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Abstract 

The requirements specification of any system is crucial for the correct development of the systems and soft-
ware. It becomes even more relevant in the development of safety-critical systems (SCS). This paper aims to 
investigate the process of transforming requirements specification written in natural language (textual require-
ments) to requirements specification written in Spectra language (formal requirements). Spectra is a formal lan-
guage built to specify reactive systems. The case study carried out in this research focuses on the requirements 
specification of a low-cost insulin infusion pump. The requirements were initially specified in natural language 
and later transformed into Spectra language. During the transformation process, we investigated the potential use 
of the Spectra language in the phase of requirements specification, identifying the difficulties in the transformation 
process and its advantages, taking into account the software engineer's point of view. 
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1  Introduction 
Safety-Critical Systems (SCS) are increasingly present in the 
daily lives of modern societies, which are becoming heavily 
dependent on these systems. SCS are Man-made systems, 
which are based on computational technology, in which 
eventual defects or failures may cause accidents that put hu-
man life at risk or cause damage to the environment or prop-
erty (Hatcliff et al. 2014)(Leveson 2011)(Heimdahl 2007). 
SCS are present in aviation systems, automotive systems, 
control of industrial plants (chemical, oil, nuclear), medical 
devices, railroad control, defense, and aerospace systems, 
among others (Leveson 2011)(Nair et al. 2015). 

The requirements specification of any system is crucial 
for its correct development, and it becomes even more rele-
vant for the development of SCS (Sommerville 2015)(Miller 
et al. 2006). Requirements Engineering is the discipline that 
focuses on the development of techniques, methods, pro-
cesses, and tools that assist in the design of software and sys-
tems, covering the activities of elicitation, analysis, modeling 
and specification, verification and validation, and manage-
ment of requirements (Sommerville 2015). The complete 
specification of software requirements establishes the basis 
for its architectural design and offers a description of the 
functional and quality aspects that should guide the imple-
mentation and software evolution. 

The adoption of formal methods for specifying the re-
quirements for SCS has been advocated by many researchers 
in recent decades (Miller et al. 2006)(Martins and Gorschek 
2016). One of the main acclaimed benefits is that the speci-
fied requirements would become complete, consistent, and 
unambiguous, thanks to the rigor of formal methods. How-
ever, formal methods are still little used by SCS developers, 
the reports of using such methods in literature usually apply 
to illustrative exercises or pilot projects, not becoming an ex-
tensive practice within the SCS industry (Martins and Gor-
schek 2017). The reasons usually indicated for non-adher-
ence to formal methods are (Bozzano and Villafiorita 
2006)(Hu et al. 2007): formal methods are difficult to use, 

requiring prior knowledge of the specific mathematical lan-
guage; few people have the knowledge to properly under-
stand and use formal methods; formal languages are not suit-
able for raising requirements with system stakeholders, as 
they are complex and have a long learning curve. The re-
quirements specification documents produced by profession-
als who develop critical systems and software worldwide are 
still essentially based on natural language (textual require-
ments) (Martins and Gorschek 2016)(Martins and Gorschek 
2017). On the one hand, this practice facilitates communica-
tion between stakeholders, on the other hand, it makes re-
quirements specifications subject to inconsistencies and am-
biguities (Liu et al. 1995)(Chen 2009)(Miller et al. 2006) . 

A possibility to increase the interest of SCS developers in 
adopting formal methods for specifying their systems and 
software would require using a process capable of helping 
practitioners transform the requirements specified in natural 
language into requirements specified in formal language. The 
study presented in this paper aims to investigate the develop-
ment of such a process in order to easily, quickly, and safely 
transform SCS requirements written in natural language to 
specifications written in Spectra language. Spectra is a for-
mal specification language for reactive systems, a category 
in which SCS normally falls. Spectra supports temporal con-
structs and others that allow system engineers and software 
engineers to make concepts such as monitoring and counting 
explicit in their specifications (Maoz and Ringert 2021a). We 
chose Spectra as the formal language for this study, moti-
vated by the novelty of this language and its potential to in-
crease the productivity of software engineers throughout the 
software development lifecycle.  

In addition to the formal language, Spectra proponents 
provide a tool environment for synthesizing Spectra specifi-
cations for Java code, enabling software development to be 
truly driven by specifications. Along with this paper, we pre-
sent and discuss the results obtained from a case study per-
formed in a SCS domain, particularly in the domain of med-
ical devices. The case study focused on the requirements 
specification of a low-cost insulin infusion pump under 
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development with a Brazilian company. The requirements 
were initially specified in natural language and later trans-
formed into Spectra language. We tried to answer the follow-
ing research questions throughout the case study: What steps 
are necessary to convert textual requirements specification 
into Spectra specification? What is the learning curve of 
Spectra? What are the benefits and difficulties in the trans-
formation process? Does Spectra language properly capture 
the semantics of the textual requirements? 

The remainder of this paper is organized as follows: In 
Section 2, we present background and related work; in Sec-
tion 3, we present the methodology adopted to conduct the 
study; in Section 4, we present the case study carried out; in 
Section 5 we discuss the results obtained from the case study, 
and in Section 6 we present the conclusion and final remarks. 

