

Journal of Software Engineering Research and Development, 2024, 12:16, doi: 10.5753/jserd.2024.3745
 This work is licensed under a Creative Commons Attribution 4.0 International License.

From Textual to Formal Requirements: A Case Study
Using Spectra in Safety-Critical Systems Domain
Luiz Eduardo Galvão Martins [Universidade Federal de São Paulo | legmartins@unifesp.br]

Abstract

The requirements specification of any system is crucial for the correct development of the systems and soft-
ware. It becomes even more relevant in the development of safety-critical systems (SCS). This paper aims to
investigate the process of transforming requirements specification written in natural language (textual require-
ments) to requirements specification written in Spectra language (formal requirements). Spectra is a formal lan-
guage built to specify reactive systems. The case study carried out in this research focuses on the requirements
specification of a low-cost insulin infusion pump. The requirements were initially specified in natural language
and later transformed into Spectra language. During the transformation process, we investigated the potential use
of the Spectra language in the phase of requirements specification, identifying the difficulties in the transformation
process and its advantages, taking into account the software engineer's point of view.

Keywords: Textual Requirements, Formal Requirements, Spectra specification, Spectra Language

1 Introduction
Safety-Critical Systems (SCS) are increasingly present in the
daily lives of modern societies, which are becoming heavily
dependent on these systems. SCS are Man-made systems,
which are based on computational technology, in which
eventual defects or failures may cause accidents that put hu-
man life at risk or cause damage to the environment or prop-
erty (Hatcliff et al. 2014)(Leveson 2011)(Heimdahl 2007).
SCS are present in aviation systems, automotive systems,
control of industrial plants (chemical, oil, nuclear), medical
devices, railroad control, defense, and aerospace systems,
among others (Leveson 2011)(Nair et al. 2015).

The requirements specification of any system is crucial
for its correct development, and it becomes even more rele-
vant for the development of SCS (Sommerville 2015)(Miller
et al. 2006). Requirements Engineering is the discipline that
focuses on the development of techniques, methods, pro-
cesses, and tools that assist in the design of software and sys-
tems, covering the activities of elicitation, analysis, modeling
and specification, verification and validation, and manage-
ment of requirements (Sommerville 2015). The complete
specification of software requirements establishes the basis
for its architectural design and offers a description of the
functional and quality aspects that should guide the imple-
mentation and software evolution.

The adoption of formal methods for specifying the re-
quirements for SCS has been advocated by many researchers
in recent decades (Miller et al. 2006)(Martins and Gorschek
2016). One of the main acclaimed benefits is that the speci-
fied requirements would become complete, consistent, and
unambiguous, thanks to the rigor of formal methods. How-
ever, formal methods are still little used by SCS developers,
the reports of using such methods in literature usually apply
to illustrative exercises or pilot projects, not becoming an ex-
tensive practice within the SCS industry (Martins and Gor-
schek 2017). The reasons usually indicated for non-adher-
ence to formal methods are (Bozzano and Villafiorita
2006)(Hu et al. 2007): formal methods are difficult to use,

requiring prior knowledge of the specific mathematical lan-
guage; few people have the knowledge to properly under-
stand and use formal methods; formal languages are not suit-
able for raising requirements with system stakeholders, as
they are complex and have a long learning curve. The re-
quirements specification documents produced by profession-
als who develop critical systems and software worldwide are
still essentially based on natural language (textual require-
ments) (Martins and Gorschek 2016)(Martins and Gorschek
2017). On the one hand, this practice facilitates communica-
tion between stakeholders, on the other hand, it makes re-
quirements specifications subject to inconsistencies and am-
biguities (Liu et al. 1995)(Chen 2009)(Miller et al. 2006) .

A possibility to increase the interest of SCS developers in
adopting formal methods for specifying their systems and
software would require using a process capable of helping
practitioners transform the requirements specified in natural
language into requirements specified in formal language. The
study presented in this paper aims to investigate the develop-
ment of such a process in order to easily, quickly, and safely
transform SCS requirements written in natural language to
specifications written in Spectra language. Spectra is a for-
mal specification language for reactive systems, a category
in which SCS normally falls. Spectra supports temporal con-
structs and others that allow system engineers and software
engineers to make concepts such as monitoring and counting
explicit in their specifications (Maoz and Ringert 2021a). We
chose Spectra as the formal language for this study, moti-
vated by the novelty of this language and its potential to in-
crease the productivity of software engineers throughout the
software development lifecycle.

In addition to the formal language, Spectra proponents
provide a tool environment for synthesizing Spectra specifi-
cations for Java code, enabling software development to be
truly driven by specifications. Along with this paper, we pre-
sent and discuss the results obtained from a case study per-
formed in a SCS domain, particularly in the domain of med-
ical devices. The case study focused on the requirements
specification of a low-cost insulin infusion pump under

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

development with a Brazilian company. The requirements
were initially specified in natural language and later trans-
formed into Spectra language. We tried to answer the follow-
ing research questions throughout the case study: What steps
are necessary to convert textual requirements specification
into Spectra specification? What is the learning curve of
Spectra? What are the benefits and difficulties in the trans-
formation process? Does Spectra language properly capture
the semantics of the textual requirements?

The remainder of this paper is organized as follows: In
Section 2, we present background and related work; in Sec-
tion 3, we present the methodology adopted to conduct the
study; in Section 4, we present the case study carried out; in
Section 5 we discuss the results obtained from the case study,
and in Section 6 we present the conclusion and final remarks.

2 Background and Related Work

2.1 Definitions
In order to set the scope and make clear the adopted terms
used in this research, and to ensure consistency throughout
this paper, we present the following definitions, organized in
alphabetical order:

Formal Language. A language used by software engi-
neers to specify constraints and operations of the system ac-
curately and unambiguously. A formal language is based on
mathematical constructs.

Formal requirements. A set of system or software re-
quirements specified using a formal language.

Natural Language. It is an informal language used by
software engineers to write software requirements docu-
ments.

