Journal of Software Engineering Research and Development, 2024, 12:14, doi: 10.5753/jserd.2024.4086

© This work is licensed under a Creative Commons Attribution 4.0 International License..

Investigating Conditioning Factors for Transparency
in Software Ecosystems

Rodrigo Oliveira Zacarias ® [Universidade Federal do Estado do Rio de Janeiro | rodrigo.zacarias@edu.unirio.br |
Rodrigo Feitosa Gongalves ® [Universidade Federal do Estado do Rio de Janeiro | rfeitosa@edu.unirio.br]
Rodrigo Pereira dos Santos ® [Universidade Federal do Estado do Rio de Janeiro | rps@uniriotec.br |

Patricia Lago ® [Vrije Universiteit Amsterdam | p.lago@vu.nl]

Abstract

Software Ecosystems (SECO) are a set of actors interacting with a distributed market centered on a common
technological platform to develop products and services. In this context, transparency allows third-party developers
to learn processes and elements that integrate the SECO platform. This non-functional requirement impacts the
coordination of developers and the management of requirements that emerge in SECO. Although it is an essential
requirement, there is still a lack of a roadmap on what constitutes transparency in SECO. Thus, this article aims to
characterize conditioning factors for transparency in SECO. To do so, we conducted a systematic mapping study
(SMS) and a field study to identify and analyze such factors. After investigating the literature, we selected 23
studies to analyze the state-of-the-art about transparency in SECO. Next, we conducted interviews with 16 software
developers to characterize the importance of conditioning factors for transparency identified in their interaction with
GitHub, a platform to support project-based ecosystems. As results, we obtained a comprehensive view of solutions,
conditioning factors, processes, and concerns related to transparency in SECO, whose discussion is centered on
three main topics: access to information, communication channels, and requirements engineering. We also present
a conceptual framework that structures all the knowledge about transparency in SECO obtained in both studies.
Regarding implications for academia and industry, researchers can find a conceptual framework to be used as a
foundation for systematic approaches to understanding transparency in SECO. Practitioners can find solutions and
conditioning factors that help them to adopt initiatives to contribute to the open flow of information in a SECO and,

thus, attract and engage new actors to a common technological platform.

Keywords: Sofiware Ecosystems, Transparency, Systematic Mapping Study, Field Study, GitHub

1 Introduction

With advances in software development strategies and ap-
proaches to meet new market demands, it has been a great
challenge for corporations to maintain a system/software
architecture fully internalized into its organization. Hence,
some companies have invested in opening their architectures
to allow third-party developers to collaborate in producing
their components around a common technological platform.
This practice defines the concept of Software Ecosystem
(SECO) (Barbosa et al., 2013; Jansen, 2020).

Lungu and Lanza (2010) also characterize a SECO as a col-
lection of software projects that are developed and evolved
together in the same environment. This environment can be
represented by companies or developers communities that
collaborate on software projects. Thereby SECO is character-
ized by gathering several projects, systems, and actors over
a common technological platform, also called an SECO plat-
form.

The SECO paradigm has allowed the development of
globalized and large-scale platforms (Manikas and Hansen,
2013). These platforms give rise to more complex systems
that integrate a network of artifacts and actors (internal and
external developers, users, etc.) that generate complex col-
laborative relationships. As a consequence, SECO brings a
large flow of information that arises through open commu-
nication channels, mainly the flow of requirements informa-
tion between the actors on the common technological plat-
form (Knauss et al., 2018).

Due to the complexity inherent to the dynamics of re-
lationships between actors involved and the collaborative
environment risks, maintaining a balanced and sustainable
SECO in the software market over time has been challeng-
ing for a keystone, organization that owns the platform. To
achieve this effectively, actors, especially third-party devel-
opers, have to be aware of processes and elements (e.g., docu-
mentation files, source code, forums, etc.) that form a SECO
platform (Cataldo and Herbsleb, 2010). Thus, SECO trans-
parency is essential (Santos et al., 2016) as it allows actors
to access and learn how to use the platform information.

In this context, transparency is considered at the software
level, called software transparency, i.e. a condition in which
all software functions are disclosed to users and developers,
a precondition for adequate risk management (Leite and Cap-
pelli, 2010). As a non-functional requirement, transparency
must be considered in all stages of software design. So that,
there is clarity on how they provide transparency to orga-
nizational processes and information. Thus, transparency is
not only in the final object but also in the entire processing
and information treatment and must allow stakeholders (soft-
ware developers, project managers, clients, and end-users) to
answer their questions about the software during its life cy-
cle (Cysneiros, 2013; Hosseini et al., 2016).

As an example of the importance of software transparency
in SECO, we can mention third-party developers’ interaction
in mobile SECO (e.g., Android' or i0S?). These third-party

Ihttps://developer.android.com/
Zhttps://developer.apple.com/

https://orcid.org/0000-0003-0005-4669
mailto:rodrigo.zacarias@edu.unirio.br
https://orcid.org/0000-0003-0960-3126
mailto:rfeitosa@edu.unirio.br
https://orcid.org/0000-0003-4749-2551
mailto:rps@uniriotec.br
https://orcid.org/0000-0002-2234-0845
mailto:p.lago@vu.nl

Investigating Conditioning Factors for Transparency in Software Ecosystems

developers access SECO portals to obtain information about
how to develop applications in this ecosystem, i.e., check
which tools they should download, check what configura-
tions are necessary, access source code repository, access
programming language documentation, and check store re-
quirements of applications, among others. If this information
cannot be accessed or understood easily, these third-party de-
velopers may have difficulty developing their applications
autonomously. This situation can generate an unpleasant De-
veloper Experience (DX) and cause them to give up interact-
ing with the common technological platform (Barbosa et al.,
2013; Knauss et al., 2018; Meireles et al., 2019).

In addition, software transparency contributes to value cre-
ation for different actors, which generates benefits for SECO.
Transparency in SECO helps actors to be aware of the evolu-
tion of development activities (Cataldo and Herbsleb, 2010).
It causes a positive impact on the trust and credibility of key-
stone strategic actions. Furthermore, easy access to commu-
nication channels helps to receive feedback from the commu-
nity, which can lead to the emergence of new requirements
that contribute to the SECO platform’s evolution (Knauss
et al., 2018; Hou and Jansen, 2023).

According to Knauss et al. (2018), openness and trans-
parency in SECO encourage contributions from actors,
mainly third-party developers, that emerge through open
communication channels. This early engagement can be cru-
cial to the health and success of requirements in SECO.
So, Hanssen (2012) sees openness and transparency as key
features of social networks in a SECO that allow actors to
collaborate more efficiently.