2  Background and Related Work 

2.1 Definitions 
In order to set the scope and make clear the adopted terms 
used in this research, and to ensure consistency throughout 
this paper, we present the following definitions, organized in 
alphabetical order: 

Formal Language. A language used by software engi-
neers to specify constraints and operations of the system ac-
curately and unambiguously.  A formal language is based on 
mathematical constructs.  

Formal requirements. A set of system or software re-
quirements specified using a formal language. 

Natural Language. It is an informal language used by 
software engineers to write software requirements docu-
ments.  

Spectra language. A formal specification language for 
reactive systems, the category that critical systems typically 
fall into. 

Spectra specification. A software specification pro-
duced using Spectra language. 

Textual requirements. A set of system or software re-
quirements specified using a natural language. 

2.2 Spectra 
The Spectra language is a formally verified software/system 
specification language developed for modelling reactive sys-
tems (Maoz and Ringert 2019)(Maoz and Ringert 2021a). 
Reactive systems are systems that continuously interact with 
their environment and respond to external events in real 
time, such as air traffic control systems, industrial automa-
tion, and software embedded in vehicles. Important features 
of the Spectra language are the following: (i) Formal Speci-
fication: It allows to specify system and software in a formal 
and precise manner, facilitating the automatic verification of 
desired properties; (ii) Model Checking: Using Spectra, we 
can check whether a system model meets specified require-
ments, this is done through formal verification techniques, 
such as model checking, to ensure that the system satisfies 
all specified properties; (iii) Automation: The language was 
designed to be compatible with automation tools, allowing 
the automatic generation of tests and the synthesis of con-
trollers that guarantee compliance with requirements; and 

(iv) Support for Reactive Systems: It was specifically de-
signed to deal with the complexity of reactive systems, of-
fering constructs that facilitate the modelling of dynamic be-
haviours and continuous interaction with the environment. 

Spectra supports temporal constructs, as well as other 
constructs that allow systems engineers and software engi-
neers to make concepts like tracking and counting explicit in 
their specifications (Maoz and Ringert 2019) (Maoz and 
Ringert 2021a) (Maoz and Ringert 2021b). The following is 
a list of the main features available in the Spectra language: 

Module declaration. Every Spectra specification docu-
ment is treated as a module. Each module is defined as a sep-
arate file. 

Variable declarations. The variables defined in the 
specifications can be classified in two ways: as environment 
variables or as variables controlled by the system. Both can 
be Boolean, Int, or Enumeration types. 

Assumptions and guarantees. The behavior of the en-
vironment, observable by the variables controlled by the en-
vironment, is described through assumptions. The required 
behavior of the system is described by means of guarantees. 

PastLTL operators. PastLTL operators evaluate formu-
las over past interactions between the system and the envi-
ronment. The available operators are PREV, ONCE, HIS-
TORICALLY, SINCE, TRIGGERED. 

Predicate definitions. Predicates allow encapsulation 
and reuse of parameterized Boolean expressions. 

Monitor definitions. Monitors are used to track events 
over time. 

Counter definitions. The following operations can be 
applied to counters: inc, dec, reset, overflow, underflow. 

Pattern definitions. Standard definitions can be used to 
reuse specification units. 

Weight definitions. The language allows the definition 
of integer weights on states and transitions of a specification. 
 

The specifications produced with the Spectra language 
can be analyzed by a set of software tools (Spectra Tools), 
which include the synthesis of controllers that satisfy the 
produced specifications, since these specifications are real-
izable (Bozzano and Villafiorita 2006)(Ma'ayan 2022) 
(Ma'ayan and Maoz 2023). Spectra Tools will automatically 
attempt to find and produce an implementation that satisfies 
the GR(1) specification (Bloem 2012)(Amram et al. 2022)( 
Gorenstein et al. 2024). A GR(1) specification consists of 
assumptions, which must be satisfied by the environment, 
and guarantees, which must be satisfied by the system, i.e., 
by the synthesized implementation. For more details see 
https://smlab.cs.tau.ac.il/syntech/spectra/ . 
 

2.2 Related Work 
Sayar and Souquières (2019) proposed development patterns 
to formalize requirements describing constraints and se-
quences. The formal method used by them is the Event-B 
method. However, they believe that any formal method can 
be used with the development patterns proposed by them. 
Throughout the paper, they present and discuss two patterns: 

https://smlab.cs.tau.ac.il/syntech/spectra/
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(1) a conditional pattern Dev-if that describes a constraint on 
the system functionality; and (2) a sequential pattern Dev-
seq that “helps the developer to automatically introduce the 
order between existing operations of a given system” [18]. 
They show two examples of how to apply the proposed pat-
terns in a hemodialysis case study. 

Cabral and Sampaio (2008) propose a strategy that auto-
matically translates use cases written in a controlled natural 
language (CNL) into the specification in CSP process alge-
bra. The system requirements are organized as use cases 
written in CNL using imperative and declarative sentences. 
Imperative sentences allow writing the actions performed by 
the system actors, while declarative sentences describe char-
acteristics, constraints, and states of the system. The gram-
matical rules adopted to write use cases are defined based on 
the knowledge bases that map verbs to CSP channels and 
verb complements to values of CSP datatypes. 