Spectra language. A formal specification language for
reactive systems, the category that critical systems typically
fall into.

Spectra specification. A software specification pro-
duced using Spectra language.

Textual requirements. A set of system or software re-
quirements specified using a natural language.

2.2 Spectra
The Spectra language is a formally verified software/system
specification language developed for modelling reactive sys-
tems (Maoz and Ringert 2019)(Maoz and Ringert 2021a).
Reactive systems are systems that continuously interact with
their environment and respond to external events in real
time, such as air traffic control systems, industrial automa-
tion, and software embedded in vehicles. Important features
of the Spectra language are the following: (i) Formal Speci-
fication: It allows to specify system and software in a formal
and precise manner, facilitating the automatic verification of
desired properties; (ii) Model Checking: Using Spectra, we
can check whether a system model meets specified require-
ments, this is done through formal verification techniques,
such as model checking, to ensure that the system satisfies
all specified properties; (iii) Automation: The language was
designed to be compatible with automation tools, allowing
the automatic generation of tests and the synthesis of con-
trollers that guarantee compliance with requirements; and

(iv) Support for Reactive Systems: It was specifically de-
signed to deal with the complexity of reactive systems, of-
fering constructs that facilitate the modelling of dynamic be-
haviours and continuous interaction with the environment.

Spectra supports temporal constructs, as well as other
constructs that allow systems engineers and software engi-
neers to make concepts like tracking and counting explicit in
their specifications (Maoz and Ringert 2019) (Maoz and
Ringert 2021a) (Maoz and Ringert 2021b). The following is
a list of the main features available in the Spectra language:

Module declaration. Every Spectra specification docu-
ment is treated as a module. Each module is defined as a sep-
arate file.

Variable declarations. The variables defined in the
specifications can be classified in two ways: as environment
variables or as variables controlled by the system. Both can
be Boolean, Int, or Enumeration types.

Assumptions and guarantees. The behavior of the en-
vironment, observable by the variables controlled by the en-
vironment, is described through assumptions. The required
behavior of the system is described by means of guarantees.

PastLTL operators. PastLTL operators evaluate formu-
las over past interactions between the system and the envi-
ronment. The available operators are PREV, ONCE, HIS-
TORICALLY, SINCE, TRIGGERED.

Predicate definitions. Predicates allow encapsulation
and reuse of parameterized Boolean expressions.

Monitor definitions. Monitors are used to track events
over time.

Counter definitions. The following operations can be
applied to counters: inc, dec, reset, overflow, underflow.

Pattern definitions. Standard definitions can be used to
reuse specification units.

Weight definitions. The language allows the definition
of integer weights on states and transitions of a specification.

The specifications produced with the Spectra language
can be analyzed by a set of software tools (Spectra Tools),
which include the synthesis of controllers that satisfy the
produced specifications, since these specifications are real-
izable (Bozzano and Villafiorita 2006)(Ma'ayan 2022)
(Ma'ayan and Maoz 2023). Spectra Tools will automatically
attempt to find and produce an implementation that satisfies
the GR(1) specification (Bloem 2012)(Amram et al. 2022)(
Gorenstein et al. 2024). A GR(1) specification consists of
assumptions, which must be satisfied by the environment,
and guarantees, which must be satisfied by the system, i.e.,
by the synthesized implementation. For more details see
https://smlab.cs.tau.ac.il/syntech/spectra/ .

2.2 Related Work
Sayar and Souquières (2019) proposed development patterns
to formalize requirements describing constraints and se-
quences. The formal method used by them is the Event-B
method. However, they believe that any formal method can
be used with the development patterns proposed by them.
Throughout the paper, they present and discuss two patterns:

https://smlab.cs.tau.ac.il/syntech/spectra/

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

(1) a conditional pattern Dev-if that describes a constraint on
the system functionality; and (2) a sequential pattern Dev-
seq that “helps the developer to automatically introduce the
order between existing operations of a given system” [18].
They show two examples of how to apply the proposed pat-
terns in a hemodialysis case study.

Cabral and Sampaio (2008) propose a strategy that auto-
matically translates use cases written in a controlled natural
language (CNL) into the specification in CSP process alge-
bra. The system requirements are organized as use cases
written in CNL using imperative and declarative sentences.
Imperative sentences allow writing the actions performed by
the system actors, while declarative sentences describe char-
acteristics, constraints, and states of the system. The gram-
matical rules adopted to write use cases are defined based on
the knowledge bases that map verbs to CSP channels and
verb complements to values of CSP datatypes.

Jin et al. (2010) propose a concern-based approach to
generating formal requirements specification from textual
requirements document, which applies “separation of con-
cerns during requirements analysis and utilizes concerns and
their relationships to bridge the gap between textual require-
ments statements and formal requirements documentation”.
The formal specification generated is mainly represented by
tabular expressions. Throughout the paper, a light control
system is used to show the application of the approach.

Walter et al. (2017) propose a solution to detect redun-
dant specifications and test statements described in struc-
tured natural language. They present and discuss formaliza-
tion process for requirements specification and test state-
ments, allowing them to detect redundant statements and re-
duce the efforts for specification and validation. The formal-
ization process is based on the Specification Pattern Systems
and Linear Temporal Logic. They evaluated the process in
the context of Mercedes-Benz Passenger Car Development.

Ma'ayan and Maoz (2023) conducted an exploratory case
study in which they followed students in a semester-long
university workshop class on their end-to-end use of a reac-
tive synthesizer, from writing the specifications to executing
the synthesized controllers. Along this case study they col-
lected more than 500 versions of more than 80 specifica-
tions, as well as more than 2500 Slack messages written by
the class participants. Based on the collected data they pro-
pose guidelines in the directions of language and specifica-
tion quality, tools for analysis and execution, process and
methodology, all towards making reactive synthesis more
applicable for software engineers.