However, transparency in SECO has received little atten-
tion from the scientific community, which is puzzling since
developers often start development by choosing a platform
that satisfies most of the functionality needed for software
development (Jansen et al., 2013; Santos et al., 2016; Meire-
les et al., 2019). As we previously mentioned, the lack of
transparency can hinder communication between the actors,
hamper access to information, and make it difficult to un-
derstand the information provided in SECO (Knauss et al.,
2018; Meireles et al., 2019). These characteristics affect DX
and may result in a lack of interest and engagement among
third-party developers. This situation could harm SECO, as
it depends on these developers’ contribution to remain sus-
tainable in the software market (Fontdo et al., 2021).

Therefore, this article aims to characterize conditioning
factors for transparency in SECO. To do so, we conducted
two studies to identify and analyze such factors. Firstly, we
conducted a systematic mapping study (SMS) on scientific
databases and digital libraries to map and analyze the state-
of-the-art of transparency in SECO to answer the follow-
ing research question (RQ): “How is transparency in the
SECO context characterized?” After investigating the liter-
ature, we selected 23 studies for our analysis. As a result,
we could have a comprehensive view of solutions, condition-
ing factors, processes, and concerns related to transparency
in SECO, whose discussion is centered on three main topics:
access to information, communication channels, and require-
ments engineering.

Secondly, we conducted a field study with software de-
velopers to characterize the importance level of conditioning

Zacarias et al. 2024

factors for transparency’ identified in the previous study in
their interaction with a SECO. In this study, we interviewed
16 software developers who use GitHub?, a platform to sup-
port project-based ecosystems, mainly open source software
ecosystems (OSSECO) (Lungu and Lanza, 2010; Liao et al.,
2019), to answer this RQ: “What is the importance level of
conditioning factors for transparency according to develop-
ers in the context of an OSSECO?”. As a result, we delved
deeper into the conditioning factors for transparency identi-
fied in the literature and observed that most software develop-
ers agree with them. Thus, we could organize all the knowl-
edge obtained in a conceptual framework to understand trans-
parency in SECO better.

This article is an extended version of a conference pa-
per (Zacarias et al., 2023), awarded as a distinguished paper
at the 37th Brazilian on Software Engineering (SBES 2023).
This paper presented the first study’s results and character-
ized transparency in SECO based on the scientific literature.
We complement our previous work by confirming the condi-
tioning factors for transparency with 16 software developers
who work in a SECO context, identifying the transparency
benefits and the consequences of lack of transparency, and
presenting a conceptual framework that comprises all the
knowledge about transparency in SECO obtained in both
studies.

Regarding implications for academia and industry, aca-
demics can find in this work a conceptual framework to better
understand transparency in SECO. We also have listed future
perspectives that can contribute to the advancement of state-
of-the-art. With this conceptual framework, practitioners can
understand transparency as a key element in dealing with re-
quirements that emerge from different communication chan-
nels in platform openness. We have presented solutions and
conditioning factors that can help them to adopt initiatives to
contribute to the open flow of information in a SECO and,
thus, attract and engage new actors in a common technologi-
cal platform.

The remainder of this article is organized as follows: Sec-
tion 2 presents background and related work; Section 3 de-
picts the research method of both studies; Section 4 presents
the results obtained in both studies as well as the conceptual
framework for understanding transparency in SECO; discus-
sion and implications of the results of both studies are pre-
sented in Section 5; Section 6 describes the threats to validity
and credibility; and, finally, Section 7 concludes the article
with final remarks and future work.

2 Background

This section describes the concepts related to SECO and
transparency. In addition, we also present related work to this

3In the context of this research, conditioning factors are defined as el-
ements, characteristics, or actions that are necessary but not sufficient for
the transparency of SECO. For example, providing real-time information
about changes occurring in the common technological platform can help de-
velopers better understand its evolution. This action creates a condition of
transparency of SECO information that tends to positively impact the de-
veloper’s interaction with the platform, although it is not guaranteed that
everyone will be impacted in the same way.

“https://github.com/

Investigating Conditioning Factors for Transparency in Software Ecosystems

research.

2.1 Software Ecosystems

A SECO can be defined as a set of actors that function as a
unit and their relationships and interactions with a distributed
market between software and services. These relationships
are largely centered on a technology platform or a common
market, which allows the exchange of information, resources,
and artifacts (Jansen et al., 2009). These elements together
form a SECO and require the integration of support mech-
anisms and tools to carry out those exchanges and guaran-
tee communication and interaction between developers and
users (Santos, 2016; Jansen, 2020).

In this multiple actors’ context, we can identify three main
roles: keystone, end-users, and third-party developers. A key-
stone is an organization or group that drives the development
ofthe SECO platform. End-users are customers who need the
platform to do their business. Finally, third-party developers
use the platform as a basis to develop new products and so-
Iutions (Hanssen and Dybé, 2012).

SECO can be classified into three types: proprietary, open
source, and hybrid. Proprietary SECO (PSECO) have their
value creation based on proprietary contributions (e.g., SAP
- System Applications and Products - and Amazon). Open
source SECO (OSSECO) allow contributions from different
actors and communities (e.g., Eclipse Foundation, GitHub,
GitLab, and Apache Foundation). Finally, hybrid SECO sup-
port both proprietary and open source contributions (e.g., An-
droid and iOS) (Manikas, 2016).

2.2 Transparency

The term transparency can have many meanings depending
on the field. For example, in science, transparency refers
to the degree to which a medium allows radiation to pass
through. It can also refer to the quality of an object such as
glass that can be seen through (Chen et al., 2022). In politi-
cal and social contexts, opening up the flow of information
and government processes allows for a democratic society’s
development. Through transparency, citizens can become in-
creasingly engaged in the struggle to preserve their rights and
demand government action. Transparency in the context of
organizations, or organizational transparency, is a factor that
can allow and/or improve the vision and management of pro-
cesses and access, use, and storage of information for stake-
holders (Camelo Rincén, 2020).

Processes execution and management as well as access,
use, and storage of organizational information are carried
out with software support. So, transparency also becomes a
concern when projecting software (Leite and Cappelli, 2010).
As a non-functional requirement, transparency must be con-
sidered in all stages of software design, so that there is clar-
ity on how they provide transparency to organizational pro-
cesses and information. Thus, transparency is not only in the
final object but also in the entire information processing and
treatment and must allow stakeholders (software develop-
ers, project managers, clients, and end-users) to answer their
questions about the software during its life cycle (Cysneiros,
2013; Hosseini et al., 2016).

