
Journal of Software Engineering Research and Development, 2024, 12:9, doi: 10.5753/jserd.2024.4027
 This work is licensed under a Creative Commons Attribution 4.0 International License..

A portal to catalog worked examples extracted from open source
software projects to support the teaching of Software
Engineering
Simone Tonhão [Universidade Estadual de Mato Grosso do Sul - UEMS | Universidade Estadual
de Maringá - UEM | siimone.franca@gmail.com]
Thelma Colanzi [Universidade Estadual de Maringá - UEM | teclopes@din.uem.br]
Igor Steinmacher [Northern Arizona University - NAU | igor.steinmacher@nau.edu]
Abstract
Software Engineering is continually evolving, with new techniques, tools, and processes emerging to enhance soft-
ware development. However, finding real-life examples that reflect this evolution can be challenging for instructors.
Open Source Software (OSS) projects offer a valuable resource in this context, as they provide access to actual de-
velopment projects and environments. Despite their potential, integrating these projects into the classroom involves
several hurdles, including selecting suitable projects, preparing classes, and adapting to the open-source environ-
ment. This study aims to alleviate the challenges instructors face in adopting OSS projects for teaching Software
Engineering. We developed an open portal to catalog worked examples from OSS projects, thereby supporting
instructors in demonstrating real-world Software Engineering concepts and techniques. Utilizing Design Science
Research, we followed the Relevance, Design, and Rigor cycles to construct this solution. The primary contribu-
tion of this work is the portal itself, which helps reduce the time instructors spend searching for relevant materials
and resources. Additionally, we proposed a template to create, structure, and catalog these examples and developed
guidelines to assist instructors in using the worked examples effectively. We conducted a series of studies with expe-
rienced Software Engineering instructors, which indicated that the portal could significantly mitigate the challenges
associated with sourcing and updating real examples. The effectiveness of the examples was also assessed based
on student perceptions, revealing that exposure to worked examples from OSS projects could engage students with
real projects and challenges.

Keywords: Software Engineering Education, Open Source Software Projects, Worked Examples

1 Introduction

The beginning of your introduction is well-constructed, but I
have made a few edits to enhance clarity, grammar, and style
while maintaining the LaTeX commands and citations:
With the increasing demand for Information Technology

professionals worldwide, the teaching of Software Engineer-
ing (SE) has encountered challenges inmeetingmarket needs
(Metrôlho et al., 2022; Yamaguti et al., 2017). Software En-
gineering is constantly advancing with the creation of new
techniques, tools, and processes aimed at improving software
development. This dynamic landscape, where technologies
rapidly become obsolete or mainstream, presents a challeng-
ing scenario for instructors who need to keep their teaching
practices up-to-date (Montagner and Kurauchi, 2022; Pinto
et al., 2017).
As a side effect of such rapid changes, Software Engineer-

ing instructors must regularly update their skills and lectures.
Given their other responsibilities—such as hiring, research-
ing, advising, and servicing (Hu et al., 2018; Holmes et al.,
2018; Sadiku et al., 2012)—not all are willing or able to con-
tinuously update their teaching agendas. Worse, those will-
ing to adapt often lack resources that can clearly demonstrate
the applicability of specific Software Engineering concepts.
Consequently, instructors frequently resort to using simplis-
tic, toy examples in their classrooms. Although these exam-
ples might address timely practical issues, they often lack the
maturity or breadth necessary for real software development

(Deng et al., 2020; Nascimento et al., 2018).

Open Source Software (OSS) projects provide an alter-
native for teaching Software Engineering. Engaging with
OSS not only contributes to knowledge but also helps stu-
dents align with professional software development and fos-
ters creativity in planning and implementing project im-
provementsMontagner and Kurauchi (2022); Pereira (2021).
These projects allow students to practice design, develop-
ment, and testing skills in real environments with actual
stakeholders (Tan et al., 2021; Deng et al., 2020; Pereira
and Pitxitxi, 2020). Furthermore, students gain experience
in reading documentation and code, contributing to projects,
adding new features, and identifying and correcting defects
(Pereira, 2021; Pinto et al., 2017; Smith et al., 2014).

However, utilizing OSS projects in teaching can be chal-
lenging and requires significant effort to select appropriate
projects for student engagement (Pereira and Díaz, 2022;
Silva et al., 2020b; Pereira and Pitxitxi, 2020; Pinto et al.,
2017; Morgan and Jensen, 2014; Smith et al., 2014). These
projects must not be overly complex, as this could lead to
comprehension difficulties, nor overly simplistic, as students
may not see practical applications of the concepts and tech-
niques (Pereira, 2021; Smith et al., 2014). Moreover, prepar-
ing lectures is another significant challenge (Silva et al.,
2019; Pinto et al., 2017), often requiring many hours of work
for the instructor (Buchta et al., 2006). According to Pinto
et al. (2017), part of this difficulty arises from the need for
instructors to familiarize themselves with OSS projects, as

https://orcid.org/0000-0001-7931-1335
mailto:simonetonhao@gmail.com
https://orcid.org/0000-0001-9761-1999
mailto:teclopes@din.uem.br
https://orcid.org/0000-0002-0612-5790
mailto:igor.steinmacher@nau.edu

Tonhão et al., 2024

information in some communities is not organized in a man-
ner that facilitates understanding.
In response, this study aims to reduce the difficulties in-

structors face when adopting OSS projects in their Software
Engineering courses by developing an open portal to cata-
log worked examples extracted fromOSS projects. These ex-
amples support instructors in teaching Software Engineering
concepts and techniques using real-world cases. Addition-
ally, we have created guidelines to assist instructors in fa-
miliarizing themselves with and adopting worked examples
(Chen et al., 2019).1
To achieve the proposed objectives, we conducted our

research following the Design Science Research (DSR)
paradigm, which focuses on constructing innovative artifacts
to solve practical problems in specific domains (Hevner and
Chatterjee, 2010). The DSR approach is iterative, composed
of three interconnected cycles: Relevance Cycle, Design Cy-
cle, and Rigor Cycle. The Relevance Cycle integrates the
contextual aspects of the project with Design Science activi-
ties; the Design Cycle involves the construction, evaluation,
and refinement of the artifact; and the Rigor Cycle ensures
the project’s innovation, relating to the foundations neces-
sary for the development of the artifact and the contributions
generated (Hevner, 2007).
In the Relevance Cycle, we conducted studies on the use

of OSS projects in teaching Software Engineering to identify
the difficulties faced by instructors in these educational envi-
ronments. Additionally, we surveyed Software Engineering
instructors to investigate the usage of examples and the chal-
lenges in finding suitable ones. Based on the studies carried
out in the Relevance Cycle, we have defined the following
requirements for building the portal:

• Req1 – The portal should provide guidelines to instructors
on how to create and standardize worked examples;

• Req2 – The portal should openly provide worked exam-
ples to support the teaching of Software Engineering;

• Req3 – The portal should guide instructors in applying
worked examples when teaching Software Engineering;

• Req4 – The portal must enable cataloging of worked ex-
amples that address different topics of Software Engineer-
ing.

In the Design Cycles, activities related to the develop-
ment and evaluation of the cataloging portal were performed.
In total, six cycles were executed, divided into two stages.
The first stage involved three cycles focused on the creation
and evaluation of the template for cataloging worked exam-
ples, which provides guidelines to guide the standardization,
structuring, and cataloging of examples. The second stage in-
cluded three cycles related to the use and evaluation of the
portal prototype.
Finally, the Rigor Cycle, which focuses on the fundamen-

tals and contributions of the project, ensures that the project
is not merely routine and that it contributes effectively, en-
suring innovation. The main foundations of this work are re-
lated to knowledge about Software Engineering education,
OSS projects, and the use of worked examples.

1In the context of this work, a worked example is defined as an artifact
composed of a problem, the steps to solve this problem, and a final result,
and that problem was submitted to an OSS project (Chen et al., 2019).

The primary contribution of this research is the portal for
cataloging worked examples extracted from OSS projects,
which assists instructors in finding materials that truly ex-
emplify the contents of Software Engineering. Additionally,
we identified some of the difficulties instructors face when
adopting OSS projects in teaching. We created guidelines
to aid instructors in adopting worked examples for teach-
ing Software Engineering. Evidence also suggests that the
worked examples extracted from OSS projects can provide
students with exposure to real projects and challenges. Fur-
thermore, the portal can alleviate the challenges instructors
face in searching for real examples, helping them stay up-to-
date and proving to be a promising tool to support the teach-
ing of Software Engineering.
The article is structured as follows: Section 2 provides

background information on worked examples, and Section
3 presents the related work. Section 4 outlines the method-
ology adopted in a general manner. The relevance cycles of
the research, as well as the design cycles, which have been
divided into two stages, are discussed in Sections 5, 6, and 7.
Section 8 addresses the rigor cycle applied to ensure the va-
lidity of the results. The limitations of the study are examined
in Section 9, and the final conclusions are presented in Sec-
tion 10, summarizing the main findings and outline possible
directions for future research.

2 Background
According to Sweller et al. (1998), a worked example is
an artifact focused on the statement of a problem, and the
steps to solve that problem. As for Atkinson et al. (2003),
a worked example consists in formulating a problem, in the
solution steps, and in the final answer. Generally, students
who receive worked examples tend to make fewer mistakes,
solve similar problems more easily and quickly, and require
less assistance from the instructor (Carroll, 1994). Skudder
and Luxton-Reilly (2014), in their work, found evidence to
suggest that the worked examples are an improvement over
problem-solving approaches, both in terms of learning time
and performance in similar problems.
This is because worked examples reduce the cognitive

burden imposed by problem-solving, and facilitate the con-
struction of cognitive schemes (Van Gog and Kester, 2012;
Sweller et al., 1998). The principle of the worked examples
shows that it is better to replace some of the practical prob-
lems with examples that demonstrate the solution of a given
problem and enable students to first study these solutions be-
fore solving problems alone (Booth et al., 2015).
The worked example approach brings a number of ben-

efits to learning, especially for students who do not have
prior knowledge, and can be more efficient than learning
through problem solving (Nievelstein et al., 2013; Van Gog
and Kester, 2012). Based on the worked examples, it is pos-
sible to guide students to develop an understanding of prin-
ciples and concepts, focusing on problematic states and so-
lution steps, allowing students to build generalized solutions
and schemes, decreasing cognitive effort (Schwonke et al.,
2009; Sweller et al., 1998).
By learning through worked examples, students dedicate

Tonhão et al., 2024

more cognitive resources to the concepts that support cor-
rect solutions and make acquisitions of relevant schemes
for knowledge. When students attempt to solve practical
problems on their own they assume procedures to perform
the resolution, these procedures may not be appropriate, in
some cases inefficient and non-generalizable, and even in-
correct (Sweller et al., 1998). When students learn through
worked examples the main task is to understand the step-by-
step of a solution (Wang et al., 2015). The worked examples
with self-explanation consist of asking students to explain
this step-by-step to themselves, reinforcing the understand-
ing of the concepts and the ability to understand the steps
described. Without self-explanation, the examples are stored
in a textual and superficial way (Wang et al., 2015; Booth
et al., 2015).
The use of worked examples has been widely explored in

teaching various areas of knowledge. Studies such as those
by Nievelstein et al. (2013) and Schwonke et al. (2009)
show that worked examples can reduce cognitive load, mak-
ing learning more efficient than an approach based solely
on problem-solving. Furthermore, Van Gog et al. (2011)
highlights that presenting similar problems after worked ex-
amples can motivate students, making the combination of
worked examples and problem-solving more effective than
the isolated use of worked examples. In the work of Rourke
and Sweller (2009), the idea cited by Van Gog et al. (2011)
was further evidenced, as the use of worked examples proved
superior to problem-solving, significantly reducing the cog-
nitive load required of students. Additionally, the level of
students’ prior knowledge is also a relevant factor: novice
students benefit more from worked examples than advanced
students. Studies suggest that worked examples are a valu-
able tool in teaching, reducing cognitive load and facilitating
understanding, especially for less experienced students.
In the field of Computer Science, the use ofWorked Exam-

ples has been more common in programming education, es-
pecially at the elementary and secondary levels. An example
is the work of Bofferding et al. (2022), in which correct, in-
correct, and incomplete worked examples were used to assist
elementary school students in understanding programming
concepts. These examples were incorporated into a block-
based programming game, where each level focused on a
different example. The results indicated that students with
little programming experience benefited from the approach.
Thus, the examples proved to be effective for students with
limited prior knowledge, in line with the work of Nievelstein
et al. (2013).
In the study by Toukiloglou andXinogalos (2022), worked

examples were also used in the context of games to teach pro-
gramming at the elementary level. Like in Bofferding’s work,
the game also involved block programming, and the worked
examples were presented before the challenges to demon-
strate concepts to the students before they tackled problem-
solving tasks. The results suggest an increase in the effi-
ciency of student learning when worked examples in the
game are combined with problem-solving.
In higher education, some studies have also utilized

worked examples in the context of programming education.
Garces et al. (2022) explored worked examples in teaching
programming to Engineering Technology students. Two ap-

proaches were used in this study: debugging worked exam-
ples and code commenting. Students worked in two groups,
with one group receiving an example containing code and
the task being to comment on the code. The other group re-
ceived an example with partially functional code and had to
make it functional while also commenting on the code about
the changes made. The study results suggest that worked ex-
amples helped students with no prior knowledge to be more
successful in the subject.

In the work by Gaweda et al. (2020), the TYPOS plat-
form was developed, focusing on practicing low-level skills
through interactive worked examples, such as code typing
exercises. The research involved Computer Science students,
and the results revealed that students who consistently com-
pleted the code typing exercises achieved higher grades and
experienced greater learning gains compared to those who
practiced less frequently.

Although worked examples are popular in programming
learning in the field of Computer Science, their application
for SQL learning is limited, with only two studies found in
the literature. Thework of Chen et al. (2019) explored the use
of worked examples in a database course. In this approach,
the worked examples were merged with problem-solving,
and with incorrect worked examples (they present incorrect
solutions for a given problem) in an intelligent tutoring sys-
tem. The results show that students who participated in the
experiment improved their conceptual, procedural, and de-
bugging knowledge. Furthermore, it can be observed that the
use of worked examples followed by problem-solving can
be effective in terms of learning, as concluded by the work
in other areas presented above. It is important to emphasize
that in this approach the incorrect worked examples proved
to be more effective than the correct worked examples.

In the work by Akhuseyinoglu et al. (2022), worked ex-
amples were also employed in the Database course. For this
purpose, a tool called DBQA was created to present inter-
active worked examples. The results showed that exploring
more query execution steps in DBQA was associated with a
higher success rate, fewer query construction attempts, and
greater persistence during problem-solving.

In the field of Software Engineering, specifically, little
has been explored regarding the use of worked examples.
Silva et al. (2019) proposed a model to guide Software En-
gineering instructors to create worked examples for teaching
UML class diagrams. The objective of the work was to unite
the worked examples with open source projects. The authors
created guidelines to help faculty select projects and create
worked examples drawn from those projects. However, the
main focus of the present work is on the selection of OSS
projects, and the use of worked examples was little explored.

We can note that the worked examples can be used in dif-
ferent areas, including Computer Science, and can present
several benefits for teaching, as reported in the works dis-
cussed in this section. However, the use of worked examples
in Software Engineering was little explored, making an in-
vestigation into the use of this material in this area important.