Gorenstein, Maoz, and Ringert (2024) present two con-
tributions to deal with Non-Well-Separation (NWS). In the
first contribution they show how to synthesize systems that
avoid taking advantage of NWS, i.e., do not prevent the sat-
isfaction of any environmental assumption, even if possible.
In the second contribution the authors propose a set of heu-
ristics for the fast detection of NWS. They carried out eval-
uations over benchmarks from the literature showing the ef-
fectiveness and significance of their contributions.

3 Methodology
In order to investigate the transformation of textual to formal
requirements, we chose to apply a qualitative research ap-
proach adopting a case study (Wohlin et al. 2012)(Robson
2002) as the strategy to reach the research goals. This study
aims to obtain an in-depth understanding of the difficulties
and benefits of using the Spectra language to specify the
software requirements of a SCS. Table 1 shows the research
questions that drove our investigation.

Table 1. Research Questions.

3.1 Study Design
This investigation was divided into three parts: planning, ex-
ecution, and analysis.

Planning. As part of the planning of the study, we de-
cided to adopt a case study as a research approach. The case
study was conducted in a medical device domain. Two peo-
ple participated in the case study. The profiles of the partic-
ipants are presented as follows:
• Participant P1:

o Background in software engineering with more
than 20 years of experience in requirements spec-
ification and software development.

o High knowledge about the requirements of the
chosen system (insulin infusion pump). Five years
of experience in insulin infusion pump software
development.

o No previous skills in Spectra language.
• Participant P2:

o Background in computer science and software en-
gineering with more than 15 years of experience
in formal methods.

o No previous knowledge about the requirements of
the chosen system (insulin infusion pump).

o More than eight years of experience with Spectra
language.

Research Questions Aims
RQ1: What steps are neces-
sary to convert textual re-
quirements specification to
Spectra specification?

To understand the main learn-
ing elements, concepts, and
tasks to be executed to convert
a textual requirements specifi-
cation to a Spectra specifica-
tion.

RQ1.1: How long does it
take?

To measure the learning curve
of Spectra and compare the
time necessary to produce a
Spectra specification in relation
to the textual specification.

RQ2: What are the benefits
and difficulties?

To identify the main benefits
and difficulties in adopting
Spectra language to write for-
mal requirements specifica-
tions.

RQ3: Are the semantics of
the textual requirements
well captured by Spectra?

To analyze the power of Spec-
tra in capturing the semantics
of textual requirements.

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

The variables managed and observed along the case

study were the following:
• System requirements knowledge (independent);
• Spectra skill (independent);
• Effort to write the textual requirements (dependent);
• Effort to write the Spectra specification (dependent);
• Captured semantics (dependent).

Execution. The execution of the case study was divided

into four steps: (i) To write the textual requirements of the
chosen system; (ii) To get a background of Spectra language;
(iii) To transform the textual requirements into a Spectra
specification, and (iv) To validate the Spectra specification.
The details of the execution of the case study are presented
in Figure 1.

Analysis. A quantitative and qualitative analysis of the
results was performed. A quantitative analysis was per-
formed considering the time spent writing the textual re-
quirements, learning the basics of Spectra, and writing Spec-
tra specifications. A qualitative analysis was performed fo-
cusing on the difficulties of using Spectra and the benefits of
using it as a tool for a formal requirements specification.

3.2 Threats to Validity
The main threat to the validity of this study is related to the
biases of the case study participants. The results obtained are
obviously dependent on the experience and capabilities of
the two participants who carried out the case study. How-
ever, since we do not intend to generalize the results to other
cases, we believe that the results are helpful for an analysis
of the use of Spectra language in the formal requirements

specification in safety-critical systems context. Moreover,
the extensive experience of the case study participants, both
in software requirements specification and in software spec-
ification with the Spectra language, are factors that
strengthen the obtained results.

4 Case Study
In this section, we describe the case study performed.

4.1 Context
The case study was carried out in a safety-critical system do-
main related to developing a medical device. The chosen
system was developing a low-cost insulin infusion pump
(LCIIP), which is under development in a Brazilian company
in cooperation with participant P1. The first step of the case
study was to write the requirements of the LCIIP in a format
of textual requirements. The textual requirements were writ-
ten by P1 and reviewed by P2. The second step was to get
started with Spectra Language by P1, which had no previous
contact. The third step was to transform the textual require-
ments specification into Spectra specification. This step was
performed in cooperation between P1 and P2. The fourth
step was the validation of the Spectra specification, which
was performed for both participants. Steps 3 and 4 were per-
formed in an iterative loop. The flow of the steps is shown
in Figure 1. The entire case study was carried out in three
months, with full time participation of P1 and part time par-
ticipation of P2.

Figure 1. The steps of the execution of the case study.

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

4.2 Textual Requirements of the LCIIP
The textual requirements specification is organized into two
parts: a glossary of terms used in the specification and the
functional requirements of the LCIIP. The functional re-
quirements are identified by numbers. For each requirement,
the time spent (in minutes) was recorded during the specifi-
cation.

Glossary and Acronyms:
• Basal infusion: It is a continuous insulin infusion, which

should run 24 hours/day until the insulin reservoir is
empty (TIUR <=10.0). The basal infusion follows the
basal profile previously configured by the user.

• Basal profile: It is divided into 24-time slots (from #0 to
#23) corresponding to the 24 hours of the day. The user
should configure the insulin units to be infused along
each hour of the day. The system will infuse the insulin
for 24 hours according to the basal profile defined by the
user, changing the amount of insulin each hour of the day
according to the user definition.

• Bolus infusion: It is a fast insulin infusion, which occurs
according to the user's needs. Bolus infusion is actioned
by the user.

• FMI: Frequency of micro infusion along one hour. FMI
= (IU/6) x 60 MI/hour. It should be calculated for each
time slot.

• Insulin reservoir: It was adopted a 3ml syringe as an in-
sulin reservoir. The syringe is filled by the user. 300 IU
is the syringe's full capacity. It must be filled with the
full capacity.

