up." Improvement and simplification of the guarantee "checkBatteryLevel."

NFR3

Creation of a new NFR: "Micro infusion and col-

lecting plunger should never happen together." Formal specification of the guarantee "changeReservoir."

FR5

"Store TIUR whenever shut down the system." was

included.

Formal specification of the guarantees "changeBattery" and "storeTIUR-

WheneverShutDown."

FR1.1

"To collect the plunger for start position." was re-

moved. Formal specification of the guarantees related to "Initialize System."

FR1.1

We changed "To get the confirmation from the user

that reservoir is connected" to "To get the confirmation

from the user that the plunger is at the start position (this

is manually done by the user) and the reservoir is con-

nected." Formal specification of the guarantees related to "Initialize System."

FR2.1

We included the definition of TBMI (time between

micro infusion) and added it into the textual require-

ment. Formal specification of the guarantee "runContinuousInfusion."

FR2.1

We included "Every TBMI a MI must be per-

formed. " Formal specification of the guarantee "runContinuousInfusion."

FR1.1

We removed "to save current time T (hour +

minutes) for further recovery" when LSS = "normal".

We checked that the current time is not further used. Formal specification of the guarantees related to "Initialize System."

FR5

"Set LSS = 'normal' whenever shut down the sys-

tem." was included. Formal specification of the guarantee "turnOffSystem."

FR6

We included "If the microinfusion is running, it

must be stopped." Formal specification of the guarantee "configureBasalProfile."

FR1.1

We removed " To set LSS = 'normal' " when LSS =

"first use". Formal specification of the guarantees related to "Initialize System."

FR1.1

We removed " To set LSS = 'normal' " when LSS =

"changing battery". Formal specification of the guarantees related to "Initialize System."

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

The second requirement specified using Spectra was

FR10. It is a simpler requirement than FR1, and there is a

low relationship between them, which seemed to us a good

candidate to be a second requirement to be specified using

Spectra. We can see that the specification time ratio of the

FR10 (0.43) is significantly less than the FR1 (1.29), even

better for Spectra specification than textual specification

(that was a real surprise). The same situation we observed in

requirements FR2, FR6, and FR9. We believe that the reason

for this finding is twofold: (1) the advance in the learning

curve with Spectra; and (2) for simpler requirements, which

mean requirements well-structured with cohesive function-

ality, it is faster to write Spectra specification than textual

specification.

Figure 4. Comparison between the time spent for specification (for each

requirement).

Figure 5. Total time spent for specification of all requirements.

5.3 Benefits and Difficulties along with the For-

mal Specification (RQ2)

In this section, we highlight the benefits and difficulties

found along the formal specification using Spectra. The pros

and cons commented in this section are only related to the

requirements engineering process using Spectra. However, it

is important to say that Spectra has a potential impact on the

whole software development process. Other steps of the soft-

ware development process besides the requirement process

are out of scope of this study.

The main benefits are commented on below:

Separation of concerns between system and environment.

This separation of concerns is quite beneficial for the con-

ception of the system and the system requirements being

specified. When specifying the requirements using Spectra,

it is necessary to identify what variables belong to the system

from those that belong to the environment. The separation of

concerns helped to make the LCIIP requirements clearer.

The initial version of the LCIIP requirements (textual re-

quirements presented in section 4.2) was produced without

the separation of concerns required by Spectra. Steps 1, 2,

and 3 presented in Figure 3 were performed in order to ad-

dress the separation of concerns demanded by Spectra. After

the system and environment variables were identified, it be-

came easier to find the guarantees and the assumptions aris-

ing from the textual requirements. The requirements became

more consistent and organized after the separation of con-

cerns.