Tonhão et al., 2024

3 Related Work
The use of OSS projects shows benefits for teaching SE, en-
abling students to develop important skills and experiences
necessary for the industry, in addition to providing con-
tact with realistic development environments (Pereira, 2021;
Montagner and Kurauchi, 2022; Pinto et al., 2017). There are
several studies that seek to improve the teaching of Software
Engineering through the use of OSS projects. These studies
present different ways to use OSS projects in teaching.
Müller et al. (2019) argue that the use of OSS projects

in teaching can be positive and beneficial for students, hav-
ing a positive impact on students’ future careers, as it puts
them face to face with real environment problems. This ap-
proach can also bring benefits for instructors, as it provides
direct access to real problems for possible research projects.
However, they can present some challenges, mainly related
to the organizational point of view (providing structure, guid-
ance, and control of student involvement), given that this ap-
proach requires additional resources in relation to the tradi-
tional configurations of the courses.
Some studies (Morgan and Jensen, 2014; Papadopoulos

et al., 2013; Nascimento et al., 2018) discuss students’ ex-
periences when they have direct contact with OSS projects.
The usage of OSS projects proved to be an interesting ap-
proach. However, some challenges were encountered, such
as the complexity of the projects and the difficulty of the in-
structor in following the students involved in OSS projects.
Dorodchi and Dehbozorgi (2016) focus on the collabora-

tive skills gained by students when they are exposed to hu-
manitarian OSS projects. Ellis et al. (2008) and Ellis et al.
(2015) also addressed humanitarian OSS projects in software
engineering education. The use of these projects brought
benefits in teaching, but also some challenges, such as the
inexperience of students, limited duration of the course, and
complexity of the projects (Ellis et al., 2008).
Pereira (2021) work described a practical experience in

which students made contributions to OSS projects as part of
their final project. The students were assisted by instructors
in selecting the projects and had to complete the develop-
ment or correction of three issues. Among the benefits high-
lighted by the author of the work are learning version con-
trol systems, exposure to quality control, and the experience
of dealing with large projects with complex code bases. Ad-
ditionally, Pereira (2021) emphasizes that contribution tasks
in OSS projects can also help instructors, freeing them from
code reviews and student monitoring tasks. Among the chal-
lenges faced by students were cited understanding the code
structures of open-source projects and locating specific parts
of the code related to errors and functionalities.
In Montagner and Kurauchi (2022), students were also

able to contribute to OSS projects, focusing on building
practical development skills within an advanced SE course.
The study analyzed students’ contributions in terms of type
of contribution, code complexity, approval rate, and project
size. The authors concluded that the course achieved its goal
of providing practical software development skills, and stu-
dents agreed on the usefulness of the content for future indus-
trywork. Furthermore, accepted contributions towell-known
projects reinforced the effectiveness of the course.

Just like in the works of Pereira (2021) andMontagner and
Kurauchi (2022), Tan et al. (2021) work also provided stu-
dents with the opportunity to engage with and contribute to
OSS projects. InTan et al. (2021) experiment, students fixed
bugs in Java projects available on GitHub and utilized auto-
mated program analysis tools. Similarly to the other works,
the results show that students perceive improvements in their
skills and application of knowledge.
Silva et al. (2020b) work had a different focus from the

others, being aimed at teaching UML through OSS projects.
The work presents an experience report on the pedagogical
use of OSS projects in a Software Engineering course. Such
experience took place in the context of isolation imposed by
the pandemic of COVID-19, with the course being conducted
entirely virtual, with the support of some platforms such as
Google Meet, Classroom, GitHub, Padlet and Trello. The
projects were used in software modeling activities, which in-
volved UML diagrams.
In the study of Silva et al. (2020b), the students chose the

projects they wanted to work on, always taking into account
the prerequisites established by the instructor, such as pro-
gramming language, software size, and number of releases.
With the selected projects, the students did the work manage-
ment, characterized the selected project and created the UML
models. The results of Silva et al. (2020b)’s work showed that
students agreed that the teaching method used addressed the
levels of knowledge, understanding, and application in a sat-
isfactory manner. In addition, they were satisfied with work-
ing with real projects, and enjoyed the activities and tools
used in class.
The works of Silva et al. (2020a) and Pereira and Díaz

(2022) focused on a specific aspect of OSS project us-
age, which is the selection of suitable projects. Silva et al.
(2020a) presented FlossSearch.Edu, a tool that supports stu-
dents searching for appropriate projects to work on Lessa
and von Flach G. Chavez (2020), based on the combina-
tion of technical and social criteria. Lessa and von Flach
G. Chavez (2020) evaluated this tool from the students’ per-
spective. They found that the tool played an important role
in the project selection process, and most students stated that
the tool was useful, easy to use and intended to use it in the
future, and can be a strong ally in the selection of projects,
both for students and instructors of Software Engineering. A
tool similar to FlossSearch.Edu was developed in the work
of Pereira and Díaz (2022), also focusing on assisting in the
selection of OSS projects for students to work on. The devel-
oped tool was GitMate, a recommendation system based on
GitHub, where students can search for three projects accord-
ing to the characteristics they desire. According to Pereira
and Díaz (2022), the results of using GitMate showed that
the tool can help students make comparisons to choose OSS
projects.
The aforementioned studies show that the use of OSS

projects brings benefits to Software Engineering teaching,
mainly related to real learning experiences. However, despite
the increased use of OSS projects in education, the choice of
appropriate projects, limited course duration, the time and
effort invested in planning, and the way to conduct classes,
are challenges that can hinder adoption of such an approach
by instructors (Pereira and Díaz, 2022; Pereira, 2021; Silva

Tonhão et al., 2024

et al., 2020a, 2019; Raj and Kazemian, 2006; Jaccheri and
Osterlie, 2007; Ellis et al., 2008; Nandigam et al., 2008;Mor-
gan and Jensen, 2014). In addition, most of the works that
explore the use of OSS projects in Software Engineering ed-
ucation are experience reports.
OSS projects contain several artifacts that can serve as a

basis for creating worked examples, to explain certain con-
cepts or techniques of Software Engineering. In the work
of Silva et al. (2019) the use of worked examples in conjunc-
tion with OSS projects allowed alignment of theory and prac-
tice, taking real examples to students. However, the work
of Silva et al. (2019) addressed a very specific topic in Soft-
ware Engineering, the teaching of UML diagrams, in addi-
tion to focusing only on the initial recognition of the project.
Taking into account that most instructors are not experts in

OSS projects, they may face difficulties in finding worked
examples that can be useful in the classroom. Thus, pro-
moting the development of a portal of worked examples
extracted from OSS projects, appropriate for the teaching
of Software Engineering, has the potential to encourage
the adoption of the use of OSS projects in courses, assist-
ing instructors in the search for material and in prepara-
tion of classes. Furthermore, the portal can enable teachers
to bring real-life examples based on OSS projects into the
classroom, providing students with exposure to real-world
projects and issues, eliminating the difficulty of choosing a
suitable project, and facilitating the understanding of the con-
text in which the example occurs.
In a previous work (Tonhão et al., 2020), the creation and

evaluation of a template for creating and structuring worked
examples extracted from OSS projects were explored. It is
worth noting that the activities reported in the article in ques-
tion refer to the first Design Cycle presented in this work, and
were divided into three stages related to the elaboration and
evaluation of the template for cataloging the worked exam-
ples.

4 Method
This work aimed to reduce the obstacles faced by instructors
in the use of OSS projects in the educational environment
and in the use of worked examples in the teaching of Soft-
ware Engineering. For that, we developed an open portal for
cataloging worked examples extracted from OSS projects.
We adopted the Design Science Research (DSR) research ap-
proach, which focuses on the connection between knowledge
and practice, emphasizing that it is possible to produce sci-
entific knowledge by designing useful artifacts (Wieringa,
2009).
The DSR paradigm seeks to create new and innovative ar-

tifacts that solve real problems in specific domains (Hevner
and Chatterjee, 2010; Hevner et al., 2004). Such an approach
comprises three research cycles: Relevance Cycle, Design
Cycle, and Rigor Cycle. We use other research methods to
conduct the steps performed during the execution of the DSR
cycles, namely: study of the literature, questionnaire survey,
focus group, lab studies with think-aloud protocol, and inter-
views with instructors.
Each research method serves different purposes and pro-

vided unique insights. The literature study was useful for un-
derstanding the existing knowledge and theories related to
the concepts addressed in this work. Focus groups and inter-
views allowed for a detailed exploration of participants’ per-
spectives and experiences, while studies utilizing the think-
aloud protocol offered insights into participants’ mental pro-
cesses during specific tasks.
We provide more details for each cycle in each specific

section. Figure 1 shows a summary of the DSR applied in
this study, layouting its cycles.
In the Relevance Cycle, we define the problem to be ad-

dressed, the form of investigation, and the requirements for
the research (Hevner, 2007). In this research, the problem
addressed is related to the difficulties faced by instructors
in using OSS projects as material to support the teaching of
Software Engineering.
For a better understanding of the problem addressed, we

reviewed the literature looking at studies related to the use of
OSS projects for teaching Software Engineering. By analyz-
ing the literature, we raised the main difficulties in adopting
this type of project in the classroom.We also conducted a sur-
vey with 20 instructors (Subsection 5.2) to investigate how
they use examples in Software Engineering courses and the
difficulties they face when looking for examples.
Based on the organization of information from the litera-

ture and the survey analysis, we defined the requirements to
design the portal to catalog worked examples for Software
Engineering courses. Therefore, we started the first Design
Cycle of our proposed artifact.
In the Design Cycles, we conducted activities related to

the construction of the artifact, its evaluation, and the feed-
back collection to refine the artifact. This cycle is central to
any research project in DSR (Hevner and Chatterjee, 2010).
In this work, the proposed artifact was a portal for cataloging
worked examples extracted from OSS projects. The goal is
to assist instructors who want to adopt OSS projects as teach-
ing support material, offering worked examples that address
different topics of Software Engineering.
In this work, we carried out six design cycles, with the

participation of 19 instructors throughout the cycles. We in-
vited instructors who worked with the topic to be addressed
in this study. In each cycle, a specific group was selected.
The choice of participants for each cycle was made taking
into account their experience and areas of study, in order to
obtain feedback from different profiles. Table 1 shows the
information about the instructors participating in each cycle
(except cycle 2, which did not involve external members).
The identifiers assigned to each instructor (PX) will be used
in the rest of the paper to facilitate the identification through-
out the text.
The design cycles were divided into two stages. The first

stage focused on elaborating and evaluating the model pro-
posed to catalog the worked examples. Before defining the
organization of the portal, it was necessary to draw the repre-
sentation of the worked examples and structure the informa-
tion needed for the catalog. We split the process of creating
and evaluating the model into three cycles, as shown in Fig-
ure 2, and composed the first stage of design cycles.
In the second stage, we conducted design cycles with Soft-

ware Engineering instructors who interacted with the portal,

Tonhão et al., 2024

Environment

Design Science Research

Knowledge Base

Problem: Challenges and difficulties encoutered by instructors in the use of Open Source Software (OSS) projects to
support the teaching of Software Engineering (SE).

Objective: To create a portal to catalog worked examples extracted from Open Source Software projects to assist in
the teaching Software Engineering.

Investigation of the problem: 1. Survey and study of the literature related to the use of OSS projects to support
the teaching of Software Engineering; 2. Survey with higher education instructors on the use of examples and
difficuties in the search.

Artifact Project

Portal development for
cataloging the worked

examples

Cycle 1: Focus group with SE specialists

Cycle 2: Instantiation of the model for refactoring and
microservices

Cycle 3: Instantiation of the model by SE instructors for refactoring

Fundaments: Education in Software Engineering, Open Source Software projects, worked examples.

Contributions: Portal to cataloging worked examples; Identification of the difficuties faced by instructors in the adoption OSS
projects in teaching; Guidelines to guide instructors in the adoption of OSS projects and worked examples in the teaching of SE;
Evidence that the portal can reduce the challenges faced by instructors in the serach for real examples; Evidence that the worked
examples extracted from OSS projects can provide contact with real projects and problems; Evidence that the portal can help
instructors keep their examples up to date.

Cycle 4: Use of the portal prototype by SE instructors

Design
Cycle

Relevance
Cycle

Rigor
Cycle

Cycle 6: Complete lesson planning by SE instructors

Cycle 5: Verbal lesson planning by SE instructors

Figure 1. Overview of Design Cycles Applied to Research.

planning the classes in which they would use the examples.
The goal of the second stage was to evaluate the usefulness
of the portal as a support material in higher education. This
stage involved three cycles, which are described in Figure 3.
The details about the methods followed in each design cy-

cle are presented along with the results of the respective cy-
cle.

5 Relevance Cycle
We split the Relevance Cycle into two steps. In the first step,
we investigated the literature to identify evidence of prob-
lems that instructors face when adopting OSS projects in
the educational environment. In the second step, we admin-
istered a survey questionnaire to investigate the use of ex-
amples in Software Engineering courses and the difficulties
faced by instructors in using such examples. We detail both
steps below.

5.1 Study of Literature

To explore how OSS projects are used in the context of
Software Engineering teaching, we conducted an ad-hoc ex-
ploratory review of literature. This study aimed to detect the

benefits and disadvantages of using OSS projects as an alter-
native in the teaching of Software Engineering.
Initially, we searched for publications that dealt with the

subject of interest. The string used in the search was as
follows: “open source projects” OR “open-source software
projects” AND “teaching software engineering” OR “soft-
ware engineering education”. The search was conducted on
Google Scholar, which indexes a wide variety of databases,
and publications were searched up to the year 2023. After
selecting the studies, we read the titles and abstracts, in or-
der to discard articles that did not address the use of OSS
projects in the context of teaching Software Engineering.
Then, we read the other papers in full aiming to identify the
strengths and weaknesses of the adoption of OSS projects
in Software Engineering courses, as well as the difficulties
faced by the instructors when preparing their classes based
on these projects.
We found twelve studies (Pereira and Díaz, 2022; Pereira,

2021; Silva et al., 2020b; Pereira and Pitxitxi, 2020; Silva
et al., 2019; Pinto et al., 2017; Smith et al., 2014; Morgan
and Jensen, 2014; Gehringer, 2011; Ellis et al., 2008; Jac-
cheri and Osterlie, 2007; Buchta et al., 2006) that fit the
scope established for the search. One author performed the
data extraction process and organized it in a spreadsheet with
the following information: title, authors, year of publication,

Tonhão et al., 2024

Instructor University Cycles SE Teaching Use of OSS
1 3 4 5 6

P0 PUC-Rio x x x 15 years Research
P1 UFPA x x - Research
P2 UTFPR x x x x x 14 years Research/ contribution
P3 UNESPAR x x x x 5 years Research/ contribution
P4 UTFPR x x 20 years Research
P5 UEMS x 5 years Use only
P6 UTFPR x 13 years Research/ contribution
P7 NAU x 18 years Research
P8 UFBA x 16 years Research/ contribution
P9 UFMS x x 2 years Research/ contribution
P10 UNESPAR x 17 years Research
P11 UFU x 20 years Research
P12 USP x 22 years Research/ contribution
P13 UNIT x 22 years Research/ contribution
P14 UENP x 15 years Research/ contribution
P15 UTFPR x 2 years Research/ contribution
P16 UFABC x 3 years Use only
P17 USP x 15 years Research/ contribution
P18 UFBA x 7 years Research/ contribution

Table 1. Instructors participating in the studies of Design Cycles.

Figure 2. First three design cycles related to creating and evaluating the
worked examples cataloging template.

and publication venue. In addition, we used two columns to
collect the strengths and weaknesses of using OSS projects
in Software Engineering education. The data obtained in
this extraction were validated with the other authors during
weekly meetings devoted to this. In this paper, we keep the
analysis restricted to the weaknesses, given that this is the

Figure 3. Four last research cycles related to the use and evaluation of the
portal.

important outcome for the relevance cycle.
The main difficulties identified in the publications were:

choosing appropriate projects (Pereira and Díaz, 2022;
Pereira and Pitxitxi, 2020; Silva et al., 2020b, 2019; Pinto
et al., 2017; Smith et al., 2014; Gehringer, 2011; Ellis et al.,
2008; Jaccheri and Osterlie, 2007); limited course dura-
tion (Pereira and Pitxitxi, 2020; Pinto et al., 2017; Ellis et al.,
2008); and the time and effort invested in planning and
following the lessons (Pinto et al., 2017;Morgan and Jensen,
2014; Buchta et al., 2006). These are challenges that could

Tonhão et al., 2024

prevent instructors from taking OSS projects to the educa-
tional environment.
Pinto et al. (2017) and Pereira and Pitxitxi (2020) evi-

denced that the time limitations of the course and the difficul-
ties of choosing the project are disadvantages associated with
the use of OSS projects. Ellis et al. (2008) also pointed out
that the time limitation can be a challenge, especially when
the goal is to try to get students engaged.
Another point mentioned by Pereira (2021), Jaccheri and

Osterlie (2007), Ellis et al. (2008), Gehringer (2011), and
Smith et al. (2014) was the difficulty to find projects with
appropriate complexity, which can make it difficult for the
instructors and the students to understand. For Smith et al.
(2014) the burden of selecting suitable projects can be an
impediment to integrating OSS projects and teaching in Soft-
ware Engineering.
In addition, the effort to plan and monitor the classes was

mentioned as another challenge (Buchta et al., 2006; Morgan
and Jensen, 2014; Pinto et al., 2017), as it may require several
hours of the instructor during the week. The need to become
familiar with the OSS project can be part of this difficulty
since the information in some communities is not organized
in a way that facilitates the understanding (Pinto et al., 2017).
Therefore, it is noticeable that the adoption of OSS

projects in the teaching of Software Engineering requires
some attention, given the challenges and difficulties that in-
structors may face. Looking for ways to alleviate these chal-
lenges can boost the adoption of these projects in the context
of Software Engineering courses, and aid instructors who
want to bring real experiences and problems to the class-
room.