Zacarias et al. 2024

Considering related needs in the software context, Leite
and Cappelli (2010) define transparency as the union of char-
acteristics that contribute to its formation and the open in-
formation flow: (i) Accessibility: information about the soft-
ware is available to the external environment; (ii) Usability:
available information can be easily obtained and used; (iii) In-
formativeness: information is made available with expected
quality; (iv) Understandability: external users can understand
the available information; and (v) Auditability: external users
can certify that the available information is trustworthy. To
represent them, the authors developed a structure called SIG
(Softgoal Interdependency Graph), which allows the identifi-
cation of dependency relationships between the quality char-
acteristics and their contributions to the operationalization of
transparency.

2.3 Related Work

In our searches, we have not found many studies that focused
on transparency in SECO. So, we have identified some stud-
ies in the literature that explored SECO and/or software de-
velopment and mention transparency at any moment in the
discussion of their results. Vegendla et al. (2018) investigated
requirements engineering and quality attributes in SECO.
The authors analyzed 44 studies and could infer that most
of them have approached the requirements management, pri-
oritization, verification, and traceability activities. They also
highlighted that transparency is one of the quality attributes
in SECO and depends on how open code is provided for plat-
form extension. Transparency is an important non-functional
requirement to maintain the ecosystem openness.

Setzke et al. (2019) performed a systematic literature re-
view (SLR) to synthesize and integrate extant interdisci-
plinary research on the concept of platform openness. The
authors analyzed 73 studies and identified five themes: mea-
surement frameworks, implementation mechanisms, motiva-
tors for opening and closing platforms, trade-offs when de-
signing openness, and the impact of changing openness on
ecosystems. The authors noticed that few studies consider the
transparency dimension of openness, such as technical doc-
umentation, communication with end users, or transparency
of market mechanisms.

Dabbish et al. (2012) interviewed several core and periph-
eral users of GitHub, examining the value of transparency
for large-scale distributed collaborations and communities
of practice. They found that four keys features of visible
feedback drove a rich set of inferences around commitment,
work quality, community significance, and personal rele-
vance. These inferences supported collaboration, learning,
and reputation management in the community. For the au-
thors, there is a potential for transparency to radically im-
prove collaboration and learning in complex knowledge-
based activities.

Obie et al. (2023) presented a preliminary study to inves-
tigate developers’ perceptions and experiences related to hu-
man values, with a focus on the human value of transparency.
The authors interviewed five experienced developers and
conducted a thematic analysis to explore how developers per-
ceive transparency and violations of transparency. Their find-
ings reveal the significance of transparency as a fundamental

Investigating Conditioning Factors for Transparency in Software Ecosystems

value in software development, with developers recognizing
its importance for building trust. These findings contribute to
the understanding of transparency in software development
and provide insights for promoting ethical practices.

Despite not having transparency as their main focus, these
studies point out the need of addressing transparency in
SECO, given its impact on the openness and extension of
the platform, which are important factors for attracting and
retaining new actors in SECO. Therefore, this study seeks to
fill that gap with an overview of how transparency has been
treated and identify what are its conditioning factors within
SECO.

3 Research Method

Following the guidelines of ACM SIGSOFT Empirical Stan-
dards (Ralph, 2021), this research method is characterized
as exploratory and follows quantitative and qualitative ap-
proaches to data collection and analysis. This study aims to
characterize the importance level of conditioning factors for
transparency in SECO and extend the findings of our previ-
ous study (Zacarias et al., 2023). To do so, we defined a re-
search method consisting of five steps, as shown in Figure 1:
(i) Previous study findings; (ii) Planning, (iii) Execution; (iv)
Data Analysis Procedures; and (v) Results. These steps are
described next:

(i) Previous Study Findings: we conducted an SMS on
scientific databases and digital libraries to review the state-
of-the-art and characterize transparency in SECO. SMS are
designed to give an overview of a research area through clas-
sification and counting contributions about the categories of
that classification by searching the literature (Kitchenham
and Charters, 2007; Petersen et al., 2015). After investigat-
ing the literature, we selected 23 studies for our analysis;

(ii) Planning: we conducted a field study with software
developers to characterize the importance of conditioning
factors for transparency in their interaction with a SECO.
Field studies aim to investigate and understand how individ-
uals who carry out a certain activity deal with practice and
problem-solving within their respective contexts. A set of
data collection techniques can be adopted in a field study, in-
cluding questionnaires and interviews, for example (Singer
et al., 2008). We conducted a pilot study with a PhD student
in Computer Science to evaluate our interview guide;

(iii) Execution: we refined the protocol and conducted the
interviews with 16 software developers who use GitHub, a
platform to support project-based ecosystems, mainly OS-
SECO (Lungu and Lanza, 2010; Liao et al., 2019). We aimed
to deepen and detail the conditioning factors for transparency
identified in the SMS from the developers’ perspective. The
interviews lasted an average of 25-27 minutes;

(iv) Data Analysis Procedures: we performed a coding
process on the transcribed interviews to identify the software
developers’ perspective on the importance of conditioning
factors of transparency in their interaction with a SECO;

(v) Results: the interviews also allowed us to identify
more information about the benefits of transparency and the
consequences of lack of transparency. So, as a result, we or-
ganized all the knowledge obtained into a conceptual frame-

Zacarias et al. 2024

work to be used as a foundation for systematic approaches to
understanding transparency in SECO. All the details of the
protocol for both studies are presented in the following sec-
tions.

3.1 Systematic Mapping Study

To review the state-of-the-art of transparency in SECO, we
conducted a SMS following the guidelines proposed by Pe-
tersen et al. (2015). This protocol is structured in five steps:
(i) definition of research questions; (ii) search; (iii) study se-
lection; (iv) data extraction; and (v) results.

3.1.1 Definition of Research Questions

This mapping study aims to characterize transparency in
SECO. To achieve this goal, we proposed one main RQ and
derived four sub-questions (SQ):

* RQ: How is transparency in the SECO context charac-
terized?

— SQ1: What types of solutions are used to provide
or assess transparency in SECO?

— SQ2: What are the conditioning factors for trans-
parency in SECO?

— SQ3: What types of SECO processes must be
transparent?

— SQ4: What are the concerns for transparency in
SECO?