Requirements Formalization as a Requirements Valida-

tion Process. The formalization process of the textual re-

quirements specification into Spectra specification inevita-

bly forced the realization of a validation process of the tex-

tual requirements. During the formalization of the require-

ments into the Spectra specification, several inconsistencies

and incompleteness were detected in the textual require-

ments. Table 2 shows the changes and the triggers that moti-

vated the changes in the textual requirements during the for-

malization of the requirements specification. There were 16

changes in total. Figure 6 shows the number of changes re-

garding requirements. The requirement problems presented

in Table 2 only were detected during the formalization of the

requirements, which we can see as a requirements validation

process as well. This is a plus of using Spectra as a specifi-

cation approach, taking into account that the formalization

process will impact the rest of the software development pro-

cess, not only the requirements engineering activity.

Figure 6. Number of changes by requirements after the requirements

formalization (transformation to Spectra Specification).

The main difficulties are commented on below:

Learning curve (RQ1.1). It is always present when any

new technology is going to be adopted. Spectra is a specifi-

cation (formal) language for reactive systems, which is an

automated procedure to obtain a correct-by-construction re-

active system from a given specification [23]. We write

Spectra specifications with the intention to find an imple-

mentation that satisfies the GR(1). A GR(1) specification

consists of assumptions, which have to be satisfied by the

environment, and guarantees, which have to be satisfied by

the system [14]. So, the learning curve of Spectra was related

mainly to understanding and correctly use the temporal op-

erators of GR(1). As commented in section 4.4, participant

P1 had no previous contact with Spectra or GR(1) concepts;

however, with just seven hours of study, it was possible to

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

initiate the first specifications. The experience got along with

this case study showed that the learning curve of Spectra can

be considered as low for practitioners and students with a

background in software engineering.

The semantics of the textual requirements captured by

Spectra (RQ3). When we transform one specification writ-

ten in one language to another there is always the problem of

assuring if the original meaning (semantics of the original

specification) was preserved after the transformation. Along

with this case study, we tried to transform textual require-

ments into Spectra specifications; however, there was not a

systematic process to guaranty that the original meaning of

the textual requirements is completely preserved in the Spec-

tra specification. The verification process to check if the

original meaning was preserved was performed in an ad hoc

way, based on the perceptions and experience of the partici-

pants P1 and P2, which is, of course, subjective. The main

focus of Spectra is on the specification of the rules that cover

temporal aspects of the dynamic control of the system. The

textual specifications transformed throughout the case study

did not take into account user interface aspects; just rules re-

lated to the internal control of the system were considered.

In order to verify if the original semantics of the textual re-

quirements was preserved in the Spectra specifications, it is

necessary the definition of proper metrics. Again, this is a

problem faced when one uses any formal methods; it is not

a particular problem of Spectra language.

6 Conclusion

In this paper, we presented a case study that investigates the

benefits and difficulties in transforming SCS requirements

written in natural language into specifications written in

Spectra language. The most relevant findings from this study

and their implications for further research are as follows.

Transformation process. The basis for the development

of any software comes from the correct specification of its

requirements. Typically, requirements are written in natural

language. The first bottleneck in the use of formal languages

appears when we have to transform textual requirements into

formal specifications. Throughout this case study, we pro-

posed a process that helps the software engineer transform

requirements into formal specifications. In this process, we

present a first approach indicating some helpful steps for

transforming requirements into Spectra specifications. This

process was used as a framework to organize the Spectra

specifications for the low-cost insulin infusion pump system.

The process needs to be refined and tested in other case stud-

ies.

Validation process. The transformation process of tex-

tual requirements into Spectra specifications showed several

inconsistencies and inaccuracies in the original textual re-

quirements. The formal specification requires a detailing of

terms and rules that is unparalleled in the natural language

specification. Thus, during the formal specification, we no-

ticed that 7 out of 10 requirements had some imprecision that

required change and correction. In total, 16 inaccuracies

were detected and corrected. Therefore, an interesting find-

ing was that the transformation process automatically built

into a requirements validation process. This requirements

validation process is a valuable subproduct from the trans-

formation process, which inevitably forces a broad assess-

ment of the originally specified requirements. As future re-

search, we suggest carrying out experiments to compare tra-

ditional requirements validation approaches with the valida-

tion provided by the transformation process in the context of

formal languages.