5.2 Survey with instructors of Software Engi-
neering

We administered a survey aiming to explore the use of
worked examples in Software Engineering courses. We also
investigated the possible difficulties that instructors may
have in the search for this type of material. The planning
was based on studies from the book ”Survey Methodology”
by Yaacoub et al. (2004), and a pilot study was conducted
with two professors to analyze points such as: Clarity and
precision of terms, number of questions, format, and order
of questions.
The population defined for the study was instructors who

teach Software Engineering courses in higher education. The
initial sample was defined based on our contacts with indi-
viduals belonging to that population. With the initial set de-
fined, the sampling process followed a snowballing process,
that is, the individuals initially selected indicated other in-
structors from their contact networks. We kept the question-
naire open for two months.
We designed the questionnaire to understand if the instruc-

tors use examples in their courses and the difficulties in find-
ing them. The questionnaire was composed of twelve ques-
tions, related to the respondent’s profile and the use of ex-
amples, including multiple-choice and essay questions. The
questions are presented in Table 2.

5.2.1 Survey results

In this section, the discussions of the results obtained in the
survey on the use of examples in Software Engineering will
be presented. The complete responses are available in a file
provided in the repository 2.
Twenty Software Engineering instructors participated in

the research. Six of them hold a Ph.D. degree and 4 have
a master degree; fifteen were working in Brazil and five in
other countries. Their experience teaching Software Engi-
neering ranged from one year to forty years. Three of the
respondents work in the industry in parallel with their teach-
ing assignment, eleven have worked in industry previously,
and six have never worked in industry. This information is
presented in Table 3.
The answers to the questionnaire showed that all instruc-

tors use examples in their courses, 55% of instructors always
use them, 40% use them frequently, and only 5% of instruc-
tors use them only sometimes. With respect to updating the
examples, only 20% of the instructors said they always up-
dated the examples, while the others update them sometimes
or never. Interestingly only 10% of the instructors mentioned
using only real examples; and 35% said that most of their ex-
amples are real (see Figure 4).

Only real examples

Most of the real
examples

Most non-real
examples

Does not use real
examples

0 2 4 6 8

Numbers of Instructors

Use of Real Examples

Figure 4. Graph of information about using examples.

When asked where they usually get their examples from
(multiple answers allowed), themajority (55%) said that they
get the examples from books and the internet, and 35% from
real projects available on the internet. The instructors who
create their own examples represent 35%, and those who
bring experience gained in the industry are 30%. One par-
ticipant left a comment in the “other ” option, in which they
mentioned that they usually use open source examples avail-
able in scientific papers.
One of the questions in the survey aimed to investigate

whether instructor use worked examples in their courses. The
term “worked example” was not explicitly mentioned in the
question, only the definition was used and the instructors an-
swered whether their examples fit or not. Only two partic-
ipants stated that their examples never presented a “prob-
lem”, “steps of the solution”, and “result.” The others replied
that their examples always or frequently contained such ele-
ments. Thus, we could notice that most of the instructors in
our sample already use, somehow, worked examples.
Another point we investigated was whether the instructors

find it difficult to find good examples. Only one participant
2dx.doi.org/10.6084/m9.figshare.25676250

dx.doi.org/10.6084/m9.figshare.25676250

Tonhão et al., 2024

ID Question Answer
1 What is your academic background? Multiple choice [graduate, specialist, master, doctor]
2 How many years have you been teaching Software Engineering? Numeric response
3 Which courses do you usually teach? Essay
4 In which country are you currently working? Essay
5 In addition to teaching, do you work in the software industry? Multiple choice [I currently work, I have worked, I have never worked]
6 Do you use examples in your lectures? Multiple choice [Scale: Always - Never (5 levels)]
7 Do you use real examples (from software projects) in your lectures? Multiple choice [only real examples, most real, most non-real, only non-real]
8 How often do you update your examples? Multiple choice [always, sometimes, I don’t update, I don’t use examples]
9 Where do you usually get your examples from? Selection box

10 When you use examples, do you state the problem, the solution steps,
and the result? Multiple choice [always contains, often contains, never contains]

11 How often do you face problems to find good examples? Multiple choice [Scale: Always - Never (5 levels)]

12 When looking for examples, what are the main difficulties
encountered? Essay

Table 2. Survey questions applied to Software Engineering instructors.

Academic background Years of experience
teaching SE Country In addition to teaching, have you worked in the software industry?

Doctor 40 Brazil Yes, I work in the industry today
Doctor 5 Brazil Yes, I have worked in the industry at other times
Doctor 6 Brazil Yes, I have worked in the industry at other times
Doctor 5 Brazil Yes, I have worked in the industry at other times
Master 12 Brazil Yes, I work in the industry today
Master 4 Brazil No, I never worked in the industry
Doctor 2 Brazil No, I never worked in the industry
Doctor 20 Brazil Yes, I have worked in the industry at other times
Doctor 2 Brazil No, I never worked in the industry
Doctor 18 Brazil Yes, I have worked in the industry at other times
Doctor 0 India No, I never worked in the industry
Doctor 10 Brazil Yes, I have worked in the industry at other times
Master 10 Brazil Yes, I have worked in the industry at other times
Doctor 12 The Netherlands No, I never worked in the industry
Doctor 5 New Zealand Yes, I have worked in the industry at other times
Doctor 1 Germany Yes, I have worked in the industry at other times
Doctor 16 Brazil Yes, I have worked in the industry at other times
Master 2 Brazil Yes, I work in the industry today
Doctor 10 Brazil Yes, I have worked in the industry at other times
Doctor 9 Canada No, I never worked in the industry

Table 3. Table of information about using examples.

I create my own
examples

Examples from
Books or internet

Forums

Real projects on the
internet

Industry experience

Others

0 2 4 6 8 10 12

Numbers of Instructors

Examples Source

Figure 5. Graph of information about location of search for examples.

said that they rarely had trouble finding examples. This in-
structor works in the industry in parallel. The other partici-
pants said they find it difficult to find good examples, either
always, frequently, or sometimes.

At the end of the questionnaire, we left an open question in
which the participants could describe the difficulties encoun-
tered when looking for examples. Among the comments,
only one instructor left a positive comment mentioning that
they rarely have trouble finding good examples. They use
the projects developed by the students as examples for the

next courses, and these projects meet the real demands of the
university and the region. The other instructors pointed out
some difficulties, as follows: Complexity of the examples
and suitability to the course, difficulty to find examples
for different topics and approaches, not knowing where
to look for examples, and not having examples from open
source.

Regarding the complexity of the examples and suitabil-
ity to the course, they have mentioned that finding com-
plete examples that suit the topics and content being taught
is challenging. Moreover, they said that the examples are of-
ten too big to be explained in class, and the small examples
are not realistic. Another aspect mentioned by the instructors
was difficulty to find examples for different topics and
approaches. Finding examples for specific topics that are
updated according to the new practices, methodologies, and
technologies used in the industry can be a big problem, most
of the examples found are old and reflect previously used
methodologies. Another difficulty was related to not having
examples with source code available/open. Finally, know-
ingwhere to look for the exampleswasmentioned since the
instructors are not aware of repositories that provide specific
examples for Software Engineering.

Tonhão et al., 2024

5.3 Relevance Cycle Considerations
Through the study of the literature, we found evidence of
some of the challenges faced by instructors in the adoption
of OSS projects in Software Engineering courses. Among
them, we highlight the choice of the appropriate project
and the time and effort required to plan and monitor the
courses. Such challenges can end up hindering the adoption
of OSS projects as an alternative in the teaching of Software
Engineering.
Regarding the results obtained in the survey, we noticed

that all respondents use examples and that a good part uses
worked examples, even if they do not know the term. How-
ever, only two instructors answered that they use only real
examples, and seven use real examplesmost of the time. Still,
we observed that one of the greatest difficulties in seeking ex-
amples is related to aspects of complexity and adaptation to
the course. According to the participants, it is hard to find
complete and suitable examples for different topics and
approaches that follow the evolution of Software Engineer-
ing. According to Pinto et al. (2017) finding real examples
is not an easy task and there is a lack of materials and re-
sources and—as confirmed by our survey—instructors do
not know where to look for examples.
Therefore, in order to alleviate the challenges in the adop-

tion of OSS projects in the educational environment, and the
difficulties encountered by instructors who want to find ex-
amples, we propose the creation of a portal for cataloging
worked examples drawn from OSS projects. The portal is a
repository where the instructors can search for real examples
of different OSS projects, making it easier to find examples
and choose appropriate OSS projects. Based on the literature
and the survey, we have defined the following requirements
for this portal:

• Requirement 1: The portal should provide guidelines
to instructors on how to create and standardize the
worked examples extracted from OSS projects.

• Requirement 2: The portal should openly provide
worked examples to support Software Engineering
teaching, aiming to reduce the effort to search the re-
sources to exemplify the contents of the course.

• Requirement 3: The portal should guide instructors in
applying worked examples when teaching Software En-
gineering.

• Requirement 4: The portal must enable cataloging
worked examples that address different topics of Soft-
ware Engineering.

In Table 4, the relationship between the challenges en-
countered in the adoption of OSS projects in SE teaching and
the requirements defined for the elaboration of the proposal
is presented.

6 Design Cycle - Stage 1
The first stage of the design involved three cycles, which are
related to creating, evaluating, and refining the “cataloging
template” worked examples extracted from OSS projects. In
the first cycle, we developed the first version of the template

based on the literature. We assessed the feasibility of using
the template by means of a focus group with Software Engi-
neering instructors. In the second cycle, we instantiated the
template to create worked examples for the topics of refac-
toring and microservices. The goal was to evaluate the tem-
plate’s flexibility for different topics. In the third cycle, we
conducted a study with Software Engineering instructors, in
which they used the template to create worked examples on
the theme refactoring.

6.1 Cycle 1 - Elaboration and Evaluation of
the Cataloging Template

We conducted this cycle following the steps shown in Fig-
ure 6. The first step of this design cycle consisted of defin-
ing the form of representation of the worked examples. As
it is important to make the examples easy to create, under-
stand, use, and adopt, we have developed a template for cre-
ating and structuring the worked examples extracted from
OSS projects.

Figure 6. First research design cycle.

We developed the first version of the template based
on the literature (Silva et al., 2019; McGinn et al., 2015;
Booth et al., 2015; Sweller et al., 1998). The focus was to
provide guidelines to identify, characterize, and structure the
information in the worked examples. The template is pre-
sented as a solution of a pattern developed for cataloging
the worked examples. The complete pattern can be con-
sulted at https://portalworkedexamples.herokuapp.
com/padrao.php. This pattern was based on the typical
reengineering pattern format described in Demeyer et al.
(2008). We present the first version of the template in Fig-
ure 7. The template was proposed as the way to catalog the

https://portalworkedexamples.herokuapp.com/padrao.php
https://portalworkedexamples.herokuapp.com/padrao.php

Tonhão et al., 2024

Challenges Requirement

Difficulty in finding examples of open-source code. The portal should provide guidelines to instructors on how to create
and standardize the worked examples extracted from OSS projects.

Instructors do not know where to look for examples.
The choice of the appropriate project.

The portal should openly provide worked examples to support Software
Engineering teaching, aiming to reduce the effort to search the resources
to exemplify the contents of the course.

Time and effort invested in planning and following
the lessons.

The portal should guide instructors in applying worked examples when
teaching Software Engineering.

It is hard to find complete and suitable examples for
different topics.

The portal must enable cataloging worked examples that address different
topics of Software Engineering.

Table 4. Relationship between challenges and defined requirements.

worked examples, divided into three sections: project data,
prior knowledge, and example data.

Figure 7. First version of the template for cataloging worked examples.

With the first version of the template created, we started
the evaluation phase. The evaluation consisted of a focus
group, based on the five steps presented in Kontio et al.
(2004). The focus group was conducted with Software Engi-
neering instructors. The focus group’s objectivewas to assess
the feasibility and get feedback about the proposed template.
In the second stage, we planned the focus group, which

would be conducted via videoconference. We also designed
the questions used to guide the discussion during the focus
group, which are presented in Table 5.
The third step consisted of defining the study participants.

It is important to recruit representative, insightful, and moti-
vated participants for the focus group to be successful (Kon-
tio et al., 2004). For that, we selected four Software Engineer-
ing instructors, according to the profiles presented in Table 6.
The fourth step was the conduct of the focus group. The

focus group session started introducing the project, session
rules, and goals. Next, the instructors received the template
and a worked example of the refactoring topic, created fol-
lowing the template. To conduct the study, it was necessary
to define a topic to be initially worked on, as it would not be
feasible to address software engineering as a whole. There-
fore, we decided to focus on the topic of refactoring, as there
was already a scenario for such a topic extracted from anOSS
project.
Subsequently, the instructors received the artifacts and

were invited to discuss them. After the instructors discussed
the artifacts, questions were asked to continue the discussion
and obtain answers about more specific points. The focus
group was recorded with the consent of all participants.

After conducting the focus group, the data was tran-
scribed from the recordings. Subsequently, qualitative
analysis of the data was performed, followed by meetings
with the research group members to organize the informa-
tion and identify suggested improvements to the template.
The results of this cycle are presented in the next section.

6.2 Cycle 1 - Results
Through the analysis of the transcripts, we identified candi-
date improvements in the template. A point made by P0 was
the fact that the structure of the worked example is inflex-
ible, in their words “sometimes there are situations when the
instructor wants an example just to discuss alternative solu-
tions, [...] and I saw that, when describing the solution, we
apparently fix a single solution, and I was wondering if it
would not be interesting to leave this open”.
P2 also mentioned that the structure was a little inflexi-

ble, always having to present a single solution. P1 agreed
that leaving the structure too strict might make it not fit for
examples of some topics. In their words “examples involv-
ing code, [...] examples about tests, maybe it would fit well
..., for a little more general examples, not involving code, it
could be a little more difficult”.
However, P0 came back to argue and realized that the tem-

plate had some freedom to document more than one solution.
For them, “actually there is some freedom, because there is a
sentence in the description saying ’It is necessary to present
all the details of the step by step to reach the final solution’,
[...], maybe I can improve the description a little because the
step-by-step can be exactly that, for the student to consider
different solutions for that problem and at the end, the fi-
nal solution is provided”. A possible solution presented by
the instructors to solve this problem was to improve the
description of the template, leaving the possibilities more
open, pointing out that nothing prevents the instructor from
documenting multiple solutions.
Another problem raised was the lack of pedagogical ele-

ments in the template, in P2’s words “I felt lack of pedagogi-
cal characteristics, lack of things to link the example with the
course or with the specific content of the course [...] Where it
could be used and how it could be applied in the classroom”.
P0 completed, saying that the names of the elements were too
generic, any Software Engineering model would have these
names, but it lacked a more pedagogical language.
P0 pointed out another problem, which was the lack of

more specific elements about open source, mainly related
to the project activity, “It would be important, as an in-
structor looking for the examples, to have information if that

Tonhão et al., 2024

Nº Question
1 Is the idea of creating a template, like the one proposed, to guide the creation and structuring of worked examples interesting? Does it seem feasible?
2 How generic is the template? Are there elements that could be more specific?
3 How clear and consistent is the step by step?

4 Regarding the structure of the example, does the explanation of each defined field present enough information for the example creator
to understand the function of each item present in the structure? How could we make it more specific?