These research questions aim to provide an overview of
how transparency is approached within a SECO, considering
the open flow of information for the SECO opening. So, SQ1
aims to summarize the types of transparency solutions used
in the context of SECO, such as theory, model, method, prac-
tice, tool, or framework. SQ2 addresses factors that specifi-
cally contribute to transparency in SECO. Furthermore, SQ3
identifies the processes that must be transparent within a
SECO. Finally, SQ4 points out the transparency concerns
and how these aspects can influence SECO. Concerns refer
to issues and challenges frequently highlighted in the litera-
ture or by software industry professionals regarding a partic-
ular environment or domain. Through concerns, researchers
and professionals can identify and plan research opportuni-
ties (Motta et al., 2018). The anchors to our study are ref-
erences Cataldo and Herbsleb (2010), Souza et al. (2020),
and Herbsleb et al. (2016). Their results and proposals for
future work were the basis for elaborating the questions and
classification patterns.

3.1.2 Search

The framework PICO (Population, Intervention, Compari-
son, and Outcomes), suggested by Kitchenham and Charters
(2007), was used to identify keywords and formulate search
strings from the questions. Population: In our context, the
population comprises studies in the SECO field. Interven-
tion: The intervention is transparency for the open informa-
tion flow. Comparison: There is no clear comparison in the
context of this study. Outcomes: The outcome is the studies

Investigating Conditioning Factors for Transparency in Software Ecosystems

Zacarias et al. 2024

SMS Field Study
Feedback g @ H
................. = < ﬁ%’b
H T @ _— Q | : H
H .~ () H H Ej
H 1 parti t] H H
: ? Draft interview (4 porticipant) Pilot : B &“"Iﬂ H ! %B
protocol participant @ H H
H ‘S»yst_ematlcd H > g > & - —>| Conceptual
i mapping S'SU ¥ H Semi-structured Interview H i framework to
: (SMS] findings : 1 | M interview with data analysis understand
i{Zacarias et al. 2023} ; 4 . N H
i ; K 16 participants (Coding process) i transparency
______________________ : (25-57 minutes) i inSECO
Finalized
Linterviewprotocol ;| | L L] e
1 J L J J L J L J
hd v v v v
i) Previous Study Findings ii) Planning iii) Execution iv) Data Analysis Procedures v) Results

Figure 1. Overview of the research method of this extended study

that discuss solutions (theory, model, method, practice, tool,
or framework) for transparency in SECO.

To create our search string, we joined the keywords repre-
senting the population and the intervention in the framework
PICO. As our study concerns a mapping study, there was no
specific comparison nor the need to limit the search space
regarding outcomes, following the adopted search strategy
by Villamizar et al. (2021). The keywords were then grouped
into sets with their synonyms and considered to formulate the
search string.

* Set 1: Scoping the search for SECO: “software ecosys-
tem”, “SECO”, “information ecosystem”, and “ERP
ecosystem” (synonyms based on the work of Manikas
and Hansen (2013));

* Set 2: Search terms related to transparency and open in-
formation: “transparency” and “open” (to broaden the
scope of search into the openness of SECO and infor-
mation).

Those two sets were used together to form the base search
string, which was run on the following databases: Scopus,
Science Direct, IEEE Xplore, Engineering Village (Compen-
dex), and ACM Digital Library. These databases have been
selected based on the recommendations of Dyba et al. (2007).
The search strings used for each database can be found in Ta-
ble 1.

3.1.3 Study Selection

Below, we list the inclusion (IC) and exclusion (EC) crite-
ria for the studies retrieved by the search string. During the
filtering stages, we sought to identify studies that presented
solutions for transparency in SECO.

* IC1: The study presents a discussion on transparency in
a SECO.

+ IC2: The study presents a discussion about the openness
of SECO and information.

* IC3: The study presents solutions (theory, model,
method, practice, tool, or framework) for transparency
in SECO.

Table 1. Searches in databases

Search

TITLE-ABS-KEY ((“software ecosys-
tem*” OR “SECO” OR “information
ecosystem*” OR “ERP ecosystem*”)
AND (“transparen*” OR “open*”))
Title, abstract, keywords: (“software
ecosystem” OR “SECO” OR “informa-
tion ecosystem” OR “ERP ecosystem”)
AND (“transparency” OR “open”)

(“All Metadata”:“software ecosystem*”’
OR “All Metadata”:“SECO” OR “All
Metadata”:“information ecosystem*”
OR “All Metadata™:“ERP ecosystem™*””)
AND (“All Metadata”:“transparen*”
OR “All Metadata”:“open*”)
(((“‘software ecosystem*” OR “SECO”
OR “information ecosystem*” OR “ERP
ecosystem*”) AND (“transparen®*” OR
“open*”)) WN ALL)

[[AIL: “software ecosystem*”’] OR [All:
“SECO”] OR [All: “information ecosys-
tem*”] OR [All: “erp ecosystem*”]]
AND [[All: “transparen*”] OR [All:
“open*”]]

Database
Scopus

Science Direct

IEEE Xplore

Engineering Village

ACM Digital Library

* EC1: The study content is not available in its entirety.

+ EC2: The study is not a research article or a conference
paper.

* EC3: The study is not primary.

* EC4: The study is duplicated.

* ECS: The study does not meet any of the inclusion cri-
teria.

+ EC6: The study has less than four pages.

The selection process consisted of seven stages: (1) Search
execution; (2) Removal of duplicate studies; (3) 1st Filter:
reading of title, abstract, and keywords; (4) 2nd Filter: read-
ing of introduction and conclusion; (5) 3rd Filter: complete
reading of the study; (6) Application of backward snow-
balling; and (7) Data extraction. To ensure the reliability of
the results, two researchers analyzed each study in stages 3 to
6, and they discussed the differences with a third researcher

Investigating Conditioning Factors for Transparency in Software Ecosystems

until a consensus was reached. This study was conducted in
February 2023 with the support of Parsifal®, an online tool de-
signed to help researchers perform literature reviews in Soft-
ware Engineering. We used this tool for executing stage 2
when duplicate studies were removed in an automated way.
Next, we performed the filtering of studies in three stages,
applying the necessary inclusion and exclusion criteria. In
the first filter (stage 3), we read title, abstract, and keywords.
In the second filter (stage 4), we read the introduction and
conclusion and, in the third filter (stage 5), we read the full
text of the remained studies. After performing the filtering
stages, we applied backward snowballing (stage 6) to verify
the selected studies’ references and identify more studies to
include in this research. Figure 2 shows the number of re-
maining studies in each stage. At the end of the process, we
selected 23 (twenty-three) studies for data extraction.