Jin et al. (2010) propose a concern-based approach to 
generating formal requirements specification from textual 
requirements document, which applies “separation of con-
cerns during requirements analysis and utilizes concerns and 
their relationships to bridge the gap between textual require-
ments statements and formal requirements documentation”. 
The formal specification generated is mainly represented by 
tabular expressions. Throughout the paper, a light control 
system is used to show the application of the approach.   

Walter et al. (2017) propose a solution to detect redun-
dant specifications and test statements described in struc-
tured natural language. They present and discuss formaliza-
tion process for requirements specification and test state-
ments, allowing them to detect redundant statements and re-
duce the efforts for specification and validation. The formal-
ization process is based on the Specification Pattern Systems 
and Linear Temporal Logic. They evaluated the process in 
the context of Mercedes-Benz Passenger Car Development. 

Ma'ayan and Maoz (2023) conducted an exploratory case 
study in which they followed students in a semester-long 
university workshop class on their end-to-end use of a reac-
tive synthesizer, from writing the specifications to executing 
the synthesized controllers. Along this case study they col-
lected more than 500 versions of more than 80 specifica-
tions, as well as more than 2500 Slack messages written by 
the class participants. Based on the collected data they pro-
pose guidelines in the directions of language and specifica-
tion quality, tools for analysis and execution, process and 
methodology, all towards making reactive synthesis more 
applicable for software engineers. 

Gorenstein, Maoz, and Ringert (2024) present two con-
tributions to deal with Non-Well-Separation (NWS). In the 
first contribution they show how to synthesize systems that 
avoid taking advantage of NWS, i.e., do not prevent the sat-
isfaction of any environmental assumption, even if possible. 
In the second contribution the authors propose a set of heu-
ristics for the fast detection of NWS. They carried out eval-
uations over benchmarks from the literature showing the ef-
fectiveness and significance of their contributions. 

3 Methodology 
In order to investigate the transformation of textual to formal 
requirements, we chose to apply a qualitative research ap-
proach adopting a case study (Wohlin et al. 2012)( Robson 
2002) as the strategy to reach the research goals. This study 
aims to obtain an in-depth understanding of the difficulties 
and benefits of using the Spectra language to specify the 
software requirements of a SCS. Table 1 shows the research 
questions that drove our investigation. 

Table 1. Research Questions. 

 

3.1 Study Design 
This investigation was divided into three parts: planning, ex-
ecution, and analysis. 

Planning. As part of the planning of the study, we de-
cided to adopt a case study as a research approach. The case 
study was conducted in a medical device domain. Two peo-
ple participated in the case study. The profiles of the partic-
ipants are presented as follows: 
• Participant P1: 

o Background in software engineering with more 
than 20 years of experience in requirements spec-
ification and software development. 

o High knowledge about the requirements of the 
chosen system (insulin infusion pump). Five years 
of experience in insulin infusion pump software 
development. 

o No previous skills in Spectra language. 
• Participant P2: 

o Background in computer science and software en-
gineering with more than 15 years of experience 
in formal methods. 

o No previous knowledge about the requirements of 
the chosen system (insulin infusion pump).  

o More than eight years of experience with Spectra 
language. 

Research Questions Aims 
RQ1: What steps are neces-
sary to convert textual re-
quirements specification to 
Spectra specification? 

To understand the main learn-
ing elements, concepts, and 
tasks to be executed to convert 
a textual requirements specifi-
cation to a Spectra specifica-
tion.  

RQ1.1: How long does it 
take? 

To measure the learning curve 
of Spectra and compare the 
time necessary to produce a 
Spectra specification in relation 
to the textual specification. 

RQ2: What are the benefits 
and difficulties? 

To identify the main benefits 
and difficulties in adopting 
Spectra language to write for-
mal requirements specifica-
tions. 

RQ3: Are the semantics of 
the textual requirements 
well captured by Spectra? 

To analyze the power of Spec-
tra in capturing the semantics 
of textual requirements. 
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The variables managed and observed along the case 

study were the following: 
• System requirements knowledge (independent); 
• Spectra skill (independent); 
• Effort to write the textual requirements (dependent); 
• Effort to write the Spectra specification (dependent); 
• Captured semantics (dependent). 

 
Execution. The execution of the case study was divided 

into four steps: (i) To write the textual requirements of the 
chosen system; (ii) To get a background of Spectra language; 
(iii) To transform the textual requirements into a Spectra 
specification, and (iv) To validate the Spectra specification. 
The details of the execution of the case study are presented 
in Figure 1. 

Analysis. A quantitative and qualitative analysis of the 
results was performed. A quantitative analysis was per-
formed considering the time spent writing the textual re-
quirements, learning the basics of Spectra, and writing Spec-
tra specifications. A qualitative analysis was performed fo-
cusing on the difficulties of using Spectra and the benefits of 
using it as a tool for a formal requirements specification. 

3.2 Threats to Validity 
The main threat to the validity of this study is related to the 
biases of the case study participants. The results obtained are 
obviously dependent on the experience and capabilities of 
the two participants who carried out the case study. How-
ever, since we do not intend to generalize the results to other 
cases, we believe that the results are helpful for an analysis 
of the use of Spectra language in the formal requirements 

specification in safety-critical systems context. Moreover, 
the extensive experience of the case study participants, both 
in software requirements specification and in software spec-
ification with the Spectra language, are factors that 
strengthen the obtained results. 