Learning Curve. Surprisingly, the Spectra language

learning curve proved to be short in this case study. As de-

scribed throughout the article, participant P1 had no prior

knowledge of the Spectra language. Despite the promising

results, other studies and experiments need to be carried out

to show how developers from different backgrounds and ex-

periences perceive the effective learning and use of the Spec-

tra language. Moreover, it seems to us that it is worthwhile

to carry out comparative studies on the learning curve of

Spectra with other formal languages, particularly in the con-

text of using these languages for the development of safety-

critical software.

Requirement semantics. Maintaining the semantics of

the original requirements in the formal specifications pro-

duced after the transformation is still a challenge. This is an

open problem that deserves research effort by the software

engineering community, which is not particular when using

Spectra.

As future work, we intend to extend the use of the Spectra

language to specify new requirements for the insulin infu-

sion pump that we are developing in cooperation with a Bra-

zilian company. Furthermore, we intend to carry out other

case studies involving software requirements for safety-crit-

ical systems, in the healthcare, aviation and automotive do-

mains, in order to confirm the potential of the Spectra lan-

guage as a valuable tool in the requirements specification

and validation process.

Acknowledgements

This work was funded by São Paulo Research Foundation

(FAPESP) under the grant agreement 2018/17592-1. Special

thanks to prof. Shahar Maoz for the support during the real-

ization of the case study at Tel Aviv University.

Data Availability Statement

All data produced and used in the case study are presented

throughout this paper.

Conflict of Interest Statement (COI)

The author declares that there is no conflict of interest in the

subject matter or materials discussed in this manuscript.

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

References

Amram, G., Maoz, S., Segall, I., and Yossef, M. (2022). Dy-
namic Update for Synthesized GR(1) Controllers. Proc. of
ICSE 2022, pp. 786-797, ACM.

Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., and
Sa’ar, Y. (2012). Synthesis of Reactive(1) Designs. J.
Comput. Syst. Sci. 78(3), pp. 911–938.

http://dx.doi.org/10.1016/j.jcss.2011.08.007.
Bozzano, M. and Villafiorita, A. (2006). The FSAP/NuSMV-

SA Safety Analysis Platform. International Journal on
Software Tools for Technology Transfer, 9(1), 5–24.
http://doi.org/10.1007/s10009-006-0001-2.

Robson, C. (2002). Real World Research. 2nd Edition. USA:

Blackwell Publishers.
Cabral, G. and Sampaio, A. (2008). Formal Specification

Generation from Requirement Documents. In: Electronic
Notes in Theoretical Computer Science, Vol. 195, 171-
188, ISSN 1571-0661,
https://doi.org/10.1016/j.entcs.2007.08.032.

Chen, Z. (2009). Formalizing Safety Requirements Using
Controlling Automata. In Proceedings of the Second Inter-
national Conference on Dependability (pp. 81–86).
doi:10.1109/DEPEND.2009.18

Gorenstein, A., Maoz, S. and Ringert, J. O. (2024). Kind
Controllers and Fast Heuristics for Non-Well-Separated

GR(1) Specifications. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering
(ICSE '24). ACM, New York, NY, USA, Article 28, 1–12.
https://doi.org/10.1145/3597503.3608131

Hatcliff, J., Wassyng, A., Kelly, T., Comar, C., and Jones, P.
(2014). Certifiably safe software-dependent systems: chal-

lenges and directions. In Proceedings of the on Future of
Software Engineering - FOSE, (pp. 182–200).

Heimdahl, M. P. E. (2007). Safety and Software Intensive
Systems: Challenges Old and New. In FoSE 2007: Future
of Software Engineering (pp. 137–152).

Hu, Y., Podder, T., Buzurovic, I., Yan, K., Ng, W. S., and

Yu, I. (2007). Hazard analysis of EUCLIDIAN: An image-
guided robotic brachytherapy system. In Proceedings of
the 29th Annual International Conference of the IEEE
EMBS (Vol. 1, pp. 1249–1252).

I. Sayar and J. Souquières. (2019). Bridging the Gap Between
Requirements Document and Formal Specifications using

Development Patterns. In: IEEE 27th International Re-
quirements Engineering Conference Workshops (REW),
2019, pp. 116-122, doi: 10.1109/REW.2019.00026.