N Nr — [— —
S S S S S
Scopus SC?E"CE \EEE Engllneermg P
Direct Village
742 91 212 434 947

Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7
Removal of 1st Filter: 2nd Filter: 3rd Filter: Application of Data
duplicate reading of reading of complete backward extraction
studies title, abstract, | [introduction | |reading of the snowballing
and keywords | |and conclusion study
,,,,, S Pyl B PEp g p—— Sp—— T p—

Figure 2. Results of the study selection process

3.1.4 Data Extraction and Analysis

The data was extracted in stage 7, when the full text was
read and organized in Microsoft Excel®. We used the data
to present an overview of the selected primary studies and to
answer the research questions. The form was structured with
the following fields: (i) Study ID: identifier; (ii) Study title:
name of the study; (iii) Author(s): names of the authors; (iv)
Year: year of publication; (v) Venue: name of publication
venue; (vi) Country: names of authors’ countries; (vii) So-
lution: type of solution for transparency - SQ1; (viii) Condi-
tioning factors: list of conditioning factors for transparency
in SECO - SQ2; (ix) Processes: list of processes that must
be transparent in SECO - SQ3; and (x) Concerns: list of con-
cerns for research on transparency in SECO - SQ4.

We used open and axial coding methods for qualitative
analysis when extracting categories from the selected stud-
ies, as presented in Corbin and Strauss (2014). In the open
coding, we analyzed and extracted parts of text from the stud-
ies that brought some kind of relevant data to answer each

Shttps://parsif.al/about

Zacarias et al. 2024

SQ and created codes to represent them. In the axial coding,
we grouped the identified codes into categories (SQ! - solu-
tions, SQ2 - conditioning factors, SQ3 - processes, and SQ4
- concerns). Two researchers analyzed each study separately
and then came together to compare the texts extracted and
codes identified for the categories. If these codes were unable
to help answer the research questions, the researchers dis-
carded them. When there were divergences, they discussed
them with a third researcher (expert). We provided an algo-
rithm to demonstrate how we made the decisions throughout
the analysis in the supplementary material located at https:
//doi.org/10.5281/zenodo.10602816.

3.2 Field Study

Following the recommendations of Singer et al. (2008) for
executing the field study, we developed a process consisting
of three steps: (i) planning; (ii) execution, and (iii) data anal-
ysis procedures.

3.2.1 Planning

In this planning section, we present details about the inter-
view protocol, population characterization, and the pilot of
this study.

Research Question Definition: The results obtained in the
SMS provided us with a comprehensive view of the solutions,
conditioning factors, processes, and concerns related to trans-
parency in the SECO. To enrich this body of knowledge, we
decided to go into the field to understand how software de-
velopers perceive SECO transparency in practice.

The conditioning factors for transparency represent
elements, characteristics, or actions that can contribute to
transparency in SECO and are related to other SMS findings.
Therefore, we decided to consider them as the basis for
our field study design. So, our objective was to verify the
importance of the conditioning factors for transparency from
the point of view of software developers in an OSSECO.
To do so, we defined this RQ: “What is the importance
level of conditioning factors for transparency according to
developers in the context of an OSSECO?”

Interview Protocol: In order to answer our RQ, we orga-
nized the interview protocol into three stages. In the first step,
the researchers provided the Informed Consent Form (ICF) to
each participant. The participant should read and agree or dis-
agree with the ICF, before starting the study. Whether the par-
ticipant agreed, in the second step the researchers gave a pre-
sentation about the context of this research, explaining SECO
concepts and presenting the conditioning factors for trans-
parency identified in the SMS (see Section 4.1.3). Finally, in
the third step, the researchers conducted a semi-structured in-
terview with a set of questions about the characterization of
the participants (see Table 2) and questions about the condi-
tioning factors for transparency (see Table 3).

Population Characterization: Following the guidelines
of Kitchenham et al. (2015), we defined the population pro-
file for this study as software developers who use GitHub

https://doi.org/10.5281/zenodo.10602816
https://doi.org/10.5281/zenodo.10602816

Investigating Conditioning Factors for Transparency in Software Ecosystems

Table 2. Questions regarding the characterization of field study par-
ticipants

Questions
What is your professional career segment?

Answer Options
Academic, Industrial or
Academic and Industrial
High school or technical

‘What is your most recent academic qualifica-

tion? degree, Bachelor degree,
Specialization degree,
Master degree or Doctor-
ate degree

How long have you been a professional de- (Open Question)

veloper?

How long have you been using GitHub? (Open Question)

For what purpose do you use GitHub? Personal project, Aca-

demic project or Profes-
sional project (industry)

to manage their projects. GitHub is a platform to sup-
port project-based ecosystems, mainly OSSECO (Lungu
and Lanza, 2010; Liao et al., 2019). We adopted the non-
probabilistic convenience sampling to define the sample due
to the impossibility of accurately defining the total number
of participants eligible for this research.

Looking for professionals who fit the defined profile, we
sent invitations to participate to email lists of undergraduate
and graduate courses in the area of Computer Science
from different regions of Brazil and to software developers
through Whatsapp® groups. Furthermore, we used the
snowball sampling technique, in which the first participants
nominated other professionals to participate in the interview.

Pilot: After the elaboration of the interview protocol, we con-
ducted a pilot with a PhD student in Computer Science, who
had experience in SECO and requirements engineering. We
sent the invitation to participate in the pilot by e-mail. The
invitation email contained information about the researchers
of this study, the objective and duration of the interview ses-
sion, a link to the ICF, and request availability for scheduling
(day and time).

The purpose of the pilot was to evaluate the protocol
and the conduct of the interviews. The session was held on
Google Meet’ that allows to record the session. We asked the
pilot participant to fill out the ICF. Next, we gave a brief pre-
sentation about the study objectives and concepts related to
SECO and transparency. Then, we asked the questions about
the conditioning factors for transparency.

During the pilot, the participant reported a lack of under-
standing of some questions. In Q2, when we asked about
having access to information, the participant replied that he
did not understand what kind of information we were refer-
ring to. In Q8, the participant could not understand what kind
of reliability we were referring to. Based on these situations,
we decided to put a description in these two questions about
what kind of information (interface and platform documen-
tation) and what kind of reliability (about the reliability of
references, content authors, updates etc.). The final version
of the artifacts used in the field study can be viewed in full
athttps://doi.org/10.5281/zenodo.10602816.