4 Case Study 
In this section, we describe the case study performed. 

4.1 Context 
The case study was carried out in a safety-critical system do-
main related to developing a medical device. The chosen 
system was developing a low-cost insulin infusion pump 
(LCIIP), which is under development in a Brazilian company 
in cooperation with participant P1. The first step of the case 
study was to write the requirements of the LCIIP in a format 
of textual requirements. The textual requirements were writ-
ten by P1 and reviewed by P2. The second step was to get 
started with Spectra Language by P1, which had no previous 
contact. The third step was to transform the textual require-
ments specification into Spectra specification. This step was 
performed in cooperation between P1 and P2. The fourth 
step was the validation of the Spectra specification, which 
was performed for both participants. Steps 3 and 4 were per-
formed in an iterative loop. The flow of the steps is shown 
in Figure 1. The entire case study was carried out in three 
months, with full time participation of P1 and part time par-
ticipation of P2. 

Figure 1. The steps of the execution of the case study. 
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4.2 Textual Requirements of the LCIIP 
The textual requirements specification is organized into two 
parts: a glossary of terms used in the specification and the 
functional requirements of the LCIIP. The functional re-
quirements are identified by numbers. For each requirement, 
the time spent (in minutes) was recorded during the specifi-
cation. 

Glossary and Acronyms:  
• Basal infusion: It is a continuous insulin infusion, which 

should run 24 hours/day until the insulin reservoir is 
empty (TIUR <=10.0). The basal infusion follows the 
basal profile previously configured by the user. 

• Basal profile: It is divided into 24-time slots (from #0 to 
#23) corresponding to the 24 hours of the day. The user 
should configure the insulin units to be infused along 
each hour of the day. The system will infuse the insulin 
for 24 hours according to the basal profile defined by the 
user, changing the amount of insulin each hour of the day 
according to the user definition.  

• Bolus infusion: It is a fast insulin infusion, which occurs 
according to the user's needs. Bolus infusion is actioned 
by the user.    

• FMI: Frequency of micro infusion along one hour. FMI 
= (IU/6) x 60 MI/hour. It should be calculated for each 
time slot. 

• Insulin reservoir: It was adopted a 3ml syringe as an in-
sulin reservoir. The syringe is filled by the user. 300 IU 
is the syringe's full capacity. It must be filled with the 
full capacity.  

• IU: Insulin units. Allowed range: 0 <= IU <= 6.0, which 
means that 6 IU is the max limit for one hour of infusion 
(0.1 IU/min), considering only the basal infusion. 

• IUB: Insulin units for bolus infusion. 
• IUR: Insulin units remaining (for each time slot). 
• LCD: Liquid crystal display. 
• LSS: Last status of the system. Values: “first use”; “nor-

mal”; “changing battery”. 
• MI: Micro infusion. A MI occurs according to the FMI 

(the step motor runs N steps every M seconds). Every 
micro infusion corresponds to 0.1 IU. One IU corre-
sponds to 0.01ml of insulin. 

• MIC: Micro infusion counter. Every MI implies MIC = 
MIC +1. 

• T: Saved current time (hour + minutes). 
• TBMI: Time between micro infusions. TBMI = 

3600/FMI seconds. 
• TIUR: Total insulin units remaining (for the whole res-

ervoir). 
• TLB: Time when occurred the last bolus infusion. 
• TR: Time when the system is restarted. 
• TRS: Time remained stopped (TRS = TR – T) 
• TSLB: Time since last bolus infusion (TSLB = current 

time – TLB). 

Functional Requirements: 
1. Turn on (7 min.) 

Description: The user pushes the “power on/off” button 
to turn on the system. If the battery is correctly placed 
and is charged, then the system is initialized. 
1.1 Initialize system (1h25min.) 
Description: The system should check LSS: 
• Case LSS = “first use” then the system should: 

o To get the confirmation from the user that 
the plunger is at the start position (this is 
manually done by the user) and the reser-
voir is connected. 

o To set TIUR = 300. 
o To show the TIUR on the LCD. 
o To wait for the user command. 

• Case LSS = “changing battery” then the system 
should: 
o To recovery TIUR. 
o To show the TIUR on the LCD. 
o If continuous infusion was running before to 

change the battery, then to perform FR4, 
else to wait for the user command. 

• Case LSS = “normal” then the system should: 
o To recovery TIUR. 
o To show the TIUR on the LCD. 
o To wait for the user command. 

 
2. Start continuous infusion (2 min.) 

Description: The user pushes “Start button”. The system 
runs continuous infusion. 
2.1 Run continuous infusion (2h44min.) 
Description: Continuous infusion is performed driven 
by the basal profile previously defined by the user. The 
system gets corresponding IU from the basal profile and 
calculates FMI and TBMI.  Every TBMI, a MI must be 
performed. After each MI, the IUR and the TIUR should 
be calculated and showed on the LCD. After each MI: 
IUR = IUR – 0.1 and TIUR = TIUR – 0.1. 
• At every full hour change, the system must override 

the IU and the IUR and recalculate FMI and TBMI. 
• Every minute to perform FR8. 
• Every minute to perform FR10. 
• Every MI implies MIC = MIC +1. 
 