5 What would make you use or stop using the proposed template/solution?
Table 5. Questions in the Focus Group.

Instructors University SE Teaching Use of OSS
P0 PUC-Rio 15 years Research
P1 UFPA – Research
P2 UTFPR 14 years Research/ contribution
P3 UNESPAR 5 years Research/ contribution

Table 6. Information on participants in cycle 1 studies.

worked example is from an active project, or an active mod-
ule, that developers are available, maintaining”. The project
information is very basic, it would be important to consider
other project information that is available at the time of docu-
mentation. P1 and P2 also agreed that the information about
the open source project should be more detailed, indicat-
ing exactly where and when the example was extracted.
P1 and P0 raised another problem, the lack of separation

between what the problem is and the context, that is, the lack
of an element called context, before the problem descrip-
tion. P2 also agreed that it would be interesting to have more
information about the context of the example, but pointed
out that it would be important to consider the size of the struc-
ture as if it is too long, instructors may not want to catalog
the examples, due to the workload required.
Instructors were asked if they would use the template to

create examples and if they would use the examples cre-
ated from the template. For P1 having to create the examples
would be a limitation, if they had the examples ready I would
be more encouraged to use them, in their words, “if I had to
make the examples it would be a very big limiter, if I even-
tually had the worked example in the context of my course,
already mature enough to use, I would use”.
P3 would be willing to create the examples and use them

because it is a job they already do in their course, so they
would feel more encouraged, but they confessed that if there
were examples cataloged by other instructors, it would make
it much easier. In the words of P3 “what would most motivate
me to use it is that I’ve been working a lot with examples,
and what limited me was that the first time I had to build
everything [...] so if I already had other examples that other
instructors had put in, it would make it much easier”.
On the other hand, P2, what would attract them would be

examples that are simple to understand and with guaranteed
pedagogical validity. For P2 “one of the things I would look
to apply would be this question of simplicity and validity, I
think these are two points that are important [...] to know
which pedagogical applications the example had, and some-
how knowing if that had the expected effect, that’s a factor
that would motivate me to use”.
P0 would be afraid to use it if they were not sure where

the solution in the example came from, “I wouldn’t use it if I
started noticing that several of the worked examples are arti-
ficial solutions created by the instructor, or if I don’t have this
information [...] when the solution is not created by someone

from the project, starts to lose a bit of meaning, so I would
feel discouraged if I notice that in the catalog there are many
occurrences of this type”.
After analyzing all the feedback obtained from the instruc-

tors, it was possible to identify points of improvement in the
worked examples cataloging template. In this way, the neces-
sary and possible improvements were implemented, and we
proceeded to a new design cycle.

6.3 Cycle 2 - Creation of worked examples

In Figure 8, the activities developed in the second design cy-
cle are presented. The main goal of this cycle is to verify the
flexibility of the template for cataloging the worked exam-
ples, for different topics of Software Engineering. The activ-
ities of this cycle involved searching and selecting examples
related to the topics of refactoring and extraction ofmicroser-
vices and the use of the template for creating examples for
these topics. We also analyzed the examples created, to ver-
ify the flexibility of the template.

Figure 8. Second research design cycle.

Tonhão et al., 2024

The first step of this cycle was searching and selecting ex-
amples. We chose to work with the topics of refactoring and
microservices, considering that, one deals with the system at
the code level, and the other at the software project level,
thus generating examples of different formats. The search
was conducted by the members of the research group, look-
ing for pull requests available on GitHub repositories, using
the GitHub public API.
The search for the refactoring topic was performed man-

ually. Three OSS projects were selected, namely: Arduino,3
CodeIgniter 4,4 and OpenRCT2.5 We analyzed the pull re-
quests and commits that returned our search using the key-
words ”refactoring”. Three changes related to refactoring
had been selected, one from each project. For the microser-
vice extraction topic, we consulted with an expert, who
pointed to JPetStore6. We selected two repositories from
there: one that deals with the system in monolithic form, and
the other where the system was organized using microser-
vices.
With the selected examples, the next step was to catalog

the worked examples according to the template proposed.
For this cycle, the researchers involved in the study created
the entries in collaborative sessions, mapping the informa-
tion available to the template. We created three worked ex-
amples for the refactoring topic7. Such examples covered the
refactoring operations inline method, rename variable and
remove redundancy. For the microservice extraction topic
we created examples related to the process of extracting mi-
croservices from a monolithic architecture, comparing the
system in the two selected repositories of the JPetStore.
The worked examples created in this cycle, went through a

quality evaluation, to verify the effectiveness of the template
in the creation of worked examples, and the adaptation of
the template to examples of different topics and formats. The
evaluation was conducted by members of the research team,
who critically analyzed the resulting examples looking for
improvements. The analysis was focused on the fluidity of
reading the examples and organizing the information.
In parallel to the creating of the examples, we defined

the organization of the cataloging portal preliminary ver-
sion. For this purpose, we analyzed the Curricular Guide-
lines for Graduate Programs in Software Engineering, of
the ACM (Association for Computing Machinery) (ACM,
2015), and the Knowledge Software Engineering Body,
SWEBOK Guide (Bourque and Fairley, 2014). Such docu-
ments were analyzed, and topic maps8 were created in or-
der to discuss the way that the Software Engineering content
would be organized. The maps show the topics of the first
two levels of each document. By comparing them, we no-
tice that the SWEBOK guide has a greater granularity of top-
ics, presenting a greater number of areas in each level, which
would become too hard to navigate. Therefore, we chose to
organize the first version of the portal using the SWEBOK
guide.

3https://github.com/arduino/Arduino
4https://github.com/codeigniter4/CodeIgniter4
5https://github.com/OpenRCT2/OpenRCT2
6https://github.com/mybatis/jpetstore-6
7Available at https://figshare.com/s/ad87727b39cae679ab7b
8https://figshare.com/s/fe7fba6fc37cc353e966

With the execution of this cycle, it was possible to identify
some points of improvement in the template and define the
organization of the portal. In the next subsection, the results
obtained in this cycle will be presented.

6.4 Cycle 2 - Results

From the execution of the process of creating the worked ex-
amples following the proposed template, it was possible to
raise some points of improvement. The first problem was re-
lated to fluidity in reading the examples. There was a con-
text element in the template—in which the context of the ex-
ample was explained—and a problem description element—
which explained the problem addressed in the example. In
this way, the information did not seem to complement each
other. First, the context of the example in the project was ex-
plained, without mentioning the problem, and only later the
problem that would be addressed was discussed.
Another problem identified was the organization of in-

formation. It was identified that improvements could be
made in splitting the information in the example and in the
order in which this information was presented. A division of
sections could help in the organization of information and
in the reading flow—with each section presenting a specific
focus, such as project data, and example data.
Regarding the definition of the portal organization for cat-

aloging the worked examples, after analyzing the maps gen-
erated from the selected documents, it was concluded that the
SWEBOK Guide would be more suitable as a basis for cata-
loging the worked examples. This guide was chosen because
it is more granular and the topics are better defined, making
it easier to guide users of the portal in the search for worked
examples for more specific contexts.
Furthermore, the examples from this study were cataloged

using tags, with the aim of making the topics related to the
example more specific. The initial tags database was ex-
tracted from the Stack Overflow data dump, made available
through the SOTorrent dataset (Baltes et al., 2018). We used
these tags as a seed. The idea is that instructors add new tags
to the database when needed—whether related to technical
or pedagogical attributes.

6.5 Cycle 3 - Use of the template by Software
Engineering instructors

In Cycle 3, the objective was to evaluate the instantiation of
worked examples using the template. For that, we created a
prototype of a portal based on the cataloging template. The
instantiation was performed by a group of Software Engi-
neering instructors. In Figure 9, we outline the activities con-
ducted in Cycle 3.
For Cycle 3, we selected another set of examples from

OSS projects, to complement the search carried out in the
previous cycle. In this cycle, we focused only on refactor-
ing to keep the environment more controlled. The research
group discussed a set of pull requests obtained via GitHub
API, exactly as we conducted in Cycle 2. The six scenarios
selected in this phase were taken from the following projects:

https://github.com/arduino/Arduino
https://github.com/codeigniter4/CodeIgniter4
https://github.com/OpenRCT2/OpenRCT2
https://github.com/mybatis/jpetstore-6
https://figshare.com/s/ad87727b39cae679ab7b
https://figshare.com/s/fe7fba6fc37cc353e966

Tonhão et al., 2024

Arduino, OpenMRS9 and Apache Dubbo10.

Figure 9. Third research design cycle.

Then, we invited six Software Engineering instructors—
P1–P6 (Table 7)—to use the template and create the worked
examples for the selected scenarios. Each instructor received
one refactoring example, the template for cataloging, and a
link to the portal prototype.

Instructor University Teaching SE Use of OSS
P1 UFPA – Research
P2 UTFPR 14 years Research/ contribution
P3 UNESPAR 5 years Research/ contribution
P4 UTFPR 20 years Research
P5 UEMS 5 years Use only
P6 UTFPR 13 years Research/ contribution

Table 7. Information on participants in cycle 3 studies.

We collected data by following a think-aloud protocol, via
videoconference. In this method, the participant is asked to
speak aloud during the execution of a task or to solve a prob-
lem (Jaspers et al., 2004). During the process of creating the
worked example, the instructor verbalized their thoughts and
raised possible problems and improvements in the template.
We also took notes of the participants interactions for further
analysis.
We conducted each session individually. Each participant

received a link to a page with instructions, the template and
a form for creating the example. They also received a link
to the pull request in which the refactoring was performed.

9https://github.com/openmrs/openmrs-core
10https://github.com/apache/dubbo

The instructors were invited to analyze the pull requests, and
based on the template, create and catalog the worked exam-
ple from the form.
After each session, we analyzed the actions, notes and ver-

balizations. The members of the research group discussed
them in order to understand the drawbacks and the necessary
improvements.

6.6 Cycle 3 - Results

Based on the sessions, we identified some points of improve-
ment and adjustments in the template for creating the worked
examples were raised. First, some instructors felt confused
about the “usage restrictions” element, P2 found the ele-
ment unnecessary as they could not find any restrictions for
using the example they were creating. P5 found it too similar
to the “prior knowledge” element, since the prior knowledge
is already a restriction of use.
Another point raised by P2 was the lack of awareness for

the mandatory elements in the structure of the example,
besides suggesting that some elements could be mandatory,
such as “Previous knowledge”, “Suggestions for use”, and ‘
‘Result”. P4 also pointed out that for them “Prior knowledge”
should be a mandatory element.
Thinking about focusing only on essential elements that

make a difference in the structure, P1 argued that instructors
may not understand the “project status” element. Given
that this is a non-core element, perhaps it could be removed.
P2 suggested clarifying what the “References” element is,
or naming it with a more explanatory name, as the way it was
described is not explicit which types of references should be
placed in the element.
P2 also found it confusing to have fields to place im-

ages in all elements of the data section, so they could only
have the problem and the result. P1 and P4 also preferred not
to add images, as the ideal would be for students to look at
the example link, and see the problem actually in the project
and not in an image extracted from it. P6, on the other hand,
thought the idea of images was good because if the example
link eventually disappears, the images can be a way for the
examples to remain usable.
With Cycle 3, the stage 1 of the design cycles was con-

cluded, which addressed the elaboration and evaluation of
the standard for cataloging the worked examples. In the next
section, a discussion of the results of this stage will be pre-
sented.

6.7 Results and Considerations - Stage 1

We implemented improvements in the template at the end of
each cycle, always taking into account the feedback received.
In Cycle 1, one of the main problems identified was the
lack of pedagogical elements in the template. To solve this
problem, we created two pedagogical elements in the tem-
plate:“Usage Suggestions” and “Usage Restrictions.” This
would assist instructors in the selection of the application of
the examples.
P1 and P2 suggested the creation of an element to separate

the context and the problem since they missed details of the

https://github.com/openmrs/openmrs-core
https://github.com/apache/dubbo

Tonhão et al., 2024

context of the project in which the example occurs. We cre-
ated a new element called “context” to enable instructors to
describe this context.
Another problem pointed out was the lack of more ele-

ments related to OSS projects: link to the project reposi-
tory (P2) link to the example (P2), project status/activity (P0,
P1)—active or inactive project—and the extraction date ex-
ample (P1). Therefore, we created the elements “example
link”, “project status” and “extraction date”. In addition, we
define and marked the mandatory elements in the structure
of the worked examples.
Such improvements directly impacted the Requirement

1—guidelines to guide instructors in the creation and cata-
loging of examples. The clearer and more cohesive the in-
formation is presented, the easier the process of creating the
example is. The application of improvements in this cycle
generated the second version of the template for cataloging
the worked examples on the portal, which served as an entry
for Cycle 2 of evaluation.
In Cycle 2, the changes were made mainly to improve the

fluidity in reading the examples. The order of the “context”
and “problem description” fields has been changed, and the
elements have been renamed to: “conceptual description of
the problem” and “context of the problem in the project”. In
addition, we explicitly split the template into three sections:
general data, project data, and worked example data, so that
the information was better presented and divided.
The general data section presents information related to

the worked example itself (e.g., title), and pedagogical ele-
ments (e.g., prior knowledge and suggestions of use). In the
project data section we present the project name, links to the
repository, example covered, and some additional informa-
tion such as description, project status, and date of the sample
extraction. The worked example data is based on the defini-
tion of the worked example, with elements such as problem
description, the context of the problem in the OSS project,
steps of the solution, and result.
After Cycle 2, we have also included two new elements in

the template, in order to guide instructors in the search for
examples. The first was the topics of SWEBOK to which the
example is related to—these topics are already registered and
the instructor only needs to select them. The second element
inserted was a set of tags, in which the instructor is allowed to
label the example with technical and pedagogical attributes
(choosing a previously recorded tag, or creating new ones).
The improvements made in Cycle 2 are also related toRe-

quirement 1. In addition, they are related to Requirement
4—the portal should allow the cataloging of examples for
different topics. Cataloging according to SWEBOK topics
and tags will help the instructor guide their research accord-
ing to the desired topics and will allow the portal to be orga-
nized according to a topic outline.
In Cycle 3, we added a new open element called “other

topics”, to complement the topics of the SWEBOK guide. In
addition, the “references” field of the worked example has
been renamed “complementary material”, and the descrip-
tion of the element “tags” has been improved. This improve-
ment in the description allows instructors to understand that
they can insert up to three tags with technical and pedagog-
ical attributes related to the worked example and that new

tags can be created.
We changed the fields “prior knowledge” and “restrictions

on use” (created in cycle 1), into a single element, for present-
ing similar information. In addition, the fields “prior knowl-
edge and usage restrictions”, “suggestions for use” and “re-
sult” of the worked examples were made mandatory, as they
were considered essential elements to catalog the worked ex-
amples. The element “project status” (created in Cycle 1) was
removed since it was not considered important given the ex-
istence of the other elements fromwhere it is possible to infer
the status.
We consider that the portal met requirement 1 at this

point: provide guidelines to guide instructors in the creation
and standardization of the worked examples. The updated
template is presented in Figure 10, and served as the basis
for creating a new prototype of the portal11 used in from this
cycle on.

General Data

Title: Name of the example.

SWEBOK Topics: Areas and subareas that the example is contained in according to the

SWEBOK guide.

Other Topics: Free topic to present other subareas that are not specified in the SWEBOK

guide topics.

Tags: Technical or pedagogical tags related to the worked example.

Prior Knowledge and Usage Restrictions: Prerequisites for understanding the worked

example, and possible restrictions for its use.

Usage Suggestions: Present information on how to use, when to use, and with whom to

use the worked example.

Project Data

Name: Name of the Free Software project from which the example was extracted.

Project Description: Brief description of the project scope.

Project Link: Link to the project repository.

Example Link: Link to the location where the example was taken from the repository.

Extraction Date: Date when the sample data was taken from the project.

Worked Example Data

Conceptual Description of the Problem: Explain in a conceptual way the problem that

will be demonstrated in the example.

Context of the Project Problem: Explain the context in which the problem described

occurs within the project.

Solution Steps: Steps to resolve the problem.

Result: Solution generated from the solution steps.

Complementary Material: Indicate materials that can be complementary to the study of

the example.

Figure 10. Current Worked Examples Cataloging Template.