Shttps://www.whatsapp.com
"https://meet.google.com/

Zacarias et al. 2024

3.2.2 Execution

We sent out invitations to email lists to Computer Science
courses in Brazil and software developers on the social net-
work WhatsApp, as mentioned in Section 3.2.1. Through the
invitation email, we provide the link to access the ICF. ICF
included acceptance of participation in the research, agree-
ment with the conditions established in the term, and autho-
rization to record the interview. We emphasized to partici-
pants that they had the right to withdraw from the interview
at any time and that their responses would be deleted. Finally,
we also asked potential participants by email to inform their
availability (day and time) to schedule the interview session.

The interviews lasted an average of 25-27 minutes, as es-
timated in the pilot and following the structure presented in
Section 3.2.1. At the end of the interview, we asked partici-
pants if they agreed with the list of conditioning factors for
transparency presented or if they would like to suggest any
changes to the material presented, adding a new factor or
removing one that they did not agree with. In total, we in-
terviewed 16 software developers, by convenience and fol-
lowing the concept of “saturation”. According to Guest et al.
(2006), saturation is reached when by running a new set of in-
terviews, no emerging data emergent. Thus, initially, we con-
ducted 10 interviews, and after analyzing them, we noticed
they were still insufficient, not having reached such satura-
tion. Next, we conducted 2 more interviews, and after ana-
lyzing them, we noticed that the eleventh was the last that
added a new point to this research, which was not addressed
by the other participants. Finally, we conducted the last 4 in-
terviews, in which we noticed that they did not present new
points in the research, thus reaching saturation.

3.2.3 Data Analysis Procedures

The data obtained in the interviews were analyzed qualita-
tively. To analyze the data, we performed an open and ax-
ial coding approach inspired by the initial procedures of the
Grounded Theory. Thus, we adopted an open coding ap-
proach, in which interviews were coded inductively (bottom-
up) (Charmaz, 2006). To do so, we thoroughly read partici-
pants’ responses, dividing the transcripts into coherent units
(sentences or paragraphs), and subsequently, we defined a set
of focused codes that captured the most frequent and rele-
vant factors in the participants’ perceptions.

After open coding, we used axial coding, as described
by Charmaz (2006), to group the codes into categories. To
do so, we organized the excerpts from the interviews and the
codes into a document, enabling, in several iterative cycles,
researchers to follow up on the main findings through dis-
cussions. During the coding process, we wrote memos for
the codes and categories, and notes were made about the re-
lationships between the codes. Table 4 shows an example of
the coding process for one transcript with resulting codes and
categories.

It is worth mentioning that data was analyzed by two re-
searchers who work in the areas of SECO, software engi-
neering, and transparency. The results of this process were
evaluated iteratively by two other PhD researchers with ex-
perience in software engineering and qualitative studies for

https://doi.org/10.5281/zenodo.10602816

Investigating Conditioning Factors for Transparency in Software Ecosystems

Zacarias et al. 2024

Table 3. Questions about the conditioning factor for transparency on GitHub

Conditioning Factors (CF) for Transparency

ID CF1: The existence of communication channels between actors and keystone

Ql Have you ever used any platform channel to communicate with co-workers, other developers, or even platform support? How important do you
think communication channels are for collaborative development?

1D CF2: Information about platform made available in an accessible way

Q2 Can you access this information from different devices? Have you had the experience of using GitHub both on mobile and the web? Did you
notice any differences in the information made available in these two versions? Do you find it easy to access any information on GitHub?
Have you ever had experience trying to access information that was not available? How do you evaluate the importance of this factor for your
performance at GitHub?

1D CF3: The actors’ understanding of SECO information

Q3 Do you think the information in the interface or documentation is very detailed and concise? Have you ever found any information that you did
not understand? How much do you think finding information you do not understand could hinder your project? How much do you think finding
information you do not understand could hinder your project?

1D CF4: The quality of platform information provided by a keystone

Q4 Is the information available on the platform interface or in its documentation clear? Do you notice if they are updated? Have you ever noticed
any incorrect or incomplete information on the platform or even in the documentation? In general, how do you evaluate the impact of this
information made available on your work as a developer and your interaction with the platform?

1D CF5: The usability of interfaces with platform documentation

Q5 How do you evaluate GitHub’s interfaces? Do you think they are intuitive or easy to use? Have you noticed any usability problems on the
platform? Do you think usability is important to you when you search for information on GitHub?

ID CF6: The auditability of platform processes and information

Q6 How do you check the traceability of information on the platform? Do you find it complex? Do you think how the platform provides information

helps you control your projects? Do you think it is very clear and well-presented? Regarding this issue of going through the information available

on the platform, how important is this for developers?

ID CF7: Visualization of the evolution of projects in SECO

Q7 Do you think the platform has mechanisms that allow you to monitor the progress of projects, whether in terms of changes and updates that are
made? Do you think it allows that? Do you think these mechanisms are informative? What benefits does it provide for your project?

1D CF8: Reliability of information provided by a keystone

Q8 Do you notice that the platform provides means that allow you to verify the reliability of the information that is made available, whether in its
interface or its documentation? Regarding the reliability of information, do you think this factor is important for your projects?

Table 4. Example of the coding process

Coherent unit: “Due to the platform’s usability issues, some mem-
bers needed help to keep up with the project’s progress, leading
to suboptimal productivity. Occasionally, someone fails to deliver
their work due to a usability flaw.” D1

Focused Code Category

Low developer productivity | Consequences of lack of transparency

at least 15 years. The interview transcripts and other arti-
facts from the coding process are available in full at https:
//doi.org/10.5281/zenodo.10602816.

4 Results

In this section, we present the results of the SMS and then
the results of the field study. We also detail the conceptual
framework for understanding transparency in SECO, devel-
oped from the results obtained in both studies.

4.1 Results of Systematic Mapping Study
4.1.1 Demographic Data

The majority of the selected studies were published in jour-
nals (nine studies, 39% of the total), and conferences (eight
studies, 35% of the total). We identified three studies (13%
of the total) published in workshops and three studies (13%
of the total) published in symposiums. Figure 3 shows the
distribution of selected studies over the years. We noticed
that at least one annual publication has been published from
2016 until 2022, reaching the peak in 2014 with four studies.
Furthermore, it is important to highlight that there were no
studies before 2010. This fact can be explained by the novelty

of the term, which has been more widely explored in recent
years.