3. Stop continuous infusion (31 min.) 
Description: Continuous infusion can be stopped for 
three reasons: (1) "Stop" button is pushed by the user; 
(2) "Change" button is pushed by the user; and (3) Bolus 
infusion is confirmed by the user. When the continuous 
infusion is stopped, the system should save current time 
T (hour + minutes) for further recovery.  
 

4. Restart continuous infusion (1h07 min.) 
Description: The system should restart when the user 
pushes “Restart button”; or when bolus infusion is fin-
ished (in the case of the continuous infusion has stopped 
because of the bolus infusion). When continuous infu-
sion restarts, time T (hour + minutes when the system 
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was stopped) should be recovered. Then the system 
should:  
• To get the current time (hour + minutes) when the 

system is restarted (TR). 
• To calculate how long the system remained stopped 

(TRS = TR - T) and show TRS on the LCD. 
• To perform FR2.1. 

 
5. Turn off (5 min.) 

Description: The user pushes “power on/off” button for 
more than 5 seconds. The user shall confirm if he/she 
really wants to shut down the system. Set LSS = “nor-
mal” and store TIUR whenever shut down the system. 
 

6. Configure basal profile (25 min.) 
Description: The user pushes "basal profile" button. If 
the continuous infusion is running, it must be stopped. 
For each hour of the day (from #0 to #23), the user 
should set IU to be infused.  
• Allowed range: 0 <= IU <= 6.0. 
• After IU is set, set IUR = IU (for each time slot). 
• The user shall set all 24-time slots to complete a 

profile. The user is forced to inform IU of each time 
slot. 

• After time slot #23 is filled, the system should: 
o To show the TIUR (main screen). 
o To wait for the user command. 
 

7. Set bolus infusion (10 min.) 
Description: The user pushes the "Bolus" button to turn 
on the bolus infusion mode. The user should set IUB to 
be infused. The system asks the user for confirmation. 
• 0 < IUB <= 30.0. 
• TSLB >= 1h. 
7.1 Confirm bolus infusion (11 min.) 

Description: The user pushes the "Enter" button to 
confirm the bolus infusion. After confirmation, the 
system should: 
• To perform FR3. 
• To proceed with the bolus infusion. 
• To update TIUR (TIUR = TIUR – IUB) 
• To save TLB. 
• If the system was running continuous infusion 

before bolus infusion, then perform FR4, else: 
o To show the TIUR on the LCD. 
o To wait for the user command. 

7.2 Cancel bolus infusion (4 min.) 
Description: The user pushes the "Cancel" button to 
cancel the bolus infusion. If the bolus infusion has 
started, it cannot be canceled anymore. 

 
8. Check battery level (5 min.) 

Description: Every minute, the system should check the 
battery level, and the battery icon should be updated. 
8.1 Turn on battery alarm (14 min.) 

Description: If the battery level is less or equal to 
10% charged, then the system should:  

• To ring the alarm sound. 
• To show a message on the LCD. 

8.2 Turn off battery alarm (7 min.) 
Description: If the battery level is greater than 10%, 
then the system should turn off the battery alarm. 

 
9. Change component (19 min.) 

Description: The user pushes “Change” button. The user 
may choose “battery”, “reservoir”, or “cancel” option. 
9.1 Change battery (13 min.) 

Description: The system should: 
• If the continuous infusion is running, then per-

form FR3. 
• To save TIUR. 
• To set LSS = “changing battery”. 
• To Shut down the system. 

9.2 Change reservoir (14 min.) 
Description: The system should: 
• If the continuous infusion is running, then 

perform FR3. 
• To collect the plunger at the starting position. 
• To get confirmation from the user that the res-

ervoir was changed. 
• To set TIUR = 300. 
• If continuous infusion was running, then to 

perform FR4. 
9.3 Cancel (1 min.) 

Description: The system should show the TIUR 
(main screen). 

 
10. Check reservoir level (9 min.) 

Description: Every minute, the system should check 
the reservoir level, and the reservoir icon should be up-
dated. 

10.1 Turn on reservoir alarm (10 min.) 
Description: If the TIUR <=10.0, then the system 
should: 

• To ring the alarm sound. 
• To show a message on the LCD. 

10.2 Turn off reservoir alarm (4 min.) 
Description: If TIUR >10.0, then the system should 
turn off the reservoir alarm. 

4.3 Textual Requirements Validation 
The textual requirements were written by P1, based on five 
years of his experience in the development of a low-cost in-
sulin infusion pump prototype in cooperation with a Brazil-
ian company. The requirements validation was based on an 
inspection process. The textual requirements presented in 
section 4.2 were specifically written for this case study. P1 
produced the first version of the textual requirements, which 
was reviewed by P2. The intention at this stage of the re-
quirements validation was to assure that P2 could com-
pletely understand the requirements of the LCIIP. 
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Figure 2. Formal requirements specification of the LCIIP using Spectra. 
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As stated in section 3.1, P2 had no previous knowledge 
about requirements of the LCIIP. After a few interactions of 
the inspection process, the textual requirements received few 
adjustments becoming clearer to P2. 

During the inspection process, P2 read the requirements 
document, highlighting the points that raised doubts or diffi-
culty in understanding. The main doubts raised by P2 were 
not about the requirements themselves, but rather about 
some concepts specific to the problem domain, such as basal 
infusion, bolus infusion, basal profile and micro infusion.  