7 Design Cycles – Stage 2
The objective of Stage 2 was to evaluate the usefulness of
the portal as a support material for Software Engineering
courses. To do so, we cataloged refactoring examples and
carried out evaluations with Software Engineering instruc-
tors to get feedback about the portal and the examples to pre-
pare the lectures. This phase had 3 cycles (Cycles 4, 5, and

11https://portalworkedexamples.herokuapp.com/

https://portalworkedexamples.herokuapp.com/

Tonhão et al., 2024

6), all of them conducted with Software Engineering instruc-
tors.

7.1 Cycle 4 - Use of the portal prototype by SE
instructors

In this cycle, we developed and made available the first ver-
sion of the portal. An impression of the search page for this
first version is shown in Figure 11.

Figure 11. Search page for the first version of the portal.

For the first round of evaluation collected more examples
and instantiated them in the portal using the template. We
chose to select examples for the topic refactoring because it
has already been worked on in other phases of the research.
We surveyed examples using the GitHub API. The search
performed returned pull requests related to the searched key-
words12. In our case, the keywords used were “refactor” and
the names of refactoring types (e.g, extract method, extract
variable). As a selection criterion, we considered the ease
of understanding of the problem addressed, the number of
changes made, and the classes involved in refactoring. We
chose to select simpler examples, which did not involve very
complex refactorings. We ended up selecting 11 examples.
We also posted a question on social media (Twitter and

Facebook) in order to collect examples from the context of
OSS projects. Some users commented on the publication,
one of them suggested using the Why Refactoring13 website,
which contains a refactoring data set carried out on projects
on GitHub (Silva et al., 2016). We have selected nine exam-
ples available on the website. Finally, another set of ten ex-
amples was made available bymaster’s and doctoral students
at PUC-Rio, who research the topic in a renowned laboratory.
We cataloged the thirty selected examples on the portal.

The next phase consisted of inviting instructors to participate
in the portal’s first assessment. The invitation was made to
five instructors who agreed to participate in the study. Three
of them had already participated in previous stages, and two
had no knowledge about the project. In all cycles, we invited
some instructors who took part in this research in a previous
cycle and others whowere not aware of the project, to receive
feedback from different points of view. The profile of the
participants in this cycle is shown in Table 8.
Once again, we applied a think-aloud protocol, now fol-

lowed by a debrief focused on understanding how theywould
use the portal and how they would apply the worked exam-
ples in class. The questions asked in the debrief are presented

12https://api.github.com/search/issues?q=is:pr+
%22keyword%22&per_page=100

13https://aserg-ufmg.github.io/why-we-refactor/#/

Instructor University SE Teaching Use of OSS
P0 PUC-Rio 15 years Research
P2 UTFPR 14 years Research/ contribution
P3 UNESPAR 5 years Research/ contribution
P7 NAU 18 years Research
P8 UFBA 16 years Research/ contribution

Table 8. Information on participants in cycle 4 studies.

in Table 9. In a synchronous videoconference session, each
instructor was invited to use the portal and look for examples
to use in a refactoring lecture, select some of the examples,
and evaluate them. Each instructor narrated the search on the
portal and made suggestions for improvements to the cata-
loged examples and the navigability of the portal. At the end
of the process, we proceeded with the debriefing session.
After the evaluation with all the instructors, we analyzed

the data collected and categorized the feedback obtained.
Subsequently, we discussed the feedback as a team and im-
plemented the necessary changes on the portal.

7.2 Cycle 4 - Results
In general, the improvements pointed out in this cycle were
related to structure of cataloged examples, portal usabil-
ity, and search in the portal. Regarding the structure of the
examples, P2, P3, and P8 suggested the insertion of a “pro-
gramming language” as a mandatory element to the example.
For P3, “the instructor could choose the examples taking into
account the project and the programming language as well”.
Regarding portal usability, P7 and P8 pointed out that

the project and example links were not clickable links (the
instructor had to copy and paste the link to navigate). An-
other suggestion made by P7 was for the tags and topics to be
clickable too, bringing other examples cataloged with those
items, facilitating the search for related examples.
In addition, some instructors suggested to expand the

example search and make it more flexible, P7 suggested
searching the example description, and P0 suggested “more
flexibility in the search, other fields than the predefined ones,
search through from other aspects, free form, maybe a free
search box”. P2 also pointed out that the search should be
more flexible, P3 and P0 suggested searches by project and
by programming language.
During the debrief, we asked some pedagogical questions

related to the use and usefulness of the examples used in
teaching (9). The results of such questions are presented be-
low.
All instructors participating in the study found ways to use

the examples in class, some using more traditional method-
ologies, and others focusing on active methodologies. P0
would approach the example more actively, first showing the
classes involved in the example, and asking the students to
try to identify the problem; would discuss the problem identi-
fied; present the solution; check if the students had other po-
tential solutions; discuss the advantages of that solution and
the possible problems; possibly try to apply solutions pro-
posed by students; and discuss upcoming refactorings related
to the same artifacts.
P8would apply the examples in a traditional way: “I would

apply the example in a more traditional way, which is the
way I work because I cannot always apply a more active ap-

https://api.github.com/search/issues?q=is:pr+%22keyword%22&per_page=100
https://api.github.com/search/issues?q=is:pr+%22keyword%22&per_page=100
https://aserg-ufmg.github.io/why-we-refactor/#/

Tonhão et al., 2024

Question
Q1 How would you employ/use the worked example in any course you teach?
Q2 Why would you use (or not) worked examples?
Q3 How do you think the worked examples can benefit teaching?
Q4 What challenges would you have to include the worked examples in the methodology you already use?
Q5 Would you be able to use these worked examples in a course you already teach?
Q6 Do you use examples in your classes? Are they real examples? Have you used examples from Open Source Software Projects
Q7 What types of topics do you think would be interesting to have worked examples on?
Table 9. Interview questions conducted in the first portal evaluation. The questions are just a guide used as a checklist

proach”. First, they would present the concepts involved in
the class, and then they would show the examples—first the
problem and then the solution strategy proposed. After that,
they would discuss other forms of solution. P2 and P7 would
also use it to demonstrate in a practical way the application
of concepts in a traditional setting.
Finally, P3 would try to mix the two forms, traditional and

active. They would create a slide explaining the problem,
another with a wrong “solution”, one with the correct solu-
tion, and an explanation of the problem’s correction. They
would also develop an activity for students to try to iden-
tify the problem. In this way, one can see the versatility of
the worked examples, which can be traditionally used as an
example to demonstrate certain concepts, or even as more
active activities, which can be performed by students.
According to the instructors participating in the study, the

worked examples can benefit teaching by bringing real ex-
amples, making things more concrete, leaving the abstract,
and providing contact with real projects, facilitating under-
standing. In the words of P7, “you can see real situations,
especially in Software Engineering where the students have
no experience with real projects yet, they think we are talk-
ing about very abstract things. As they see a real project, they
say, look, this is a real project, people use it here in practice,
so it’s much more concrete...easier for the student to under-
stand”. P7 added, saying that they already faced situations
where they needed a real example, and it was difficult to find.
P3 believes that the examples can help students to interact

more in class, even motivating the instructor, as it is a differ-
ent material, and that it addresses real experiences. P0 also
highlights that the examples could help instructors to always
be changing, not repeating the same examples, being a way
to bring new things to the classes, and always keep up to date
Regarding the difficulties in using the worked examples,

the instructors did not point out major challenges, only the re-
organization of lectures, but that would not be a big problem
considering the benefits obtained. For P2 “Thinking about
the methodology I traditionally use, the challenge is more
to reorganize the lectures that are already created, thinking
about the material I would have available because the exam-
ples I had been using were from traditional Software Engi-
neering books, so always the same example, the biggest chal-
lenge is the question of time management, how much time
will I have to adapt the material that already exists [...]”.
P3 points out that they would also have no problems us-

ing the examples, taking into account the methodology they
traditionally use. However, due to the COVID-19 pandemic,
P3 has been working remotely and believes that in distance
learning education it could be a little more difficult to use
such examples. On the other hand, P3 also points out that they

would have to use the examples to conclude, as “bringing
something different can also help students to interact more”,
with the examples being a way to motivate students in the
virtual environment.
One of the topics pointed out by instructors (P0, P2, P8) as

interesting for creating worked examples was “Test”, given
the fundamentally practical nature of this topic. P8 also
pointed out topics related to quality and tools to measure size
and complexity. P0 indicated design standards and code re-
views, and P7 also cited design standards and code smells. P3
would very much like examples related to software modeling
and requirements specification; P2 indicated good principles
of software programming and maintenance.
After analyzing all the questions, and implementing the

improvements in the portal and the cataloged examples, the
next step was the execution of another evaluation cycle, con-
ducted again with Software Engineering instructors.

7.3 Cycle 5 - Verbal lesson planning by SE in-
structors

In this cycle, we, once again, invited instructors to use the
portal. During a videoconference session, we asked them to
think about a course they teach and select one or more ex-
amples of refactoring. Then we asked them to verbally plan
a class in which they could use the examples. The goal of this
assessment was to investigate the usefulness of the examples,
what criteria instructors would use to choose the examples on
the portal, and how they could use them in a lecture. We also
investigated the portal’s potential as a teaching resource. Ten
Software Engineering instructors participated in this evalua-
tion, according to Table 10, with P1, P3, and P9 participating
in previous iterations.

Instructor University SE Teaching Use of OSS
P0 PUC-Rio 15 years Research
P2 UTFPR 14 years Research/ contribution
P4 UTFPR 19 years Research/ contribution
P9 UFMS 2 years Research/ contribution
P10 UNESPAR 17 years Research
P11 UFU 20 years Research
P12 USP 22 years Research/ contribution
P13 UNIT 22 years Research/ contribution
P14 UENP 15 years Research/ contribution
P15 UTFPR 2 years Research/ contribution
Table 10. Information on participants in cycle 5 studies.

In this cycle, we use the think-aloud protocol again. The
instructors were invited to narrate their decisions and reflec-
tions during the process of searching for the worked exam-
ples and preparing the class. We carry out the evaluations
individually with each instructor. In this evaluation, the in-

Tonhão et al., 2024

structors did not need to create any material, the preparation
of the class was only verbal. First, instructors chose a course
and the topic of the course on which they could apply the
refactoring examples. With that in mind, they started search-
ing for worked examples that they considered suitable for use
in class.
After selecting the worked examples, the instructors car-

ried out the lesson planning, explaining which methodology
they would use and where they would apply the selected
worked examples. With the class prepared, we asked instruc-
tors to explain the criteria used to choose the worked exam-
ples. Then, we conducted a post-study interview to under-
stand the portal’s potential as a teaching resource. The ques-
tions addressed in the interview are presented in Table 11.
In addition, we applied a questionnaire following the

Technology Acceptance Model (TAM) (Davis, 1989), to as-
sess the ease of use and usefulness of the portal as a tool.
TAM is based on two constructs: perceived utility and per-
ceived ease of use. Perceived utility refers to the degree to
which a person believes that using the system can improve
their performance, and perceived ease of use refers to the de-
gree to which a person believes that using the system will
be effortless (Davis, 1989). The items under evaluation fol-
lowed a 7-point Likert scale—from (1) Strongly Disagree to
(7) Strongly Agree—which is commonly used in TAM ques-
tionnaires. The questions TAM questionnaire items in our
study are presented in Table 12.
The data collected in the think-aloud and follow-up inter-

view was qualitatively analyzed by the research team, fol-
lowing an open coding approach followed by a thematic anal-
ysis to create higher-level categories. We graphically ana-
lyzed the responses to the TAM questionnaire.

7.4 Cycle 5 - Results - Use of the Portal
The qualitative analysis of the interviews and think-aloud
revealed three categories of feedback, namely: search and
navigation, difficulties with open source software, and use
in the future. Each of these topics will be discussed below.

Search and Navigation
The topic of search and navigationwas divided into pos-

itive aspects and negative aspects. As a positive aspect, we
evidenced simple use and the ease of finding examples. In the
words of P14 “It was a simple, few menus, the contribution
part is clear, and the examples too. When you start brows-
ing you can see that all the examples have the same struc-
ture, very simple”. In addition to simplicity, another point
discussed was the different ways to search, and simplicity
in presenting results. For P0 “the portal has the advantage
of being very simple, and has different ways of searching”,
P13 also points out that “the search is very simple, returns
results in a simple way”.
Another point mentioned was the intelligibility of topic

names of the knowledge areas and the examples. P15 pointed
out that “the names are good, intelligible for what is pro-
posed and the explanation is good and easy to understand”.
In addition, the defined taxonomy for navigating by knowl-
edge areas was pointed out as a positive point, being well
organized, in the words of P13 “the taxonomy used in navi-

gating by area is well done, well defined ”. Another positive
point presented by P13 was the generate PDF option avail-
able for all examples on the portal, this option allows instruc-
tors to save the examples, analyze them later, or even send
them to students.
The search and navigation negative points were divided

customization and general presentation. P9, P12, and P0 felt
the need to mark or favorite examples so that one can save
and return to a selected example again. In the words of P0 “it
would be interesting to write down the chosen examples, and
then go back and log into the site and have it stored”.
Another point presented by P13 was the possibility of cre-

ating a section to leave feedback (along with the example
evaluation section) about your experience using the exam-
ple to help other instructors in the process, pointing out what
worked and what could go wrong. P12 also pointed out the
lack of a section for new examples, that is, a section where
the latest examples inserted in the portal would be presented,
so that instructors could always keep up-to-date, having ac-
cess to the latest examples added.
In general presentation some suggestions are about the

presentation of information on the portal. P10 and P12 men-
tioned that the examples returned in the search are not sorted
and that finding a way to sort them would be interesting. In
addition, P2 observed that the portal had no pagination, that
is, there was no limitation of results per page, and in some
searches, it returned a lot of information in just one page,
and that this could make the visualization a little confusing.

Difficulties With Open Source Software
The difficulty in using open source projects was one of

the topics addressed by instructors, mainly due to the lack of
experience with such projects. Understanding and adapting
to open source software was one of the difficulties in using
the portal and the examples. According to P12, “the fact that
the portal links to GitHub made it a little difficult for me, but
because of my lack of experience”. P14 also points out that “a
restriction is the GitHub issue, it is nice to have access to the
project, but navigating inside it can be a little tricky”. P12
suggested that “would be nice if the portal had something to
guide users who have no experience with GitHub, a kind of
help or tutorial”. P11 lacked somethingmore “chewed” about
what happens on GitHub to reduce the cost of understanding
the examples.

Use In The Future
Question Q8 of debriefing addressed use of the portal

in the future, when it would be possibly already populated
for various topics. All instructors participating in the study
showed interest in using the portal in the future, pointing out
aspects that would attract them. P4, P10, and P13 pointed to
the ease of finding good examples and keeping them up to
date. When asked why they would use the portal, P10 said
that “one of the aspects that would motivate them to do this
would be the ease of keeping the examples up to date. There
are several similar examples, and each semester I could use
different examples, if there are students who failed the sub-
jects they may have contact with new examples”.
The aspect that would attract P9 and P11 to use the portal

is the fact that it saves time and effort in finding examples.

Tonhão et al., 2024

ID Question
Q1 How was your experience using the portal?
Q2 What are the challenges in inserting the examples in your lesson plan?
Q3 How do you imagine that using these examples contributes to providing contact with real projects?
Q4 How would students learn from the selected examples?
Q5 How would such examples help with motivation and interest?
Q6 How is it possible to plan a lecture using the portal?
Q7 If you didn’t have the portal, how would you look for real examples to use in your classes?
Q8 If the portal was complete, would you use it for all your classes? Why?

Table 11. Interview questions conducted in the second portal evaluation.

Perceived Ease of Use
Q1 It was easy to learn how to use the Portal
Q2 I find it easy to get the Portal to do what I want it to do
Q3 I understood what happened in my interaction with the Portal
Q4 It was easy to gain skill in using the Portal
Q5 It’s easy to remember how to use the Portal to find examples for my class
Q6 I find the Portal easy to use

Perceived Usefulness
Q7 The portal allowed me to search for examples for my class faster
Q8 Using the portal improved my performance in preparing my classes
Q9 Using the Portal improved my productivity in preparing my classes
Q10 Using the Portal made it easy to find examples for my class
Q11 I find the Portal useful for preparing my classes
Q12 Assuming that the Portal is populated for various topics of Software Engineering, I predict that I will use it in the future

Table 12. Questionnaire based on TAM related to the Portal of worked examples.