2010

2012

2014 2016 2018 2020 2022

Figure 3. Number of studies per year

As shown in Figure 4, relevant primary studies were pre-
dominantly conducted in the USA, with six studies, followed
by Brazil, with five studies. Sweden appeared in four studies,
while Germany and the Netherlands in three each. Canada
and Finland have been represented in two studies. Finally,
China, the Czech Republic, India, and Switzerland were
present in one study each. A study may have researchers of
different nationalities and therefore the sum does not corre-
spond to 23.

About the SECO types, we could identify 15 studies ad-
dressing open source (e.g., Python, GNOME)), six studies ad-
dressing proprietary (e.g., SAP, JobTech), and three studies
addressing hybrid (e.g., Android, i0S) ecosystems. It is note-
worthy that only one study addresses both open and propri-
etary SECO.

The complete list of 23 studies can be seen in Table 5, in
descending order by year of publication. Identification (ID)
codes will be used for referencing studies throughout the

https://doi.org/10.5281/zenodo.10602816
https://doi.org/10.5281/zenodo.10602816

Investigating Conditioning Factors for Transparency in Software Ecosystems

L T e L = ¥ =
I
7
S

7
-
.
-

m —

Il -

-»—t

O"-»—l

' F & 5 3 & o &\Q)
F&FESHS S
b A& N - & & Q A A
& & & e o2
&) N K)
¢ & o
o

Figure 4. Number of studies per country

next sections. Each study received the identifier (S), followed
by a numerical identification (S01-S23). Besides informa-
tion about the author(s), country, and year of publication, we
added a column to describe which solution was used for trans-
parency in SECO. After screening selected primary studies
in this SMS, collected data were analyzed to answer each SQ.
The raw data and all the steps necessary to reproduce the
research are detailed in the supplementary material located
athttps://doi.org/10.5281/zenodo.10602816.

4.1.2 SQ1: What types of solutions are used to provide
or assess transparency in SECO?

We were inspired by the taxonomy defined by Shaw (2003)
to categorize the solutions identified in the selected studies:
(i) theory: a system of ideas intended to explain something;
(i1) model: structure or taxonomy for a problem area; (iii)
method: a particular form of procedure for accomplishing
something; (iv) practice: new or better way to do some task;
(v) tool: device that embodies a technique; and (iv) frame-
work: a support structure to do something.

The results showed that Tools/Frameworks (S06, S07,
S09, S10, S12, S16, S18, and S19), Models (S03, S04,
S13, S14, S20, and S22), Practices (S05, S08, S17, S21,
and S23), Methods (SO1) and Theory (S11) are ways to
promote transparency in SECO. Only two studies did not
present some solution (S02 and S15). Figure 5 illustrates
how we categorize the solution presented in each study.
Most solutions are related to using Tools/Frameworks. It is
important to notice that the solutions presented in this SM'S
may have been detailed or just cited in the selected studies.
We present more details about each type of solution in the
following subsections.

A) Tools/Frameworks

S06 proposes the user eXperience evaluation tool (T2-
UXT) that automatically monitors the user experience in
the Web environment and generates visual artifacts and in-
dicators to document it. SO7 and S10 present an instru-
ment/questionnaire for assessing transparency in SECO
portals, following accessibility, usability, informativeness,
understandability, and auditability. S09, in turn, presents an
anomaly detection mechanism in commits, which enables
developers to access information about relevant changes in
other projects.

S12 proposes the intelligent software assurance and

Zacarias et al. 2024

monitoring (ISAM) provider. ISAM issues early warn-
ings as customer applications and open source components
evolve. S16 presents the application transparency frame-
work (AT). This framework protects users from malicious
applications and targeted attacks and adds transparency to
the application’s signing process.

S18 brings a framework for measuring the SECO
health. With the framework, it is possible to quantify an
ecosystem’s health, and one can gain helpful knowledge
for strategic decision-makers. S19 presents the OSCOMM
framework for the SECO openness. The main contribution
of the OSCOMM framework is to make explicit and docu-
ment the elements required to build and sustain open source
ecosystems.

Intending to support researchers and professionals in de-
veloping new solutions or reusing and understanding those
identified in this research, we summarize open source tools
and frameworks. It is important to note that not all identified
tools and frameworks are software-intensive or automated.

T2-UXT (S06) is an open source tool and the project is ex-
panding so that other developers and researchers can use it
and contribute to its evolution. The anomaly detection mech-
anism in commits (S09) is also code and both the back end
and front end are available on GitHub. Application Trans-
parency (AT) framework (S16) is also presented as open
source, but the authors do not mention in their study how
other researchers can contribute to the project.

We can also analyze these tools and frameworks by
grouping them according to their scope of use. S06, S07,
and S10 present solutions aimed at improving the design of
SECO portals from the transparency perspective. S09, S12,
and S16 provide mechanisms to improve the visualization
and monitoring of contribution indicators in OSSECO. S18
provides metrics for analyzing and monitoring SECO health
and S19 provides a conceptual framework for promoting the
opening of a SECO.

B) Models

S03 has defined a conceptual model of an open data
ecosystem (ODE). This model can be used to analyze the
openness of data of a SECO. S04 presents a conceptual
model for SECO governance that establishes how to make
partnerships and how accessible the ecosystem must be to
balance the use, development, and commercialization of
products and services.

In S13, the requirements analysis and management for
benefiting openness (RAMBOQO) model is introduced for re-
quirements analysis and management to support open inno-
vation in SECO. S14 defines three collaboration models for
SECO: product-line engineering (PLE) for internal software
ecosystems (ISECO), platform reuse for ISECO, and decou-
pled PLE for ISECO. These models provide a framework for
practitioners to discuss architectural measures in advance.