Ivarsson, M. and Gorschek, T. (2009). Technology Transfer
Decision Support in Requirements Engineering Research:
A Systematic Review of REj. Requirements Engineering

Journal, vol. 14, no. 3, (pp. 155-175).
Jin, Y., Zhang, J., Hao, W. et al. (2010). A concern-based

approach to generating formal requirements specifications.
Front. Comput. Sci. China 4, 162–172. https://doi-
org.ez69.periodicos.capes.gov.br/10.1007/s11704-010-
0151-y.

Leveson, N. G. (2011). Engineering a Safer World: Systems
Thinking Applied to Safety. The MIT Press.

Liu, S., Stavridou, V., and Dutertre, B. (1995). The Practice
of Formal Methods in Safety-Critical Systems. Journal of
Systems and Software, 1212(94), (pp. 77–87).

Ma'ayan, D. and Maoz, S. (2023). Using Reactive Synthesis:
An End-to-End Exploratory Case Study," 2023
IEEE/ACM 45th International Conference on Software

Engineering (ICSE), Melbourne, Australia, pp. 742-754,
doi: 10.1109/ICSE48619.2023.00071.

Ma'ayan, D., Shahar, M. and Rozi, R. (2022). Validating the
Correctness of Reactive Systems Specifications Through
Systematic Exploration. Proc. of MODELS 2022, pp. 132-
142, ACM.

Maoz, S. and Ringert, J. O. (2019). Spectra Language &
Spectra Tools User Guide.
http://smlab.cs.tau.ac.il/syntech/spectra/userguide.pdf

Maoz, S., and Ringert, J. O. (2021a). Reactive Synthesis with
Spectra: A Tutorial, IEEE/ACM 43rd International Confer-
ence on Software Engineering: Companion Proceedings

(ICSE-Companion), Madrid, ES, pp. 320-321, doi:
10.1109/ICSE-Companion52605.2021.00136.

Maoz, S., Ringert, J.O. (2021b). Spectra: a specification lan-
guage for reactive systems. Softw Syst Model 20, pp.
1553–1586. https://doi.org/10.1007/s10270-021-00868-z

Martins, L. E. G. and Gorschek, T. (2016). Requirements En-

gineering for Safety-Critical Systems: A Systematic Liter-
ature Review, Information and Software Technology, Vol.
75, July 2016, (pp.71–89).

Martins, L. E. G. and Gorschek, T. (2017). Requirements En-
gineering for Safety-Critical Systems: Overview and Chal-
lenges. IEEE Software, v. 34, (pp. 49-57).

Miller, S. P., Tribble, A. C., Whalen, M. W., and Heimdahl,
M. P. E. (2006). Proving the shalls. International Journal
on Software Tools for Technology Transfer, 8(4-5), (pp.
303–319). doi:10.1007/s10009-004-0173-6.

Nair, S., de la Vara, J. L., Sabetzadeh, M., and Falessi, D.
(2015). Evidence management for compliance of critical

systems with safety standards: A survey on the state of
practice. Information and Software Technology, 60, (pp.
1–15).

Runeson, P. and Höst, M. (2009). Guidelines for conducting
and reporting case study research in software engineering.
Empirical Software Engineering, 14, 131–164.

http://doi.org/10.1007/s10664-008-9102-8.
Sommerville, I. (2015) Software Engineering. Addison-Wes-

ley, 10th edition.
Walter, B., Hammes, J., Piechotta, M. and S. Rudolph.

(2017). A Formalization Method to Process Structured
Natural Language to Logic Expressions to Detect Redun-

dant Specification and Test Statements. In: IEEE 25th In-
ternational Requirements Engineering Conference (RE),
pp. 263-272, doi: 10.1109/RE.2017.38.

Wohlin, C., Runeson, P., Host, M., Ohlson, C., Regnell, B.
and A. Wesslén. (2012). Experimentation in Software En-
gineering: An Introduction. Germany: Springer-Verlag.