• IU: Insulin units. Allowed range: 0 <= IU <= 6.0, which
means that 6 IU is the max limit for one hour of infusion
(0.1 IU/min), considering only the basal infusion.

• IUB: Insulin units for bolus infusion.
• IUR: Insulin units remaining (for each time slot).
• LCD: Liquid crystal display.
• LSS: Last status of the system. Values: “first use”; “nor-

mal”; “changing battery”.
• MI: Micro infusion. A MI occurs according to the FMI

(the step motor runs N steps every M seconds). Every
micro infusion corresponds to 0.1 IU. One IU corre-
sponds to 0.01ml of insulin.

• MIC: Micro infusion counter. Every MI implies MIC =
MIC +1.

• T: Saved current time (hour + minutes).
• TBMI: Time between micro infusions. TBMI =

3600/FMI seconds.
• TIUR: Total insulin units remaining (for the whole res-

ervoir).
• TLB: Time when occurred the last bolus infusion.
• TR: Time when the system is restarted.
• TRS: Time remained stopped (TRS = TR – T)
• TSLB: Time since last bolus infusion (TSLB = current

time – TLB).

Functional Requirements:
1. Turn on (7 min.)

Description: The user pushes the “power on/off” button
to turn on the system. If the battery is correctly placed
and is charged, then the system is initialized.
1.1 Initialize system (1h25min.)
Description: The system should check LSS:
• Case LSS = “first use” then the system should:

o To get the confirmation from the user that
the plunger is at the start position (this is
manually done by the user) and the reser-
voir is connected.

o To set TIUR = 300.
o To show the TIUR on the LCD.
o To wait for the user command.

• Case LSS = “changing battery” then the system
should:
o To recovery TIUR.
o To show the TIUR on the LCD.
o If continuous infusion was running before to

change the battery, then to perform FR4,
else to wait for the user command.

• Case LSS = “normal” then the system should:
o To recovery TIUR.
o To show the TIUR on the LCD.
o To wait for the user command.

2. Start continuous infusion (2 min.)

Description: The user pushes “Start button”. The system
runs continuous infusion.
2.1 Run continuous infusion (2h44min.)
Description: Continuous infusion is performed driven
by the basal profile previously defined by the user. The
system gets corresponding IU from the basal profile and
calculates FMI and TBMI. Every TBMI, a MI must be
performed. After each MI, the IUR and the TIUR should
be calculated and showed on the LCD. After each MI:
IUR = IUR – 0.1 and TIUR = TIUR – 0.1.
• At every full hour change, the system must override

the IU and the IUR and recalculate FMI and TBMI.
• Every minute to perform FR8.
• Every minute to perform FR10.
• Every MI implies MIC = MIC +1.

3. Stop continuous infusion (31 min.)
Description: Continuous infusion can be stopped for
three reasons: (1) "Stop" button is pushed by the user;
(2) "Change" button is pushed by the user; and (3) Bolus
infusion is confirmed by the user. When the continuous
infusion is stopped, the system should save current time
T (hour + minutes) for further recovery.

4. Restart continuous infusion (1h07 min.)
Description: The system should restart when the user
pushes “Restart button”; or when bolus infusion is fin-
ished (in the case of the continuous infusion has stopped
because of the bolus infusion). When continuous infu-
sion restarts, time T (hour + minutes when the system

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

was stopped) should be recovered. Then the system
should:
• To get the current time (hour + minutes) when the

system is restarted (TR).
• To calculate how long the system remained stopped

(TRS = TR - T) and show TRS on the LCD.
• To perform FR2.1.

5. Turn off (5 min.)

Description: The user pushes “power on/off” button for
more than 5 seconds. The user shall confirm if he/she
really wants to shut down the system. Set LSS = “nor-
mal” and store TIUR whenever shut down the system.

6. Configure basal profile (25 min.)
Description: The user pushes "basal profile" button. If
the continuous infusion is running, it must be stopped.
For each hour of the day (from #0 to #23), the user
should set IU to be infused.
• Allowed range: 0 <= IU <= 6.0.
• After IU is set, set IUR = IU (for each time slot).
• The user shall set all 24-time slots to complete a

profile. The user is forced to inform IU of each time
slot.

• After time slot #23 is filled, the system should:
o To show the TIUR (main screen).
o To wait for the user command.

7. Set bolus infusion (10 min.)
Description: The user pushes the "Bolus" button to turn
on the bolus infusion mode. The user should set IUB to
be infused. The system asks the user for confirmation.
• 0 < IUB <= 30.0.
• TSLB >= 1h.
7.1 Confirm bolus infusion (11 min.)

Description: The user pushes the "Enter" button to
confirm the bolus infusion. After confirmation, the
system should:
• To perform FR3.
• To proceed with the bolus infusion.
• To update TIUR (TIUR = TIUR – IUB)
• To save TLB.
• If the system was running continuous infusion

before bolus infusion, then perform FR4, else:
o To show the TIUR on the LCD.
o To wait for the user command.

7.2 Cancel bolus infusion (4 min.)
Description: The user pushes the "Cancel" button to
cancel the bolus infusion. If the bolus infusion has
started, it cannot be canceled anymore.

8. Check battery level (5 min.)

Description: Every minute, the system should check the
battery level, and the battery icon should be updated.
8.1 Turn on battery alarm (14 min.)

Description: If the battery level is less or equal to
10% charged, then the system should:

• To ring the alarm sound.
• To show a message on the LCD.

8.2 Turn off battery alarm (7 min.)
Description: If the battery level is greater than 10%,
then the system should turn off the battery alarm.

9. Change component (19 min.)

Description: The user pushes “Change” button. The user
may choose “battery”, “reservoir”, or “cancel” option.
9.1 Change battery (13 min.)

Description: The system should:
• If the continuous infusion is running, then per-

form FR3.
• To save TIUR.
• To set LSS = “changing battery”.
• To Shut down the system.