In the words of P9 “I would use the portal for all courses,
mainly due to the reduction of effort”.
Another aspect that caught the attention of P10 and P2

was the diversity of examples, designs, and languages. In
the words of P10 “the possibility of examples in various lan-
guages, since there are courses that can address other lan-
guages such as python, ruby [...]”. For P2 “the diversity of ex-
amples, projects, and languages would be aspects that would
make using the portal, and make it a useful and attractive
tool”.
P14, P15, and P0 would use the portal because they knew

they would find well-structured examples. For P15 “exam-
ples would be the main aspect that would attract me to the
portal, the context and how they are explained, I think it helps
too ”.

7.5 Cycle 5 - Results - Use of Worked Exam-
ples

The results related to the use of worked examples were split
into four categories, namely: teaching method, criteria for
choosing the examples, benefits of use, and difficulties in
using them. The category Teaching method describes how
instructors thought of using the examples in their classes, be-
ing divided into two ways, active and traditional. The cate-
gory criteria for choosing examples addresses which crite-
ria instructors would use when selecting an example to use
in classes. In benefits of use and difficulties in use are pre-
sented, respectively, in the instructors’ view, the benefits that
the use of worked examples could bring to teaching, and the
possible difficulties they might have to use such examples.

Teaching Method
Instructors participating in the study were invited to pre-

pare a lecture in which they would use the examples, after an-
alyzing the information, it was noted that these lectures had

two types of approaches to applying the examples: traditional
learning and active learning. In the traditional approach,most
instructors would only add examples to existing classes to
demonstrate and reinforce the concepts explained in a real
way. For example, P12 would go directly to the example
within the project, “play the entire screen with the commit
of the example to the students on the projector, and it would
show the differences between the original and the refactored
program, and it would show and doing the comparisons”.
Regarding the active approach,. P2 mentioned that they

could use the examples for an inverted classroom, where they
would pass the problem addressed in the example, and let the
students discuss it, they could also use the example as an ac-
tivity. P9 and P13 would use the examples as activities, se-
lect some examples that address problems with similar com-
plexities, and pass the problems on to the students to propose
solutions. They would later show the solutions given in the
examples and compare them with those proposed by the stu-
dents (it “would encourage students to discuss and debate the
solutions of their colleagues to motivate interaction between
them” –P9).

Criteria for Choosing Examples
Regarding the criteria used to choose the examples, the in-

structors mentioned different relevant aspects when making
the choice. One of those criteria was the popularity of the
project, in the words of P2 “if I take an example of a well-
known project, it might motivate them even more”. P13 also
mentioned the use of projects that students will hear about
in the market, as this can arouse interest and motivate them.
The project domain, the classes involved and good documen-
tation were criteria cited by P0, a smaller number of classes
involved and good project documentation can facilitate the
understanding of the example, reducing the cost of under-
standing for the instructor. P0 also mentioned the specific
focus on the problem as a criterion, having an example has a

Tonhão et al., 2024

single focus, and that the project is not mixed with other in-
terests, would facilitate the visualization of the problem and
how it occurs, not being necessary understand other code or
design elements that may be intertwined with the example.
For P14 the level of abstraction would be the main crite-

rion for choosing or not an example if it would have a model
or diagram to help them understand the problem and the con-
text of the example, or if it would just be code: “getting just
the code, didactically, is complicated”. Another point men-
tioned by P14, P4, P12, P13, and P8, was the complexity of
the example and the technology used, all of which would opt
for a simpler example, whichwould facilitate the understand-
ing. In the words of P12 “I would look for simpler examples,
as the more complex ones would demand more from the stu-
dents”.
The course bias and the degree of maturity of the stu-

dents were also criteria used to choose the examples. P9
would choose the examples taking into account the bias of
the course in which they would be applied, and P10, together
with the course bias, would also consider the degree of matu-
rity of the students, looking for examples with simpler con-
texts, which students would find it easier to understand, tak-
ing into account the degree of maturity of the class.
P11 would take into account the motivation of the example

when selecting it, why that problem is occurring, what led to
the presented resolution, and what are the possible implica-
tions of the modifications in the project. P2 would choose
example by title, being a choice for convenience, not neces-
sarily following a criterion, just thinking about what might
be interesting for the class.

Benefits of Use
All instructors participating in the study believe that the

worked examples extracted from OSS projects have poten-
tial to bring real experiences to students, as they are examples
based on real projects. P13 also points out that “in addition
to providing real contact, it can influence the student to con-
tribute to this type of project as well”, which can be a way of
introducing students to the world of open source projects.
The worked examples can be a way to support teaching,

bringing learning to students. However, P10 pointed out an
important aspect: “I am not sure if the students can learn from
the examples, it’s a bit strong, but the worked examples are
one more tool to show the students that what the instructor
is showing us something important”.
Still, in general, all instructors agreed that the worked ex-

amples can impact the motivation and interest of students,
mainly because it is a practical material, in which students
can actually see the application of concepts and techniques in
projects of real software. P2 also adds that the design choice
can be a factor that influences these aspects, in their words,
the use of worked examples: “it can motivate for being a
practical example, and there are other aspects too if I take
an example of a well-known project, can motivate them even
more”.
Another aspect that can influence the motivation and in-

terest of students is the active nature with which examples
can be used, P10 points out that “The use of examples in
class can help in the motivation because the examples can
be used to do more dynamic activities, such as giving the

problem and asking students to propose solutions and then
comparing the solutions theymakewith the solution in the ex-
ample”.Performing more dynamic activities can engage stu-
dents more and motivate them in the learning process.

Difficulties in Use
One of the difficulties pointed out was reorganizing the

lectures. In the words of P11, “to use the examples I would
have to modify the methodology a little because I don’t work
with real examples...I would have to rearrange the lectures
to insert the worked examples”. It is important to point out
that even in the face of such difficulty, P11 mentioned that
despite having to tinker with themethodology, the cost would
be worth it, given the benefits it would have later.
Another difficulty pointed out was the technologies used.

The examples of projects that approach technologies that are
different from those commonly used in the classroommay re-
quire more time for application. P14 pointed out that “when
we enter an application level, maybe we don’t work on the
same platform, [...], and maybe I wouldn’t be addressing
this in my course, because of the time, which is not possible
to work with several technologies”. Other difficulties men-
tioned by P14 were the cost of understanding the worked ex-
amples, and the difficulty of inserting something that is not
the instructor’s authorship in the classes. In P14’s words, “the
cost of understanding the example to adapt the lesson, the
difficulty of having to insert something external in the con-
tent, such as an example created by others”. P12 also pointed
out that the insertion of new material can bring some diffi-
culties, but that it is part of class preparation.
Some instructors mentioned that they would not have dif-

ficulties applying the examples due to the methodology they
already use. Some small difficulties could be related to the
context where the example would be used, or how it would
be used, these restrictions being related to the course or the
degree of maturity of the students. P2 for example, would use
the examples for a course on software analysis and design,
so I would have to make some adaptations to the example,
but because of the context in which it would be working, this
would not necessarily be a difficulty related to the use of the
example, but rather to the course that would make the ap-
plication, in their words, “In the context of the course, the
difficulty would be to understand a little more of the project,
due to what the course asks for, to understand the connection
and hierarchy of the classes, to generate the UML”.

7.6 Cycle 5 - Results - TAM Questionnaire
The questionnaire applied to instructors participating in the
second evaluation of the portal contained 12 questions, ac-
cording to 12, based on the TAM, with answers on a 7-point
Likert scale. In this questionnaire, an open question was also
presented for instructors to leave comments if deemed nec-
essary. In 12 we present the results of the items present in the
questionnaire.
In general, instructors who participated in the study agreed

that it was easy to learn to use the portal and that it was easy
to get the portal to do what they expected. In addition, they
also agreed that they were able to understand what happened
during the interaction with the portal and that it was easy to

Tonhão et al., 2024

1. It was easy to learn how to use the
Portal

2. I find it easy to get the Portal to do
what I want it to do.

3. I understood what happened in my
interaction with the Portal

4. It was easy to gain skill in using the
Portal

5. It's easy to remember how to use the
Portal to find examples for my class

6. I find the Portal easy to use

7. The portal allowed me to search for
examples for my class faster

8. Using the portal improved my
performance in preparing my classes

9. Using the Portal improved my
productivity in preparing my classes

10. Using the Portal made it easier to
find examples for my class

11. I find the Portal useful to prepare my
classes

12. Assuming the Portal is populated for
various Software Engineering topics, I

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

I Totally Agree Strongly Agree Partially Agree Neither Agree nor Disagree Partially Disagree Strongly Disagree Strongly Disagree

Figure 12. Results obtained in the application of the questionnaire based on the TAM.

gain skills in using it.
Figure 12 shows a clear trend of agreement, with only two

scores showing disagreement (one on item 5, and the other
on item 6). Both of the negative answers came from the same
instructor.
Only 3 instructors out of 10 answered the optional open

question left at the end of the questionnaire. One of them
suggested that the layout could be improved to focus on us-
ability, and another suggested that the example could contain
some color marking to demonstrate the level of complex-
ity and group examples of similar projects. In summary, the
TAM results indicate that the portal is promising and could
be well-received by Software Engineering instructors.

7.7 Cycle 6 - Complete lesson planning by SE
instructors

In this cycle, the instructors used the portal as a support for
the complete preparation of a lecture. This preparation in-
volved creating a lesson plan and the materials that would be
used in class, such as slides, activities, and complementary
materials. The topic selected for this evaluation was refactor-
ing again, and it was up to the instructors to prepare a lecture
that addressed the selected topic. To conduct this study, each
instructor joined the researchers in two meetings that lasted
around 50 minutes each. They had to carry out some activi-
ties between the meetings.
The focus of this cycle was to collect the instructors’ feed-

back about preparing a lecture using the portal as support ma-
terial, and their perceptions about the use of worked exam-
ples in the classroom. Information about the instructors who
took part in this assessment cycle is presented in Table 13.
The study was conducted individually with each instructor.
In the first meeting, we explained the study protocol and

the instructor consented to participate. Then, we present the

Instructor University SE Teaching Use of OSS
P2 UTFPR 14 years Research/ contribution
P3 UNESPAR 5 years Research
P9 UFMS 2 years Research/ contribution
P16 UFABC 3 years Use Only
P17 USP 15 years Research/ contribution
P18 UFBA 7 years Research/ contribution
Table 13. Information on participants in cycle 5 studies.

portal, making a shared folder available with a bulletin board
in which the instructors could leave feedback on the posi-
tive and negative aspects of using the portal throughout the
study.We also provided a lesson plan template so the instruc-
tors could use a guideline. After presenting the portal, the in-
structor chose a course and started the lesson plan, detailing
the methodology and how they would use the examples. At
the end of the first meeting, we gave instructions about what
was expected for the next meeting (presentations, activities,
complementary materials).

The first meeting resulted in a first version of the lesson
plan, in which the instructor would make use of the portal
examples in some way. This version of the plan was open so
that the instructors could improve as they saw fit. The second
meeting was scheduled according to the time established by
the instructors so that it was possible to prepare the necessary
materials for the class.

The second meeting was recorded, with the consent of the
participants. At this meeting, we invited the instructors to
present their lesson plan and the materials developed. We
then discussed the positive and negative aspects of using the
portal. Finally, we conducted a post-study interview to col-
lect feedback on the process of preparing the lectures aided
by the portal. The questions asked in the interview are avail-
able in Table 14.

Tonhão et al., 2024

RQ Question
Q1 Could you summarize your experience using the portal?
Q2 What benefits and challenges can you see in the application of the worked examples, related to learning?
Q3 What were the difficulties in inserting the worked examples in the lesson plan?
Q4 Would these difficulties prevent you from using the worked examples in your classes? Why?
Q5 In the lecture you prepared, are there factors that could cause the application of the worked examples to not have the expected result?
Q6 What is the role of the portal in the preparation of the lesson using the worked examples?
Q7 When preparing the class, did you change the methodology you use? If so, why?
Q8 Do you intend to conduct the planned lecture?

Table 14. Interview questions used in Cycle 6 post-study

7.8 Cycle 6 - Results
The 5 study participants showed different ways of using
the worked examples retrieved from the portal in different
courses. Some instructors planned active approaches, such
as creating activities and assignments, and others as a com-
plement to the lectures they already use to teach. P16 pre-
pared a class for the Object Oriented Programming course
and planned to use the examples as an activity, which would
be automatically corrected by the Moodle virtual environ-
ment, something they already used in class.
P9 also planned to use the examples as an assignment

in the Software Measurement course. The instructor pre-
selected some worked examples and would let the teams
choose the examples and projects they would like to work
with. The purpose of P9 was for students to explore the
project fromwhich the examplewas extracted and apply soft-
ware measures. P18 would use the examples in a Software
Engineering course, in a class on Design Patterns, to show
the before and after the code implementation, making an as-
sociation of improvements with design patterns.
P2 and P3 planned an expository lecture, in which they

added examples. P3 prepared a lecture on refactoring for the
Evolutionary Software Maintenance course, which was sup-
ported by a slideshow, in which they incorporated the exam-
ples among the concept explanations, to show the real appli-
cation of what they were presenting. P3 also pointed out that
they could apply an activity using the examples. P2 adapted
one an Object-Oriented Analysis and Design course lecture
which focuses on good design practices. They added the ex-
amples at the end of the lecture, to show refactoring as a good
practice and take real examples of design solutions for stu-
dents. Lastly, P17 planned to use the examples in two ways,
first as P2 and P3, during the presentation of the content to
demonstrate the application of the concepts, and then use it
as an activity to try to put the presented content into practice.

7.8.1 Positive and negative feedback

A document was also made available so that each instruc-
tor could leave their feedback on the positive and negative
aspects of using the portal. One of the positive aspectsmen-
tioned was the facility to find practical and real examples ex-
plaining the context in which they are inserted. P3 wrote that
“the portal helps me by providing lots of practical and real-
world examples of refactoring. This is pretty cool to have, as
most of the examples we find in literature or book materi-
als are old or too abstract for students to understand”. For
P17 “the portal helped with the selection of examples for the
lesson and for composing exercises”. Therefore, we could

evidence that the portal facilitates the search for examples
to explain concepts discussed in class, and even to generate
practical exercises.
Also on the positive side, P9 mentioned that “scenarios

help to create variations to the examples given in the class-
room”. P18 pointed out that “the examples I use in class end
up being repeated semester after semester, and are not al-
ways “up to date”, with the most modern practices of Soft-
ware Engineering. So, I think that a portal with examples of
more current and robust systems is very useful for the devel-
opment of teaching material.”.
Another positive aspect mentioned by the instructors was

the possibility of having examples for different programming
languages, P3 pointed out that “I was able to choose the type
of programming language I would like to present the exam-
ples with”. P9 also points out that “the variety of languages
helps strengthen the abstraction aspect”. In other words, the
fact that the portal enables the cataloging of examples in dif-
ferent types of languages was seen as a positive aspect for
the instructors participating in the study.
According to P9, “the categories helped me to be assertive

in the example filter step”, that is, the categories defined in
the portal structure helped the instructor to more easily find
the examples they wanted. P16 also pointed out that the por-
tal helped them to define topics and what they could spend in
class, in addition to finding the format of the examples as a
facilitator in the construction of slides, due to the established
format and the elements present in the examples.
Regarding the negative aspects, one of the factors men-

tioned by the instructors was the lack of a level of complex-
ity/difficulty of the examples, or of metrics to know how big
or complex the project addressed in the example is. P2 wrote
that “as the students are from the third semester, some ex-
amples involved many classes and lines of code. Not being
good examples for students. Having some information about
the example (APIs involved, number of lines added/removed,
number of classes involved) could help me filter the informa-
tion”. P9 cites the level of difficulty and comprehension of
the examples, “scenarios could be classified about the level
of difficulty, comprehension”, and also complements talking
about metrics “I missed some metrics like (lines of code, at
least), right on the first project selection page so I can make
my choice easier”.
P2 indicated the difficulty of searching through the search

bar: “when I performed some queries, the terms came back
”without any record”. I had to browse the list of cases, en-
ter some examples until I chose the best case”, and pointed
out that this problem could be because the portal still has few
examples, being populated only for one topic. For P9 “Some

Tonhão et al., 2024

projects are not well documented, which makes it difficult for
some groups of students to understand”, in addition, P9 was
in doubt whether the projects had been curated, in terms of
quality, and even the same applicability, missing some met-
rics to assess the use of projects in the classroom, in addition
to the comments and stars scheme.