A glossary of terms (presented in section 4.2) was created 
and included in the requirements document with the inten-
tion of making these concepts explicit. 

4.4 Getting started with Spectra 
As explained in Section 3.1, P1 had no previous experience 
with Spectra language. In order to get started with Spectra, 
P1 invested seven hours studying the document “Spectra 
Language & Spectra Tools User Guide” [4]. This introduc-
tion to Spectra allowed to P1 starting with the first Spectra 
specifications. A total of 37 hours were invested in learning 
during the case study: 23 hours (P1 alone) + 14 hours (su-
pervised). The supervision was provided by P2. 

4.5 Formal Requirements using Spectra 
The textual requirements specification drove the whole 
Spectra specification of the LCIIP. Spectra specification is a 
formalization of the requirements of the LCIIP. Figure 2 
shows the formal specification using Spectra for the func-
tional requirements FR1, FR1.1, FR2, FR2.2, FR7, FR7.1, 
and FR7.2 of the LCIIP. 

5 Results and Analysis 
In this section, we present and analyze the results from the 
case study. The analysis is organized according to the re-
search questions presented in section 3. 

5.1 Steps to Convert Textual Requirements 
Specification into Spectra Specification (RQ1) 
Spectra specification for the LCIIP was built along with the 
case study. This formal specification was based on the tex-
tual requirements specification created previously. Taken 
into consideration the structure of the Spectra language, the 
steps presented in Figure 3 were carried out to build a Spec-
tra specification for the LCIIP. The whole Spectra specifica-
tion for the LCIIP was written along with several iterations 
of the loop presented in Figure 3. 

The loop presented in Figure 3 is a simple and well-de-
fined process that we proposed to transform/convert textual 
requirements specification into Spectra specification. As ex-
plained in Section 2, an important concept in Spectra is the 
separation between system and environment. The variables 
managed in Spectra should be defined as system variables or 
environment variables. System variables are ruled by guar-
antees, and environment variables are ruled by assumptions. 
Each step of the process presented in Figure 3 is explained as 
follows. 

1. Identify variables of interest: The identification of 
variables of interest is the starting point for the process of 
transforming textual requirements into Spectra specification. 
These variables must be identified from the textual require-
ments. Such variables will be handled as system variables or 
environment variables. 

2. Create system variables: The creation of system var-
iables is already part of the transformation of textual require-
ments into Spectra specification. These variables are the con-
trol variables of the system or software that is being formally 
specified. They will be used throughout the specifications of 
the guarantee. 

3. Create environment variables: The creation of envi-
ronment variables defines the variables that, although not 
controlled by the system or software, interact with it and will 
be used in specifying the assumptions. 

4. Create guarantees: Guarantees will be the rules that 
will control the system or software being specified. These 
rules must be extracted from an interpretation of the func-
tional and non-functional requirements present in the textual 
requirements. 

Figure 3. Main steps to convert textual requirements specification into 
Spectra specification. 

 
5. Create assumptions: Assumptions must be created 

based on the analysis of non-functional requirements present 
in the textual requirements specification. Assumptions are 
rules that describe the environment’s behavior. 

6. Adjust and create new guarantees: After carrying 
out the previous steps, a minimum Spectra specification has 
already been produced. However, the correct interaction be-
tween the created rules (assumptions and guarantees) will re-
quire a process of refining these rules, based on a correct in-
terpretation of the textual requirements. Both specifications 
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(textual and Spectra) feed themselves throughout this refine-
ment process. 

In Figure 2, every rule initiated with gar means it is a 
guarantee. One difficulty we found during this process was 
to create rules to maintain consistency among the guarantees. 
Step 6 of the loop was executed several times until all con-
flicts among the guarantees were solved. 

5.2 Time Spent for Specification (RQ1.1) 
One dependent variable we measured along with the case 
study was the time spent on specification. We measured the 
time spent on textual requirements specification and the time 
spent for Spectra specification. Figures 4 and 5 show the re-
sults in terms of the time for specifications. Figure 4 shows 
the comparison between the time spent for specification 
when used both approaches: the traditional approach based 
on textual specification and the innovative approach based 
on Spectra specification. As we can see in Figure 5, the total 

time spent for textual requirements specification was 512 
minutes and 743 minutes for Spectra specification. Consid-
ering all the requirements, the time for specification using 
Spectra was 45% greater than using textual specification. 
The average rate of time spent between the two approaches 
was 1.45. Considering that the use of Spectra demanded a 
learning curve, we already expected that the time spent on 
specification using Spectra would be greater than using nat-
ural language (textual specification). However, it was a sur-
prise that the average ratio between both approaches was just 
1.45. 

The sequence of requirements presented in Figure 4 fol-
lows the chronology they were specified using Spectra. We 
started the Spectra specification with FR1 because of two 
reasons: (1) it seemed natural starting with the first require-
ments of the list presented in Section 4.2; and (2) it was con-
sidered a functional requirement of average complexity (ap-
propriate for the first incursion with Spectra language). 

Table 2. Changes in Textual Requirements During the Formal Specification. 

 
Rq 

Change  
(after the validation of the textual requirements) Trigger 

FR3 
Reasons for stopping the system: "alarm battery is 

on" and "alarm reservoir is on" were removed.   Formal specification of the guarantee "stopContinuousInfusion." 