9.2 Change reservoir (14 min.)
Description: The system should:
• If the continuous infusion is running, then

perform FR3.
• To collect the plunger at the starting position.
• To get confirmation from the user that the res-

ervoir was changed.
• To set TIUR = 300.
• If continuous infusion was running, then to

perform FR4.
9.3 Cancel (1 min.)

Description: The system should show the TIUR
(main screen).

10. Check reservoir level (9 min.)

Description: Every minute, the system should check
the reservoir level, and the reservoir icon should be up-
dated.

10.1 Turn on reservoir alarm (10 min.)
Description: If the TIUR <=10.0, then the system
should:

• To ring the alarm sound.
• To show a message on the LCD.

10.2 Turn off reservoir alarm (4 min.)
Description: If TIUR >10.0, then the system should
turn off the reservoir alarm.

4.3 Textual Requirements Validation
The textual requirements were written by P1, based on five
years of his experience in the development of a low-cost in-
sulin infusion pump prototype in cooperation with a Brazil-
ian company. The requirements validation was based on an
inspection process. The textual requirements presented in
section 4.2 were specifically written for this case study. P1
produced the first version of the textual requirements, which
was reviewed by P2. The intention at this stage of the re-
quirements validation was to assure that P2 could com-
pletely understand the requirements of the LCIIP.

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

Figure 2. Formal requirements specification of the LCIIP using Spectra.

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

As stated in section 3.1, P2 had no previous knowledge
about requirements of the LCIIP. After a few interactions of
the inspection process, the textual requirements received few
adjustments becoming clearer to P2.

During the inspection process, P2 read the requirements
document, highlighting the points that raised doubts or diffi-
culty in understanding. The main doubts raised by P2 were
not about the requirements themselves, but rather about
some concepts specific to the problem domain, such as basal
infusion, bolus infusion, basal profile and micro infusion.

A glossary of terms (presented in section 4.2) was created
and included in the requirements document with the inten-
tion of making these concepts explicit.

4.4 Getting started with Spectra
As explained in Section 3.1, P1 had no previous experience
with Spectra language. In order to get started with Spectra,
P1 invested seven hours studying the document “Spectra
Language & Spectra Tools User Guide” [4]. This introduc-
tion to Spectra allowed to P1 starting with the first Spectra
specifications. A total of 37 hours were invested in learning
during the case study: 23 hours (P1 alone) + 14 hours (su-
pervised). The supervision was provided by P2.

4.5 Formal Requirements using Spectra
The textual requirements specification drove the whole
Spectra specification of the LCIIP. Spectra specification is a
formalization of the requirements of the LCIIP. Figure 2
shows the formal specification using Spectra for the func-
tional requirements FR1, FR1.1, FR2, FR2.2, FR7, FR7.1,
and FR7.2 of the LCIIP.

5 Results and Analysis
In this section, we present and analyze the results from the
case study. The analysis is organized according to the re-
search questions presented in section 3.

5.1 Steps to Convert Textual Requirements
Specification into Spectra Specification (RQ1)
Spectra specification for the LCIIP was built along with the
case study. This formal specification was based on the tex-
tual requirements specification created previously. Taken
into consideration the structure of the Spectra language, the
steps presented in Figure 3 were carried out to build a Spec-
tra specification for the LCIIP. The whole Spectra specifica-
tion for the LCIIP was written along with several iterations
of the loop presented in Figure 3.

The loop presented in Figure 3 is a simple and well-de-
fined process that we proposed to transform/convert textual
requirements specification into Spectra specification. As ex-
plained in Section 2, an important concept in Spectra is the
separation between system and environment. The variables
managed in Spectra should be defined as system variables or
environment variables. System variables are ruled by guar-
antees, and environment variables are ruled by assumptions.
Each step of the process presented in Figure 3 is explained as
follows.

1. Identify variables of interest: The identification of
variables of interest is the starting point for the process of
transforming textual requirements into Spectra specification.
These variables must be identified from the textual require-
ments. Such variables will be handled as system variables or
environment variables.

2. Create system variables: The creation of system var-
iables is already part of the transformation of textual require-
ments into Spectra specification. These variables are the con-
trol variables of the system or software that is being formally
specified. They will be used throughout the specifications of
the guarantee.

3. Create environment variables: The creation of envi-
ronment variables defines the variables that, although not
controlled by the system or software, interact with it and will
be used in specifying the assumptions.

4. Create guarantees: Guarantees will be the rules that
will control the system or software being specified. These
rules must be extracted from an interpretation of the func-
tional and non-functional requirements present in the textual
requirements.

Figure 3. Main steps to convert textual requirements specification into
Spectra specification.

5. Create assumptions: Assumptions must be created

based on the analysis of non-functional requirements present
in the textual requirements specification. Assumptions are
rules that describe the environment’s behavior.

6. Adjust and create new guarantees: After carrying
out the previous steps, a minimum Spectra specification has
already been produced. However, the correct interaction be-
tween the created rules (assumptions and guarantees) will re-
quire a process of refining these rules, based on a correct in-
terpretation of the textual requirements. Both specifications

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

(textual and Spectra) feed themselves throughout this refine-
ment process.

In Figure 2, every rule initiated with gar means it is a
guarantee. One difficulty we found during this process was
to create rules to maintain consistency among the guarantees.
Step 6 of the loop was executed several times until all con-
flicts among the guarantees were solved.

5.2 Time Spent for Specification (RQ1.1)
One dependent variable we measured along with the case
study was the time spent on specification. We measured the
time spent on textual requirements specification and the time
spent for Spectra specification. Figures 4 and 5 show the re-
sults in terms of the time for specifications. Figure 4 shows
the comparison between the time spent for specification
when used both approaches: the traditional approach based
on textual specification and the innovative approach based
on Spectra specification. As we can see in Figure 5, the total

time spent for textual requirements specification was 512
minutes and 743 minutes for Spectra specification. Consid-
ering all the requirements, the time for specification using
Spectra was 45% greater than using textual specification.
The average rate of time spent between the two approaches
was 1.45. Considering that the use of Spectra demanded a
learning curve, we already expected that the time spent on
specification using Spectra would be greater than using nat-
ural language (textual specification). However, it was a sur-
prise that the average ratio between both approaches was just
1.45.