7.8.2 Post-study interview

Regarding the feedback obtained in the interview, in gen-
eral, the instructors viewed the experience as something pos-
itive. P16, who is already accustomed to using examples,
found that the portal helped him in searching for material. P3
highlighted that the worked examples available on the portal
provide a context that common examples usually lack since
“[...]most books do not contextualize the examples so well,
and when using real examples, they are inserted within a real
context, and this is very important to use”.
The instructors also mentioned the convenience that the

portal provides. According to P2, “it’s better to search in a
place where things are more contextualized than to go min-
ing projects on GitHub”. P9 also emphasized the idea that
the portal makes it easier to search for examples, as search-
ing on GitHub can be challenging. For him, “It’s clear that
[the portal] helps a lot in structuring thinking and stream-
lining because GitHub doesn’t have these categories”. P17
also stated that the experience of using the portal was “very
smooth”.
Another pointmentioned about the experiencewith the use

of the portal was the fact that it could offer something differ-
ent to the students, providing new perspectives. For P2, “if
you stick to using only examples from books, they tend to be
more didactic, but you get tired because you keep working
on the same examples, so it’s good to present other perspec-
tives to the students, and if it’s part of something practical,
an open-source project, it’s interesting to show”.
P9 mentioned that they liked using the portal but con-

fessed that they felt a lack of balance between good examples
and bad examples, in other words, they missed incorrectly
worked examples. For them, “A good Software Engineering
instructor, regardless of the course, will not only show won-
derful projects, but they also have to show the chaotic”.
Regarding the benefits of using worked examples, most

instructors focused on the practical and real-world aspects of
the examples, which allows students to see real situations.
For P3, having contact with the real application of concepts
can help students mature both as professionals and in terms
of learning. P2, P9, P17, and P18 also believe that real-world
experiences in the classroom can contribute to learning. In
P18’s words, “[...] software engineering subjects have to
be practical; the theoretical part is super important, but if
there’s no practical application of it, knowledge may not be
easily retained by students”. And the portal can be a tool to
bring that practicality in some way.
As for the challenges, for P3, applying worked examples

requires a good explanation of the context so that students
can understand all the nuances; otherwise, the examples may
not have the expected effect. According to P9, using a highly
detailed example can hinder students from developing criti-
cal and analytical skills. Additionally, selecting appropriate

examples for the course was mentioned as a challenge for in-
structors, as not every software project may be understand-
able to students. According to P3, to facilitate learning, ex-
amples should be chosen in a language that students know
and with content that has already been covered. P2 also men-
tioned the students’ level of maturity, stating that selecting
and adequately explaining the example can bring benefits to
learning.
When asked about the challenges of integrating examples

into their lesson plans, P17 and P2 stated that they had no
difficulties because they already worked with examples, so it
was easy to incorporate them into their classes. In P2’swords,
“the integration was smooth; I basically incorporated the ex-
ample, and I could even print the examples to give to students
as supplementary material”. For P16 and P9, the main chal-
lenge was understanding the complexity of the examples and
analyzing what could be considered easy or difficult for the
students. For P3, the only difficulty was deciding what to
present and which parts of the worked example to use, but
after doing this the first time, they did not face anymore diffi-
culties. P18 highlighted that using examples associated with
the topics addressed in the class was a challenge, especially
when there were few examples from the same project.
However, all the instructors believe that the benefits the

portal can provide outweigh the few challenges. For them,
the role of the portal would be to assist in class preparation,
facilitating the search for practical examples, project selec-
tion, supplementarymaterial, and evenmaterials for practical
assignments.
Most instructors mentioned that they did not change the

methodology they use to integrate examples; only P9 said
that if it weren’t for the portal, they would probably make
some changes in how the activity is applied. Most of them
are already accustomed to working with examples, so they
simply added them to the materials they already use. In P16’s
words, “I use a lot of examples in the classroom, and the vast
majority of the examples I use to present concepts I get from
websites, from GitHub itself, I also use real examples, so I
didn’t see any problems in including these examples in the
process”. P2 stated that they did not change, but they would
not see any problem with having to do so. In their words,
“what I did was try to reuse the content I already had and
incorporate it into a lesson I had already prepared, but I don’t
see why not use the portal to change the approach, try to do
something more active”.
To conclude the interview, the instructors were asked if

they would implement the planning they had discussed, and
all of them said yes. However, the studies were conducted
at the end of the semester, so none of the instructors had the
opportunity to implement the plan at that time.

7.9 Results and Discussion - Stage 2
As the cycles progressed, we improved the portal, included
new elements in the example structure, navigation was im-
proved, and the search and presentation of information was
improved. These improvements were necessary to meet the
requirements established for the development of the portal.
We also obtained answers about the usefulness of the portal
as a support in the teaching of Software Engineering.

Tonhão et al., 2024

How was the overall perception about using the portal
and the examples?
All the instructors who participated in the studies found

ways to fit the worked examples in their lectures. Some in
a more traditional way, just including the examples in the
classes they are already used to teach. Others have found
more active ways to apply the examples, either through an
activity, through classroom discussions, or even in flipped
classrooms. Thus, it is possible to observe that the way of
structuring the worked examples allows versatility. In this
way, the examples can be used in different ways, addressing
different methodologies, whether traditional or active. The
purpose of requirement 3was for the portal to guide instruc-
tors in applying the worked examples. Thus, the versatility of
the examples will allow the instructor to adapt the material
to its context without many difficulties, which can facilitate
the application.
When asked why they would use the worked examples,

the instructors mentioned that it would be a way to take real
examples to the classroom, since, in most cases, it is difficult
to find this type of material. Another point addressed was
that the portal would be a way of always updating the ex-
amples, bringing new examples to students each semester, in
addition to bringing differentiated material. The fact that the
examples provide contact with something real, was seen as
something beneficial for teaching, as it makes things more
concrete for students, in addition to providing contact with
real projects. Such information is in line with the objective
of requirement 2, which says that the portal should openly
provide real examples to support the teaching of Software
Engineering, reducing instructors’ time to search for materi-
als and resources.
About the benefits of using the examples, the instructors

mentioned that through them students can have contact with
projects, environments, and real problems of software devel-
opment, being a way to show that what the instructor is ex-
plaining is important and has relevance in a real environment.
In addition, this type of material can act on the motivation
and interest of students, help them to mature professionally
and in terms of learning, and even influence them to con-
tribute to OSS projects. Most instructors are already used to
working with examples, so the portal would be a way to help
in the search and update of examples.
Regarding the difficulties that instructors could have to use

the examples, the main one would be the reorganization of
the classes, to insert the examples. Another difficulty could
be the technology used in the projects, which may not co-
incide with those taught in the courses. In addition, the cost
of understanding the examples was also a factor cited, given
that very complex examples may require a little more study
time for the instructor to take to the classroom. The insertion
of something new in the class, which is not authored by the
instructor, can also be a factor of difficulty.
In the search and navigation aspects, positive and negative

aspects related to the usability of the portal were presented.
The instructors pointed out positive elements that facilitated
their use and gave tips on new features that could be useful in
the future, in addition to suggesting changes in the presenta-
tion of some elements. Such suggestions will be investigated
in future works, which will be focused exclusively on the us-

ability of the portal.
Another focus was the difficulty that some instructors

pointed out in the use of OSS projects, especially those who
had no experience with this type of project. They suggested a
tutorial on the portal to help people unfamiliar with GitHub,
or open source projects, and to provide more contextualized
examples of what happens in the projects. In addition to us-
ability issues, these suggestions will also be investigated in
future work. The focus of this work was to investigate the
usefulness of the portal as a support tool in the teaching of
Software Engineering.

Diverse criteria to choose appropriate examples
The criteria for choosing the examples to use in class were

diverse. Some instructors prioritized the popularity of the
project, domain, classes involved, and whether the project
had good documentation. Others mentioned the level of ab-
straction of the example if, in addition to the code, there was
some kind of model to guide. The context of the example
was another criterion adopted. If the context is easy to un-
derstand, and the appropriate complexity takes into account
the bias of the course and the degree of maturity of the stu-
dents. To summarize, the choice of the example varied a lot
according to the course in which it would be used, the level
of maturity of the students to which the example would be
applied, and the profile of the instructor.
One of the points to be observed when choosing the exam-

ple was their complexity. The complexity must be following
the level of maturity of the class in which the example will
be applied. Using very complex examples in non-advanced
classes can confuse students and misunderstand the concepts
applied to the example.
Another aspect that should be given attention is related

to the content covered in the examples and the technologies
used. It is important to select examples with content that stu-
dents already have sufficient prior knowledge to understand
the problem addressed, and the proposed solution. The tech-
nologies used in the examples should preferably be the same
as those used in class, or at least with a functioning similar to
something that students already know. In this way, the cost
of understanding will be lower, as students will have contact
with something already familiar to them.
The popularity of the project can also be an interesting

point to be analyzed. Choosing examples of projects that stu-
dents know can be a motivating factor, knowing that that ex-
ample was taken from a real project, that they are aware of,
and may even have already used it.

A good perspective for the future.
Regarding the use of the portal in the future, all instruc-

tors stated that they would use it, for several reasons. The
portal provides the facility to find real examples and keep
them updated, saving time and effort in the search. In addi-
tion, it has a diversity of examples and projects, in different
programming languages, and provides practicality to show
real, well-structured examples. In this way, the portal can be
an important support material for teaching Software Engi-
neering, given the benefits it can bring to the instructor.
Regarding the application of the examples, they proved

to be very versatile during the execution of the studies. In

Tonhão et al., 2024

this way, the instructor will be able to use it as they see fit,
either to exemplify concepts, create activities, conduct group
discussions, or even for an inverted classroom. It is up to the
instructor to analyze the course and the class in which they
will apply and to identify the best way to take the examples.
Based on the results obtained in the studies, it was possi-

ble to create guidelines to assist instructors in adopting the
worked examples in the teaching of Software Engineer-
ing. Such examples are potentially beneficial for teaching.
However, some care is needed when selecting the examples
and applying them in the classroom.

8 Rigor Cycle
In DSR, the Rigor Cycle is related to the knowledge base and
research contributions, since theDSR is not only linked to the
processes of development of the artifact, it is also necessary
to evolve the knowledge base of the researched area. The
rigor of the research guarantees its credibility, honesty, and
trust, such rigor is guaranteed when the researcher follows
methods already known, used, and validated, and preferably
widely accepted methods (Hevner and Chatterjee, 2010).
Thus, to achieve the expected rigor for the research and

generate relevant contributions, we carry out studies on the
existing methods, selecting the most appropriate methods for
each stage of the studies. During the execution of the DSR
cycles, we used different methods, such as focus groups,
think-aloud verbal protocol, interviews, and questionnaires,
and the information obtained was analyzed qualitatively.
One of the main contributions of the research is the cre-

ation of a portal for cataloging the worked examples ex-
tracted from open source software projects. The portal can
assist instructors in the process of bringing OSS projects
into the classroom, providing students with contact with real
projects, and assisting in the search for real examples. In ad-
dition, the portal is an effort to disseminate the use of worked
examples in the teaching of Software Engineering.
The adoption of worked examples extracted from open

source software projects can contribute, as a side effect, to the
strengthening of OSS communities, since students, and even
instructors, can feel motivated to contribute to these projects,
by having closer contact with this environment.
In addition, we can cite other contributions, such as:

• Identification of the difficulties faced by instructors in
adopting open source software projects in the educa-
tional environment;

• Creation of guidelines to guide instructors in the adop-
tion of worked examples in Software Engineering
courses;

• Creation of a template to create and structure worked
examples extracted from open source software projects;

• Analysis that shows that the worked example portal can
reduce the challenges faced by instructors in the search
for real examples;

As a complement to this work, a practical application of
the worked examples created and evaluated during the stud-
ies described in our previous work Tonhão et al. (2021). Such
work presents the students’ perspective on the use of worked

examples in SE disciplines since the focus of this work was
only on the instructor.

9 Limitations and Threats
Like all scientific research, this work has some limitations
and threats. We summarize those that offer threats to our re-
sults and conclusions.
Sampling Limitations: First, although instructors with

different profiles were selected to participate in the studies,
the sample does not represent all instructors of higher educa-
tion. Therefore, it is not possible to guarantee that all percep-
tions about the portal have been analyzed and that all chal-
lenges and advantages of use have been identified. The dis-
cussions carried out in this work are based only on the infor-
mation provided by the instructors of higher education par-
ticipating in the studies, which may represent only a portion
of this group.
Bias inResponses: In addition, instructors’ comments and

responses during studies using focus group, think-aloud, or
interviews, run the risk of being influenced by a confirmation
bias, in which study participants can provide information in
a meaningful way. biased. To mitigate such a potential prob-
lem, in all studies, instructors were encouraged to provide
their comments and opinions sincerely, with the researcher
making it clear that they were looking for problems in the
approach.
Questionnaire Design: The interviews were composed of

open-ended questions related to the usefulness of the portal
and the use of examples. Such questions were intended to
collect instructors’ perceptions about certain points. To vali-
date the questions, they were all discussed in meetings with
two other more experienced researchers. The objective was
to verify that the questions met the intended objective, were
clear and objective, and that the script was adequate. Addi-
tionally, in the survey, a question that was not included, and
may be important, relates to the area of Software Engineering
in which the worked examples are applied by the instructors.
Subjectivity in Data Analysis: The subjectivity of the

classification and analysis of the collected data can be an-
other threat to the validity of the results of the work. In an at-
tempt to minimize this threat, an approach was used in which
all analyses were performed based on the speeches and com-
ments of the instructors participating in the studies. In addi-
tion, we held meetings with two other researchers to discuss
the analysis process, to guarantee a better interpretation by
mutual agreement.
Limited Scope of Studies: All studies conducted with

higher education instructors focused on the topic of refac-
toring, that is, instructors had contact only with examples of
this subject to form their opinions. It is not possible to define
whether the results obtained would be the same for other SE
topics since there are topics that are unlikely to benefit from
this approach.
Portal Language: A limitation of the research is that the

portal, being exclusively in Portuguese, may restrict the par-
ticipation and access of researchers and users who do not
speak this language, thus limiting the generalization of re-
sults and the applicability of the tool in international con-

Tonhão et al., 2024

texts.

10 Conclusion
Open source software projects can be a great alternative to
support teaching in Software Engineering courses and have
been used by some instructors. The adoption of these projects
can bring several benefits, such as the possibility of work-
ing on projects with realistic sizes and complexities, and of
developing necessary skills and experiences in the industry,
in line with professional software development. In addition,
OSS projects can help students to awaken creativity, and in-
crease motivation and understanding of Software Engineer-
ing processes.
Instructors looking to adopt these projects in the classroom

may face some challenges, such as choosing the appropriate
project, difficulties in familiarizing themselves with the envi-
ronment of open source software projects, and difficulties in
deciding how to take these projects into the classroom, caus-
ing more time to prepare the classes. These projects can be a
possible source for extracting artifacts that can become ma-
terial for creating potential worked examples, which could
facilitate the adoption of software projects in the classroom,
and provide contact with real examples. Thus, in this study,
we argue that the worked examples extracted from open
source projects can be used to exemplify in a real way, the
concepts, and techniques of Software Engineering.
The adoption of worked examples is a common practice

in different areas and levels of education, due to the differ-
ent benefits. Some benefits are reduced cognitive load, less
learning time, better conceptual understanding, and being
able to act directly on students’ motivation. In the teaching of
Software Engineering, creating examples can be a challenge
for instructors, given the effort required to find and structure
real examples and to keep up with the rapid changes in the
world of software development.
Therefore, in this work we implemented a portal to cata-

log worked examples extracted from OSS projects. Our goal
was to reduce the challenges faced by instructors in adopt-
ing OSS projects in education and in the search for examples
that demonstrate real applications of Software Engineering
concepts or techniques.
The evaluations of the portal showed overall positive feed-

back, evidencing that the portal can aid instructors in teach-
ing Software Engineering. For the instructor, the portal can
act as a facilitator, helping to keep their examples up to date,
and in diversification, always bringing new examples to stu-
dents. In addition, it can help to reduce the time to search
for examples (mainly real examples) and, consequently, the
time to prepare the lesson.
It is important to emphasize that the worked examples ob-

tained from open source software projects are not the solu-
tion to all problems for teaching Software Engineering. Some
topics can hardly be benefited from the vision of the worked
examples. In addition, the work did not aim to investigate
how to attract people to the portal, or how to popularize the
portal for as many topics as possible. We make the portal
available in an open way, to allow instructors and profession-
als of Software Engineering to consult and use the cataloged

examples, and in the future contribute to their population.
While conducting studies, instructors gave tips on new

features that could enhance the portal, in addition to sug-
gesting changes related to usability. Such suggestions will
be investigated in future works, which will be focused ex-
clusively on the usability of the portal, and extra features re-
lated to the topic addressed. Furthermore, there are plans to
investigate the possibility of implementing a Recommenda-
tion System on the portal so that, based on the instructor’s
needs, the portal can recommend worked examples that best
fit the instructor’s needs and the disciplines being taught.
The planning and application of the worked examples in

the classroom is something that we aim for in the future.
The goal is to get feedback from the instructors about the
application, since, so far, only the part of the lesson planning
has been analyzed on the portal. Student feedback is also
expected in the future to better understand the impact that
practical examples can have on learning Software Engineer-
ing courses since the student perspective was not explored in
this study.