FR3 
Reasons for stopping the system: "bolus infusion is 

confirmed by the user" was included. Formal specification of the guarantee "stopContinuousInfusion." 

FR4 
Reasons for restart the system: "bolus infusion is 

finished" was included. 
Formal specification of the guarantee "restartContinuousInfusion." The 

need to create the system variable "bolusInfusionIsOff." 

FR2.1 
More details for run continuous infusion: IUR = 

IUR – 0.1 and TIUR = TIUR – 0.1. 
Need to create system variables to specify the guarantee "runContinuousIn-

fusion." 

FR8.2 

We changed "If battery alarm is on and the battery 
level is greater than 10% charged, then the system 
should turn off the battery alarm." to "If the battery level 
is greater than 10%, then the system should turn off the 
battery alarm." 

Improvement and simplification of the guarantee "checkBatteryLevel." 

NFR2 
Creation of a new NFR : "Battery level never goes 

up." Improvement and simplification of the guarantee "checkBatteryLevel." 

NFR3 
Creation of a new NFR: "Micro infusion and col-

lecting plunger should never happen together." Formal specification of the guarantee "changeReservoir." 

FR5 
"Store TIUR whenever shut down the system." was 

included. 
Formal specification of the guarantees "changeBattery" and "storeTIUR-

WheneverShutDown." 

FR1.1 
"To collect the plunger for start position." was re-

moved.  Formal specification of the guarantees related to "Initialize System." 

FR1.1 

We changed "To get the confirmation from the user 
that reservoir is connected" to "To get the confirmation 
from the user that the plunger is at the start position (this 
is manually done by the user) and the reservoir is con-
nected."  Formal specification of the guarantees related to "Initialize System." 

FR2.1 

We included the definition of TBMI (time between 
micro infusion) and added it into the textual require-
ment. Formal specification of the guarantee "runContinuousInfusion." 

FR2.1 
We included "Every TBMI a MI must be per-

formed. " Formal specification of the guarantee "runContinuousInfusion." 

FR1.1 

We removed "to save current time T (hour + 
minutes) for further recovery" when LSS = "normal". 
We checked that the current time is not further used. Formal specification of the guarantees related to "Initialize System." 

FR5 
"Set LSS = 'normal' whenever shut down the sys-

tem." was included. Formal specification of the guarantee "turnOffSystem." 

FR6 
We included "If the microinfusion is running, it 

must be stopped." Formal specification of the guarantee "configureBasalProfile." 

FR1.1 
We removed " To set LSS = 'normal' " when LSS = 

"first use". Formal specification of the guarantees related to "Initialize System." 

FR1.1 
We removed " To set LSS = 'normal' " when LSS = 

"changing battery". Formal specification of the guarantees related to "Initialize System." 
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The second requirement specified using Spectra was 
FR10. It is a simpler requirement than FR1, and there is a 
low relationship between them, which seemed to us a good 
candidate to be a second requirement to be specified using 
Spectra. We can see that the specification time ratio of the 
FR10 (0.43) is significantly less than the FR1 (1.29), even 
better for Spectra specification than textual specification 
(that was a real surprise). The same situation we observed in 
requirements FR2, FR6, and FR9. We believe that the reason 
for this finding is twofold: (1) the advance in the learning 
curve with Spectra; and (2) for simpler requirements, which 
mean requirements well-structured with cohesive function-
ality, it is faster to write Spectra specification than textual 
specification. 

 
Figure 4. Comparison between the time spent for specification (for each 

requirement). 
  

 
Figure 5. Total time spent for specification of all requirements. 

 

5.3 Benefits and Difficulties along with the For-
mal Specification (RQ2) 
In this section, we highlight the benefits and difficulties 
found along the formal specification using Spectra. The pros 
and cons commented in this section are only related to the 
requirements engineering process using Spectra. However, it 
is important to say that Spectra has a potential impact on the 
whole software development process. Other steps of the soft-
ware development process besides the requirement process 
are out of scope of this study. 

The main benefits are commented on below: 
Separation of concerns between system and environment. 

This separation of concerns is quite beneficial for the con-
ception of the system and the system requirements being 
specified. When specifying the requirements using Spectra, 
it is necessary to identify what variables belong to the system 
from those that belong to the environment. The separation of 

concerns helped to make the LCIIP requirements clearer. 
The initial version of the LCIIP requirements (textual re-
quirements presented in section 4.2) was produced without 
the separation of concerns required by Spectra. Steps 1, 2, 
and 3 presented in Figure 3 were performed in order to ad-
dress the separation of concerns demanded by Spectra. After 
the system and environment variables were identified, it be-
came easier to find the guarantees and the assumptions aris-
ing from the textual requirements. The requirements became 
more consistent and organized after the separation of con-
cerns. 

Requirements Formalization as a Requirements Valida-
tion Process. The formalization process of the textual re-
quirements specification into Spectra specification inevita-
bly forced the realization of a validation process of the tex-
tual requirements. During the formalization of the require-
ments into the Spectra specification, several inconsistencies 
and incompleteness were detected in the textual require-
ments. Table 2 shows the changes and the triggers that moti-
vated the changes in the textual requirements during the for-
malization of the requirements specification. There were 16 
changes in total. Figure 6 shows the number of changes re-
garding requirements. The requirement problems presented 
in Table 2 only were detected during the formalization of the 
requirements, which we can see as a requirements validation 
process as well. This is a plus of using Spectra as a specifi-
cation approach, taking into account that the formalization 
process will impact the rest of the software development pro-
cess, not only the requirements engineering activity. 