The sequence of requirements presented in Figure 4 fol-
lows the chronology they were specified using Spectra. We
started the Spectra specification with FR1 because of two
reasons: (1) it seemed natural starting with the first require-
ments of the list presented in Section 4.2; and (2) it was con-
sidered a functional requirement of average complexity (ap-
propriate for the first incursion with Spectra language).

Table 2. Changes in Textual Requirements During the Formal Specification.

Rq

Change
(after the validation of the textual requirements) Trigger

FR3
Reasons for stopping the system: "alarm battery is

on" and "alarm reservoir is on" were removed. Formal specification of the guarantee "stopContinuousInfusion."

FR3
Reasons for stopping the system: "bolus infusion is

confirmed by the user" was included. Formal specification of the guarantee "stopContinuousInfusion."

FR4
Reasons for restart the system: "bolus infusion is

finished" was included.
Formal specification of the guarantee "restartContinuousInfusion." The

need to create the system variable "bolusInfusionIsOff."

FR2.1
More details for run continuous infusion: IUR =

IUR – 0.1 and TIUR = TIUR – 0.1.
Need to create system variables to specify the guarantee "runContinuousIn-

fusion."

FR8.2

We changed "If battery alarm is on and the battery
level is greater than 10% charged, then the system
should turn off the battery alarm." to "If the battery level
is greater than 10%, then the system should turn off the
battery alarm."

Improvement and simplification of the guarantee "checkBatteryLevel."

NFR2
Creation of a new NFR : "Battery level never goes

up." Improvement and simplification of the guarantee "checkBatteryLevel."

NFR3
Creation of a new NFR: "Micro infusion and col-

lecting plunger should never happen together." Formal specification of the guarantee "changeReservoir."

FR5
"Store TIUR whenever shut down the system." was

included.
Formal specification of the guarantees "changeBattery" and "storeTIUR-

WheneverShutDown."

FR1.1
"To collect the plunger for start position." was re-

moved. Formal specification of the guarantees related to "Initialize System."

FR1.1

We changed "To get the confirmation from the user
that reservoir is connected" to "To get the confirmation
from the user that the plunger is at the start position (this
is manually done by the user) and the reservoir is con-
nected." Formal specification of the guarantees related to "Initialize System."

FR2.1

We included the definition of TBMI (time between
micro infusion) and added it into the textual require-
ment. Formal specification of the guarantee "runContinuousInfusion."

FR2.1
We included "Every TBMI a MI must be per-

formed. " Formal specification of the guarantee "runContinuousInfusion."

FR1.1

We removed "to save current time T (hour +
minutes) for further recovery" when LSS = "normal".
We checked that the current time is not further used. Formal specification of the guarantees related to "Initialize System."

FR5
"Set LSS = 'normal' whenever shut down the sys-

tem." was included. Formal specification of the guarantee "turnOffSystem."

FR6
We included "If the microinfusion is running, it

must be stopped." Formal specification of the guarantee "configureBasalProfile."

FR1.1
We removed " To set LSS = 'normal' " when LSS =

"first use". Formal specification of the guarantees related to "Initialize System."

FR1.1
We removed " To set LSS = 'normal' " when LSS =

"changing battery". Formal specification of the guarantees related to "Initialize System."

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

The second requirement specified using Spectra was
FR10. It is a simpler requirement than FR1, and there is a
low relationship between them, which seemed to us a good
candidate to be a second requirement to be specified using
Spectra. We can see that the specification time ratio of the
FR10 (0.43) is significantly less than the FR1 (1.29), even
better for Spectra specification than textual specification
(that was a real surprise). The same situation we observed in
requirements FR2, FR6, and FR9. We believe that the reason
for this finding is twofold: (1) the advance in the learning
curve with Spectra; and (2) for simpler requirements, which
mean requirements well-structured with cohesive function-
ality, it is faster to write Spectra specification than textual
specification.

Figure 4. Comparison between the time spent for specification (for each

requirement).

Figure 5. Total time spent for specification of all requirements.

5.3 Benefits and Difficulties along with the For-
mal Specification (RQ2)
In this section, we highlight the benefits and difficulties
found along the formal specification using Spectra. The pros
and cons commented in this section are only related to the
requirements engineering process using Spectra. However, it
is important to say that Spectra has a potential impact on the
whole software development process. Other steps of the soft-
ware development process besides the requirement process
are out of scope of this study.

The main benefits are commented on below:
Separation of concerns between system and environment.

This separation of concerns is quite beneficial for the con-
ception of the system and the system requirements being
specified. When specifying the requirements using Spectra,
it is necessary to identify what variables belong to the system
from those that belong to the environment. The separation of

concerns helped to make the LCIIP requirements clearer.
The initial version of the LCIIP requirements (textual re-
quirements presented in section 4.2) was produced without
the separation of concerns required by Spectra. Steps 1, 2,
and 3 presented in Figure 3 were performed in order to ad-
dress the separation of concerns demanded by Spectra. After
the system and environment variables were identified, it be-
came easier to find the guarantees and the assumptions aris-
ing from the textual requirements. The requirements became
more consistent and organized after the separation of con-
cerns.

Requirements Formalization as a Requirements Valida-
tion Process. The formalization process of the textual re-
quirements specification into Spectra specification inevita-
bly forced the realization of a validation process of the tex-
tual requirements. During the formalization of the require-
ments into the Spectra specification, several inconsistencies
and incompleteness were detected in the textual require-
ments. Table 2 shows the changes and the triggers that moti-
vated the changes in the textual requirements during the for-
malization of the requirements specification. There were 16
changes in total. Figure 6 shows the number of changes re-
garding requirements. The requirement problems presented
in Table 2 only were detected during the formalization of the
requirements, which we can see as a requirements validation
process as well. This is a plus of using Spectra as a specifi-
cation approach, taking into account that the formalization
process will impact the rest of the software development pro-
cess, not only the requirements engineering activity.