11 Acknowledgments

The authors would like to thank the financial support from
CAPES (Foundation Coordination for the Improvement of
Higher Education Personnel) - (Financing Code 001).

References
ACM (2015). Curriculum Guidelines for Undergraduate
Degree Programs in Software Engineering. ACM.

Akhuseyinoglu, K., Hardt, R., Barria-Pineda, J.,
Brusilovsky, P., Pollari-Malmi, K., Sirkiä, T., and
Malmi, L. (2022). A study of worked examples for
sql programming. In Proceedings of the 27th ACM
Conference on Innovation and Technology in Computer
Science Education Vol. 1, pages 82–88.

Atkinson, R. K., Renkl, A., and Merrill, M. M. (2003). Tran-
sitioning from studying examples to solving problems: Ef-
fects of self-explanation prompts and fading worked-out
steps. Journal of educational psychology, 95(4):774.

Baltes, S., Dumani, L., Treude, C., and Diehl, S. (2018).
Sotorrent: Reconstructing and analyzing the evolution of
stack overflow posts. In Proceedings of the 15th interna-
tional conference on mining software repositories, pages
319–330.

Bofferding, L., Kocabas, S., Aqazade, M., Haiduc, A.-M.,
and Chen, L. (2022). The effect of play and worked ex-
amples on first and third graders’ creating and debugging
of programming algorithms. In Computational Thinking
in PreK-5: Empirical Evidence for Integration and Future
Directions, pages 19–29.

Booth, J. L., McGinn, K. M., Young, L. K., and Barbieri,
C. (2015). Simple practice doesn’t always make perfect:
Evidence from the worked example effect. Policy Insights
from the Behavioral and Brain Sciences, 2(1):24–32.

Bourque, P. and Fairley, R. E. (2014). Guide to the software

Tonhão et al., 2024

engineering body of knowledge (SWEBOK (R)): Version
3.0. IEEE Computer Society Press.

Buchta, J., Petrenko, M., Poshyvanyk, D., and Rajlich, V.
(2006). Teaching evolution of open-source projects in
software engineering courses. In 2006 22nd IEEE Interna-
tional Conference on Software Maintenance, pages 136–
144. IEEE.

Carroll, W. M. (1994). Using worked examples as an in-
structional support in the algebra classroom. Journal of
educational psychology, 86(3):360.

Chen, X., Mitrovic, A. T., and Matthews, M. (2019). Learn-
ing from worked examples, erroneous examples and prob-
lem solving: towards adaptive selection of learning activ-
ities. IEEE Transactions on Learning Technologies.

Davis, F. D. (1989). Perceived usefulness, perceived ease of
use, and user acceptance of information technology. MIS
quarterly, pages 319–340.

Demeyer, S., Ducasse, S., and Nierstrasz, O. (2008). Object-
oriented reengineering patterns.

Deng, L., Dehlinger, J., and Chakraborty, S. (2020). Teach-
ing software testing with free and open source software. In
2020 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pages
412–418. IEEE.

Dorodchi, M. and Dehbozorgi, N. (2016). Utilizing open
source software in teaching practice-based software en-
gineering courses. In 2016 IEEE Frontiers in Education
Conference (FIE), pages 1–5. IEEE.

Ellis, H. J., England, W. N., Morgan, B., Oregon, W., Hislop,
G.W., Coleman, B., and Pulimood, S.M. (2015). Software
engineering learning in hfoss: A multi-institutional study.
age, 26:1.

Ellis, H. J., Morelli, R. A., and Hislop, G.W. (2008). Work in
progress-challenges to educating students within the com-
munity of open source software for humanity. In 2008
38th Annual Frontiers in Education Conference, pages
S3H–7. IEEE.

Garces, S., Vieira, C., Ravai, G., and Magana, A. J. (2022).
Engaging students in active exploration of programming
worked examples. Education and Information Technolo-
gies, pages 1–18.

Gaweda, A. M., Lynch, C. F., Seamon, N., Silva de Oliveira,
G., and Deliwa, A. (2020). Typing exercises as interactive
worked examples for deliberate practice in cs courses. In
Proceedings of the Twenty-Second Australasian Comput-
ing Education Conference, pages 105–113.

Gehringer, E. F. (2011). From the manager’s perspective:
Classroom contributions to open-source projects. In 2011
Frontiers in Education Conference (FIE), pages F1E–1.
IEEE.

Hevner, A. and Chatterjee, S. (2010). Design science re-
search in information systems. In Design research in in-
formation systems, pages 9–22. Springer.

Hevner, A., March, S. T., Park, J., Ram, S., et al. (2004). De-
sign science research in information systems. MIS quar-
terly, 28(1):75–105.

Hevner, A. R. (2007). A three cycle view of design science
research. Scandinavian journal of information systems,
19(2):4.

Holmes, R., Allen, M., and Craig, M. (2018). Dimensions
of experientialism for software engineering education. In
Proceedings of the 40th International Conference on Soft-
ware Engineering: Software Engineering Education and
Training, ICSE-SEET ’18, pages 31–39, New York, NY,
USA. ACM.

Hu, Z., Song, Y., and Gehringer, E. F. (2018). Open-source
software in class: Students’ common mistakes. In Pro-
ceedings of the 40th International Conference on Software
Engineering: Software Engineering Education and Train-
ing, ICSE-SEET ’18, pages 40–48, New York, NY, USA.
ACM.

Jaccheri, L. and Osterlie, T. (2007). Open source software: A
source of possibilities for software engineering education
and empirical software engineering. In First International
Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS’07: ICSE Workshops 2007), pages
5–5. IEEE.

Jaspers, M. W., Steen, T., Van Den Bos, C., and Geenen, M.
(2004). The think aloud method: a guide to user inter-
face design. International journal of medical informatics,
73(11-12):781–795.

Kontio, J., Lehtola, L., and Bragge, J. (2004). Using the fo-
cus groupmethod in software engineering: obtaining prac-
titioner and user experiences. In Proceedings. 2004 Inter-
national Symposium on Empirical Software Engineering,
2004. ISESE’04., pages 271–280. IEEE.

Lessa, M. S. B. and von Flach G. Chavez, C. (2020). An ap-
proach for selecting floss projects for education. In Pro-
ceedings of the 34th Brazilian Symposium on Software En-
gineering, pages 463–472.

McGinn, K. M., Lange, K. E., and Booth, J. L. (2015). A
worked example for creating worked examples. Mathe-
matics Teaching in the Middle School, 21(1):26–33.

Metrôlho, J., Ribeiro, F., Graça, P., Mourato, A., Figueiredo,
D., and Vilarinho, H. (2022). Aligning software engineer-
ing teaching strategies and practices with industrial needs.
Computation, 10(8):129.

Montagner, I. d. S. and Kurauchi, A. T. N. (2022). Learning
professional software development skills by contributing
to open source projects. In 2022 IEEE Frontiers in Edu-
cation Conference (FIE), pages 1–7. IEEE.

Morgan, B. and Jensen, C. (2014). Lessons learned from
teaching open source software development. In IFIP In-
ternational Conference on Open Source Systems, pages
133–142. Springer.

Müller, M., Schindler, C., and Slany, W. (2019). Engaging
students in open source: Establishing foss development at
a university. In Proceedings of the 52nd Hawaii Interna-
tional Conference on System Sciences.

Nandigam, J., Gudivada, V. N., and Hamou-Lhadj, A.
(2008). Learning software engineering principles using
open source software. In 2008 38th Annual Frontiers in
Education Conference, pages S3H–18. IEEE.

Nascimento, D. M., Chavez, C. F., and Bittencourt, R. A.
(2018). The adoption of open source projects in engineer-
ing education: a real software development experience.
In 2018 IEEE Frontiers in Education Conference (FIE),
pages 1–9. IEEE.

Tonhão et al., 2024

Nievelstein, F., Van Gog, T., Van Dijck, G., and Boshuizen,
H. P. (2013). The worked example and expertise re-
versal effect in less structured tasks: Learning to reason
about legal cases. Contemporary Educational Psychol-
ogy, 38(2):118–125.

Papadopoulos, P. M., Stamelos, I. G., and Meiszner, A.
(2013). Enhancing software engineering education
through open source projects: Four years of students’
perspectives. Education and Information Technologies,
18(2):381–397.

Pereira, J. (2021). Leveraging final degree projects for open
source software contributions. Electronics, 10(10):1181.

Pereira, J. and Díaz, Ó. (2022). Open-source software in the
classroom: Empowering students to self-select projects to
contribute. IEEE Transactions on Education, 65(4):553–
561.

Pereira, J. and Pitxitxi, C. R. M. (2020). Capstone
projects aimed at contributing to consolidated open source
projects: a practical experience. education, 2:6.

Pinto, G. H. L., Figueira Filho, F., Steinmacher, I., and
Gerosa, M. A. (2017). Training software engineers us-
ing open-source software: the professors’ perspective. In
2017 IEEE 30th Conference on Software Engineering Ed-
ucation and Training (CSEE&T), pages 117–121. IEEE.

Raj, R. K. and Kazemian, F. (2006). Using open source soft-
ware in computer science courses. In Proceedings. Fron-
tiers in Education. 36th Annual Conference, pages 21–26.
IEEE.

Rourke, A. and Sweller, J. (2009). The worked-example ef-
fect using ill-defined problems: Learning to recognise de-
signers’ styles. Learning and Instruction, 19(2):185–199.

Sadiku, M. N. O., Olasupo, K., and Nelatury, S. R. (2012).
What professors do. IEEE Potentials, 31(3):10–11.

Schwonke, R., Renkl, A., Krieg, C., Wittwer, J., Aleven, V.,
and Salden, R. (2009). The worked-example effect: Not an
artefact of lousy control conditions. Computers in Human
Behavior, 25(2):258–266.

Silva, D., Tsantalis, N., and Valente, M. T. (2016). Why we
refactor? confessions of github contributors. In Proceed-
ings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages
858–870.

Silva, F. G., Brito, M. S., Tavares, J. V. T., and Chavez, C.
v. F. G. (2019). Floss in software engineering education:
Supporting the instructor in the quest for providing real ex-
perience for students. InProceedings of the XXXIII Brazil-
ian Symposium on Software Engineering, pages 234–243.
ACM.

Silva, F. G., dos Santos, P. E. D., and von Flach G. Chavez,
C. (2020a). Do we use floss in software engineering edu-
cation? mapping the profiles and practices of higher edu-
cation teachers from brazil. In Proceedings of the 34th
Brazilian Symposium on Software Engineering, pages
473–482.

Silva, F. G., Lessa, M. S. B., da Luz Lopes, N., and von Flach
G. Chavez, C. (2020b). Teaching uml models with floss
projects: A study carried out during the period of social
isolation imposed by the covid-19 pandemic. In Proceed-
ings of the 34th Brazilian Symposium on Software Engi-

neering, pages 483–492.
Skudder, B. and Luxton-Reilly, A. (2014). Worked examples
in computer science. In Proceedings of the Sixteenth Aus-
tralasian Computing Education Conference-Volume 148,
pages 59–64. Australian Computer Society, Inc.

Smith, T. M., McCartney, R., Gokhale, S. S., and Kacz-
marczyk, L. C. (2014). Selecting open source software
projects to teach software engineering. In Proceedings of
the 45th ACM technical symposium on Computer science
education, pages 397–402. ACM.

Sweller, J., Van Merrienboer, J. J., and Paas, F. G. (1998).
Cognitive architecture and instructional design. Educa-
tional psychology review, 10(3):251–296.

Tan, S. H., Hu, C., Li, Z., Zhang, X., and Zhou, Y. (2021).
Github-oss fixit: Fixing bugs at scale in a software engi-
neering course. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineer-
ing Education and Training (ICSE-SEET), pages 1–10.
IEEE.

Tonhão, S., Colanzi, T., and Steinmacher, I. (2021). Using
real worked examples to aid software engineering teach-
ing. In Proceedings of the XXXV Brazilian Symposium on
Software Engineering, pages 133–142.

Tonhão, S. d. F., Colanzi, T. E., and Steinmacher, I. (2020).
A portal for cataloging worked examples extracted from
open source software. InProceedings of the XXXIVBrazil-
ian Symposium on Software Engineering, pages 493–498.

Toukiloglou, P. and Xinogalos, S. (2022). Ingame worked
examples support as an alternative to textual instructions
in serious games about programming. Journal of Educa-
tional Computing Research, page 07356331211073655.

Van Gog, T. and Kester, L. (2012). A test of the testing effect:
acquiring problem-solving skills from worked examples.
Cognitive Science, 36(8):1532–1541.

Van Gog, T., Kester, L., and Paas, F. (2011). Effects
of worked examples, example-problem, and problem-
example pairs on novices’ learning. Contemporary Ed-
ucational Psychology, 36(3):212–218.

Wang, M., Yang, Z.-K., Liu, S.-Y., Cheng, H. N., and Liu,
Z. (2015). Using feedback to improve learning: Differ-
entiating between correct and erroneous examples. In
2015 International Symposium on Educational Technol-
ogy (ISET), pages 99–103. IEEE.

Wieringa, R. (2009). Design science as nested problem solv-
ing. In Proceedings of the 4th international conference on
design science research in information systems and tech-
nology, pages 1–12.

Yaacoub, E. E., Groves, R. M., Dawy, Z., Fowler Jr,
F. J., Couper, M. P., Lepkowski, J. M., Singer, E., and
Tourangeau, R. (2004). Survey Methodology, volume 337.
John Wiley & Sons.

Yamaguti, M. H., de Oliveira, F.M., Trindade, C. A., and Du-
tra, A. (2017). Ages: An interdisciplinary space based on
projects for software engineering learning. In Proceedings
of the 31st Brazilian Symposium on Software Engineering,
pages 368–373. ACM.

	Introduction
	Background
	Related Work
	Method
	Relevance Cycle
	Study of Literature
	Survey with instructors of Software Engineering
	Survey results

	Relevance Cycle Considerations

	Design Cycle - Stage 1
	Cycle 1 - Elaboration and Evaluation of the Cataloging Template
	Cycle 1 - Results
	Cycle 2 - Creation of worked examples
	Cycle 2 - Results
	Cycle 3 - Use of the template by Software Engineering instructors
	Cycle 3 - Results
	Results and Considerations - Stage 1

	Design Cycles – Stage 2
	Cycle 4 - Use of the portal prototype by SE instructors
	Cycle 4 - Results
	Cycle 5 - Verbal lesson planning by SE instructors
	Cycle 5 - Results - Use of the Portal
	Cycle 5 - Results - Use of Worked Examples
	Cycle 5 - Results - TAM Questionnaire
	Cycle 6 - Complete lesson planning by SE instructors
	Cycle 6 - Results
	Positive and negative feedback
	Post-study interview

	Results and Discussion - Stage 2

	Rigor Cycle
	Limitations and Threats
	Conclusion
	Acknowledgments