 
Figure 6. Number of changes by requirements after the requirements 

formalization (transformation to Spectra Specification). 
 

The main difficulties are commented on below: 
Learning curve (RQ1.1). It is always present when any 

new technology is going to be adopted. Spectra is a specifi-
cation (formal) language for reactive systems, which is an 
automated procedure to obtain a correct-by-construction re-
active system from a given specification [23]. We write 
Spectra specifications with the intention to find an imple-
mentation that satisfies the GR(1). A GR(1) specification 
consists of assumptions, which have to be satisfied by the 
environment, and guarantees, which have to be satisfied by 
the system [14]. So, the learning curve of Spectra was related 
mainly to understanding and correctly use the temporal op-
erators of GR(1). As commented in section 4.4, participant 
P1 had no previous contact with Spectra or GR(1) concepts; 
however, with just seven hours of study, it was possible to 
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initiate the first specifications. The experience got along with 
this case study showed that the learning curve of Spectra can 
be considered as low for practitioners and students with a 
background in software engineering.  

The semantics of the textual requirements captured by 
Spectra (RQ3).  When we transform one specification writ-
ten in one language to another there is always the problem of 
assuring if the original meaning (semantics of the original 
specification) was preserved after the transformation. Along 
with this case study, we tried to transform textual require-
ments into Spectra specifications; however, there was not a 
systematic process to guaranty that the original meaning of 
the textual requirements is completely preserved in the Spec-
tra specification. The verification process to check if the 
original meaning was preserved was performed in an ad hoc 
way, based on the perceptions and experience of the partici-
pants P1 and P2, which is, of course, subjective. The main 
focus of Spectra is on the specification of the rules that cover 
temporal aspects of the dynamic control of the system. The 
textual specifications transformed throughout the case study 
did not take into account user interface aspects; just rules re-
lated to the internal control of the system were considered. 
In order to verify if the original semantics of the textual re-
quirements was preserved in the Spectra specifications, it is 
necessary the definition of proper metrics. Again, this is a 
problem faced when one uses any formal methods; it is not 
a particular problem of Spectra language. 

6 Conclusion 
In this paper, we presented a case study that investigates the 
benefits and difficulties in transforming SCS requirements 
written in natural language into specifications written in 
Spectra language. The most relevant findings from this study 
and their implications for further research are as follows. 

Transformation process. The basis for the development 
of any software comes from the correct specification of its 
requirements. Typically, requirements are written in natural 
language. The first bottleneck in the use of formal languages 
appears when we have to transform textual requirements into 
formal specifications. Throughout this case study, we pro-
posed a process that helps the software engineer transform 
requirements into formal specifications. In this process, we 
present a first approach indicating some helpful steps for 
transforming requirements into Spectra specifications. This 
process was used as a framework to organize the Spectra 
specifications for the low-cost insulin infusion pump system. 
The process needs to be refined and tested in other case stud-
ies. 

Validation process. The transformation process of tex-
tual requirements into Spectra specifications showed several 
inconsistencies and inaccuracies in the original textual re-
quirements. The formal specification requires a detailing of 
terms and rules that is unparalleled in the natural language 
specification. Thus, during the formal specification, we no-
ticed that 7 out of 10 requirements had some imprecision that 
required change and correction. In total, 16 inaccuracies 
were detected and corrected. Therefore, an interesting find-
ing was that the transformation process automatically built 

into a requirements validation process. This requirements 
validation process is a valuable subproduct from the trans-
formation process, which inevitably forces a broad assess-
ment of the originally specified requirements. As future re-
search, we suggest carrying out experiments to compare tra-
ditional requirements validation approaches with the valida-
tion provided by the transformation process in the context of 
formal languages. 

Learning Curve. Surprisingly, the Spectra language 
learning curve proved to be short in this case study. As de-
scribed throughout the article, participant P1 had no prior 
knowledge of the Spectra language. Despite the promising 
results, other studies and experiments need to be carried out 
to show how developers from different backgrounds and ex-
periences perceive the effective learning and use of the Spec-
tra language. Moreover, it seems to us that it is worthwhile 
to carry out comparative studies on the learning curve of 
Spectra with other formal languages, particularly in the con-
text of using these languages for the development of safety-
critical software. 

Requirement semantics. Maintaining the semantics of 
the original requirements in the formal specifications pro-
duced after the transformation is still a challenge. This is an 
open problem that deserves research effort by the software 
engineering community, which is not particular when using 
Spectra. 
 

As future work, we intend to extend the use of the Spectra 
language to specify new requirements for the insulin infu-
sion pump that we are developing in cooperation with a Bra-
zilian company. Furthermore, we intend to carry out other 
case studies involving software requirements for safety-crit-
ical systems, in the healthcare, aviation and automotive do-
mains, in order to confirm the potential of the Spectra lan-
guage as a valuable tool in the requirements specification 
and validation process. 
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