Figure 6. Number of changes by requirements after the requirements

formalization (transformation to Spectra Specification).

The main difficulties are commented on below:
Learning curve (RQ1.1). It is always present when any

new technology is going to be adopted. Spectra is a specifi-
cation (formal) language for reactive systems, which is an
automated procedure to obtain a correct-by-construction re-
active system from a given specification [23]. We write
Spectra specifications with the intention to find an imple-
mentation that satisfies the GR(1). A GR(1) specification
consists of assumptions, which have to be satisfied by the
environment, and guarantees, which have to be satisfied by
the system [14]. So, the learning curve of Spectra was related
mainly to understanding and correctly use the temporal op-
erators of GR(1). As commented in section 4.4, participant
P1 had no previous contact with Spectra or GR(1) concepts;
however, with just seven hours of study, it was possible to

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

initiate the first specifications. The experience got along with
this case study showed that the learning curve of Spectra can
be considered as low for practitioners and students with a
background in software engineering.

The semantics of the textual requirements captured by
Spectra (RQ3). When we transform one specification writ-
ten in one language to another there is always the problem of
assuring if the original meaning (semantics of the original
specification) was preserved after the transformation. Along
with this case study, we tried to transform textual require-
ments into Spectra specifications; however, there was not a
systematic process to guaranty that the original meaning of
the textual requirements is completely preserved in the Spec-
tra specification. The verification process to check if the
original meaning was preserved was performed in an ad hoc
way, based on the perceptions and experience of the partici-
pants P1 and P2, which is, of course, subjective. The main
focus of Spectra is on the specification of the rules that cover
temporal aspects of the dynamic control of the system. The
textual specifications transformed throughout the case study
did not take into account user interface aspects; just rules re-
lated to the internal control of the system were considered.
In order to verify if the original semantics of the textual re-
quirements was preserved in the Spectra specifications, it is
necessary the definition of proper metrics. Again, this is a
problem faced when one uses any formal methods; it is not
a particular problem of Spectra language.

6 Conclusion
In this paper, we presented a case study that investigates the
benefits and difficulties in transforming SCS requirements
written in natural language into specifications written in
Spectra language. The most relevant findings from this study
and their implications for further research are as follows.

Transformation process. The basis for the development
of any software comes from the correct specification of its
requirements. Typically, requirements are written in natural
language. The first bottleneck in the use of formal languages
appears when we have to transform textual requirements into
formal specifications. Throughout this case study, we pro-
posed a process that helps the software engineer transform
requirements into formal specifications. In this process, we
present a first approach indicating some helpful steps for
transforming requirements into Spectra specifications. This
process was used as a framework to organize the Spectra
specifications for the low-cost insulin infusion pump system.
The process needs to be refined and tested in other case stud-
ies.

Validation process. The transformation process of tex-
tual requirements into Spectra specifications showed several
inconsistencies and inaccuracies in the original textual re-
quirements. The formal specification requires a detailing of
terms and rules that is unparalleled in the natural language
specification. Thus, during the formal specification, we no-
ticed that 7 out of 10 requirements had some imprecision that
required change and correction. In total, 16 inaccuracies
were detected and corrected. Therefore, an interesting find-
ing was that the transformation process automatically built

into a requirements validation process. This requirements
validation process is a valuable subproduct from the trans-
formation process, which inevitably forces a broad assess-
ment of the originally specified requirements. As future re-
search, we suggest carrying out experiments to compare tra-
ditional requirements validation approaches with the valida-
tion provided by the transformation process in the context of
formal languages.

Learning Curve. Surprisingly, the Spectra language
learning curve proved to be short in this case study. As de-
scribed throughout the article, participant P1 had no prior
knowledge of the Spectra language. Despite the promising
results, other studies and experiments need to be carried out
to show how developers from different backgrounds and ex-
periences perceive the effective learning and use of the Spec-
tra language. Moreover, it seems to us that it is worthwhile
to carry out comparative studies on the learning curve of
Spectra with other formal languages, particularly in the con-
text of using these languages for the development of safety-
critical software.

Requirement semantics. Maintaining the semantics of
the original requirements in the formal specifications pro-
duced after the transformation is still a challenge. This is an
open problem that deserves research effort by the software
engineering community, which is not particular when using
Spectra.

As future work, we intend to extend the use of the Spectra
language to specify new requirements for the insulin infu-
sion pump that we are developing in cooperation with a Bra-
zilian company. Furthermore, we intend to carry out other
case studies involving software requirements for safety-crit-
ical systems, in the healthcare, aviation and automotive do-
mains, in order to confirm the potential of the Spectra lan-
guage as a valuable tool in the requirements specification
and validation process.

Acknowledgements
This work was funded by São Paulo Research Foundation
(FAPESP) under the grant agreement 2018/17592-1. Special
thanks to prof. Shahar Maoz for the support during the real-
ization of the case study at Tel Aviv University.

Data Availability Statement

All data produced and used in the case study are presented
throughout this paper.

Conflict of Interest Statement (COI)

The author declares that there is no conflict of interest in the
subject matter or materials discussed in this manuscript.

From Textual to Formal Requirements: A Case Study Using Spectra in Safety-Critical Systems Domain Martins 2024

References
Amram, G., Maoz, S., Segall, I., and Yossef, M. (2022). Dy-

namic Update for Synthesized GR(1) Controllers. Proc. of
ICSE 2022, pp. 786-797, ACM.

Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., and
Sa’ar, Y. (2012). Synthesis of Reactive(1) Designs. J.
Comput. Syst. Sci. 78(3), pp. 911–938.
http://dx.doi.org/10.1016/j.jcss.2011.08.007.

Bozzano, M. and Villafiorita, A. (2006). The FSAP/NuSMV-
SA Safety Analysis Platform. International Journal on
Software Tools for Technology Transfer, 9(1), 5–24.
http://doi.org/10.1007/s10009-006-0001-2.

Robson, C. (2002). Real World Research. 2nd Edition. USA:
Blackwell Publishers.

Cabral, G. and Sampaio, A. (2008). Formal Specification
Generation from Requirement Documents. In: Electronic
Notes in Theoretical Computer Science, Vol. 195, 171-
188, ISSN 1571-0661,
https://doi.org/10.1016/j.entcs.2007.08.032.

Chen, Z. (2009). Formalizing Safety Requirements Using
Controlling Automata. In Proceedings of the Second Inter-
national Conference on Dependability (pp. 81–86).
doi:10.1109/DEPEND.2009.18

Gorenstein, A., Maoz, S. and Ringert, J. O. (2024). Kind
Controllers and Fast Heuristics for Non-Well-Separated
GR(1) Specifications. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering
(ICSE '24). ACM, New York, NY, USA, Article 28, 1–12.
https://doi.org/10.1145/3597503.3608131

Hatcliff, J., Wassyng, A., Kelly, T., Comar, C., and Jones, P.
(2014). Certifiably safe software-dependent systems: chal-
lenges and directions. In Proceedings of the on Future of
Software Engineering - FOSE, (pp. 182–200).

Heimdahl, M. P. E. (2007). Safety and Software Intensive
Systems: Challenges Old and New. In FoSE 2007: Future
of Software Engineering (pp. 137–152).

Hu, Y., Podder, T., Buzurovic, I., Yan, K., Ng, W. S., and
Yu, I. (2007). Hazard analysis of EUCLIDIAN: An image-
guided robotic brachytherapy system. In Proceedings of
the 29th Annual International Conference of the IEEE
EMBS (Vol. 1, pp. 1249–1252).

I. Sayar and J. Souquières. (2019). Bridging the Gap Between
Requirements Document and Formal Specifications using
Development Patterns. In: IEEE 27th International Re-
quirements Engineering Conference Workshops (REW),
2019, pp. 116-122, doi: 10.1109/REW.2019.00026.

Ivarsson, M. and Gorschek, T. (2009). Technology Transfer
Decision Support in Requirements Engineering Research:
A Systematic Review of REj. Requirements Engineering
Journal, vol. 14, no. 3, (pp. 155-175).

Jin, Y., Zhang, J., Hao, W. et al. (2010). A concern-based
approach to generating formal requirements specifications.
Front. Comput. Sci. China 4, 162–172. https://doi-
org.ez69.periodicos.capes.gov.br/10.1007/s11704-010-
0151-y.

Leveson, N. G. (2011). Engineering a Safer World: Systems
Thinking Applied to Safety. The MIT Press.

Liu, S., Stavridou, V., and Dutertre, B. (1995). The Practice
of Formal Methods in Safety-Critical Systems. Journal of
Systems and Software, 1212(94), (pp. 77–87).

Ma'ayan, D. and Maoz, S. (2023). Using Reactive Synthesis:
An End-to-End Exploratory Case Study," 2023
IEEE/ACM 45th International Conference on Software
Engineering (ICSE), Melbourne, Australia, pp. 742-754,
doi: 10.1109/ICSE48619.2023.00071.

Ma'ayan, D., Shahar, M. and Rozi, R. (2022). Validating the
Correctness of Reactive Systems Specifications Through
Systematic Exploration. Proc. of MODELS 2022, pp. 132-
142, ACM.

Maoz, S. and Ringert, J. O. (2019). Spectra Language &
Spectra Tools User Guide.
http://smlab.cs.tau.ac.il/syntech/spectra/userguide.pdf

Maoz, S., and Ringert, J. O. (2021a). Reactive Synthesis with
Spectra: A Tutorial, IEEE/ACM 43rd International Confer-
ence on Software Engineering: Companion Proceedings
(ICSE-Companion), Madrid, ES, pp. 320-321, doi:
10.1109/ICSE-Companion52605.2021.00136.

Maoz, S., Ringert, J.O. (2021b). Spectra: a specification lan-
guage for reactive systems. Softw Syst Model 20, pp.
1553–1586. https://doi.org/10.1007/s10270-021-00868-z

Martins, L. E. G. and Gorschek, T. (2016). Requirements En-
gineering for Safety-Critical Systems: A Systematic Liter-
ature Review, Information and Software Technology, Vol.
75, July 2016, (pp.71–89).

Martins, L. E. G. and Gorschek, T. (2017). Requirements En-
gineering for Safety-Critical Systems: Overview and Chal-
lenges. IEEE Software, v. 34, (pp. 49-57).

Miller, S. P., Tribble, A. C., Whalen, M. W., and Heimdahl,
M. P. E. (2006). Proving the shalls. International Journal
on Software Tools for Technology Transfer, 8(4-5), (pp.
303–319). doi:10.1007/s10009-004-0173-6.

Nair, S., de la Vara, J. L., Sabetzadeh, M., and Falessi, D.
(2015). Evidence management for compliance of critical
systems with safety standards: A survey on the state of
practice. Information and Software Technology, 60, (pp.
1–15).

Runeson, P. and Höst, M. (2009). Guidelines for conducting
and reporting case study research in software engineering.
Empirical Software Engineering, 14, 131–164.
http://doi.org/10.1007/s10664-008-9102-8.

Sommerville, I. (2015) Software Engineering. Addison-Wes-
ley, 10th edition.

Walter, B., Hammes, J., Piechotta, M. and S. Rudolph.
(2017). A Formalization Method to Process Structured
Natural Language to Logic Expressions to Detect Redun-
dant Specification and Test Statements. In: IEEE 25th In-
ternational Requirements Engineering Conference (RE),
pp. 263-272, doi: 10.1109/RE.2017.38.

Wohlin, C., Runeson, P., Host, M., Ohlson, C., Regnell, B.
and A. Wesslén. (2012). Experimentation in Software En-
gineering: An Introduction. Germany: Springer-Verlag.