S20 presents the open software enterprise (OSE) model
that determines the degree of openness of a software-
producing organization (SPO). S22 introduces the clopen-
ness assessment model (CAM), which provides insight into
the openness of an organization, in turn enabling more in-
formed business decisions and helping an organization to
maintain SECO openness or closure.

https://doi.org/10.5281/zenodo.10602816

Investigating Conditioning Factors for Transparency in Software Ecosystems Zacarias et al. 2024
Table 5. List of selected studies

ID Title Author Country Solution Year

S01 Are you of value to me? A partner selection reference method for software ecosystem Beelen et al. (2022) The Netherlands and Fin- ~ Method 2022
orchestrators land

S02 Collaboration in software ecosystems: A study of work groups in open environment Chen et al. (2022) China None 2022

S03 Open Data Ecosystems - An empirical investigation into an emerging industry collabo- ~ Runeson et al. (2021) Sweden Model 2021
ration concept

S04 Software Ecosystems Governance - An Analysis of SAP and GNOME Platforms Oliveira and Alves Brazil Model 2021

(2021)

S05 Privacy in Software Ecosystems - An Initial Analysis of Data Protection Roles and Chal- ~ Valenca et al. (2020) Brazil and Germany Practice 2020
lenges

S06 T2-UXT: A Tool to Support Transparency Evaluation in Software Ecosystems Portals Souza et al. (2020) Brazil Tool/framework 2020

S07 An Instrument for the Evaluation of Transparency Mechanisms in Software Ecosystem Meireles et al. (2019) Brazil Tool/framework 2019
Portals

S08 Continuous clarification and emergent requirements flows in open-commercial software ~ Knauss et al. (2018) Sweden and Canada Practice 2018
ecosystems

S09 Identifying unusual commits on GitHub Goyal et al. (2018) India and USA Tool/framework 2018

S10 Building a questionnaire to evaluate transparency in software ecosystem portals Meireles et al. (2017) Brazil Tool/framework 2017

S11 Building a Socio-Technical Theory of Coordination: Why and How (Outstanding Re- Herbsleb (2016) USA Theory 2016
search Award)

S12 Intelligently Transparent Software Ecosystems Herbslebetal. (2016) USA Tool/framework 2016

S13 Requirements Analysis and Management for Benefiting Openness Lindker and Wnuk Sweden Model 2016

(2016)

S14 Architecture Challenges for Internal Software Ecosystems: A Large-Scale Industry Case ~ Schultis et al. (2014) Germany Model 2014
Study

S15 A Quantitative Analysis of Developer Information Needs in Software Ecosystems Haenni et al. (2014) Switzerland None 2014

S16 Hey, NSA: Stay Away from My Market! Future Proofing App Markets against Powerful ~ Fahl et al. (2014) Germany and Czech Re- Tool/framework 2014
Attackers public

S17 Openness and requirements: Opportunities and tradeoffs in software ecosystems Knauss et al. (2014) Swenden and Canada Practice 2014

S18 Proposed Metrics on Ecosystem Health Monteithetal. (2014) USA Tool/framework 2014

S19 From proprietary to open source - Growing an open source ecosystem Kilamo et al. (2012) Finland Tool/framework 2012

S20 Shades of gray: Opening up a software producing organization with the open software ~ Jansen et al. (2012) The Netherlands Model 2012
enterprise model

S21 Social Coding in GitHub: Transparency and Collaboration in an Open Software Repos- ~ Dabbish et al. (2012) USA Practice 2012
itory

S22 Clopenness of systems: The interwoven nature of ecosystems Molder et al. (2011) The Netherlands Model 2011

S23 Architecting in Software Ecosystems: Interface Translucence as an Enabler for Scalable ~ Cataldo and Herbsleb ~ USA Practice 2010
Collaboration (2010)

1 method 1 theory
- -
501 PALERMO: the pariner selection reference method $11 A socio-technical theory of coordination (STTC)
5 practices 8 tools/frameworks
505 Data_protechcn legislation PﬁdiCES _ 506 User eXperience evaluation tool (T2-UXT)
508 Continuous flows of emerging requwre.ments in SECO $07 Instrument for assessing transparency in SECO portals
517 SECO openness for requirements engineering 509 Anomaly detection mechanism in commits
$21 Feedback for transparency in SECO $10 Questionnaire to assess transparency in SECO portals
523 Interface translucence for scalable collabaration in SECO 512 Intelligent software assurance and monitoring (ISAM]) provider
$16 Application transparency framework (&T)
518 Framework for measuring the SECO health
$19 OSCOMM framework for the SECO openness
L

6 models

503 Conceptual model of an open data ecosystem (ODE)

504 Conceptual model for SECO Governance

513 Requirements analysis and management for benefiting openness (RAMBO) model

514 Collaboraticn medels for SECO
520 Open software enterprise (OSE) model
522 Clopenness assessment model {CAM)

Figure 5. Solutions used to provide transparency in software ecosystems

We can also analyze these models by grouping them
according to their scope of use. S03, S13, S20, and S22
present solutions focused on how to promote the opening
of SECO in a transparent, strategic, and efficient way. S13
and S14 focus on governance approaches in SECO, mainly
for transparency regarding architecture and requirements
management.

C) Practices

S05 discusses data protection legislation practices that
SECO should follow and how privacy requirements affect
software development in such ecosystems. SO8 presents the
use of open communication channels to provide transparency
to handle continuous flows of emerging requirements in
SECO. S17 emphasizes the importance of SECO openness

for requirements engineering, as it provides transparency
to the process.

S21 highlights the importance of the practice of feedback
for transparency in SECO. The study assesses the value
of transparency for large-scale distributed collaborations and
communities of practice through commits and profiles on
GitHub. S23 presents interface translucence for scalable
collaboration in SECO. The study highlights that interface
translucency increases transparency in SECO by conveying
only the relevant organizational information to ecosystem
members.

We can also analyze these practices by grouping them
according to their scope of use. SO8 and S17 focus on trans-
parency to improve requirements flow and management in
SECO. S05 and S23 bring practices aimed at the level of

Investigating Conditioning Factors for Transparency in Software Ecosystems

access to different information in SECO. S21 addresses the
importance of implementing feedback channels to improve
project management in SECO.

D) Methods

S01 presents PALERMO: the partner selection refer-
ence method. The focus is the creation of a structure within
a company, describing the partner selection process, training
new colleagues, and providing transparency for partners. As
such, potential partners can know the conditions they must
fulfill to become a partner in a SECO.

E) Theories

S11 presents the socio-technical theory of coordination
(STTC). The theory assists actors gain insight into transpar-
ent environments that can help developers cope with the scale
and decentralized organizational structure of SECO by being
able to take advantage of a huge set of libraries, frameworks,
and other code artifacts available in these environments, such
as SECO.

4.1.3 SQ2: What are the conditioning factors for trans-
parency in SECO?

This SQ seeks to summarize which factors specifically con-
tribute to transparency in SECO, describing the main char-
acteristics that are related to this context. Analyzing the se-
lected studies, the topics mentioned were grouped into 8 fac-
tors (Table 6), written by the authors, according to their influ-
ence on transparency. Studies S01, S05, S09, S11, S12, S16,
and S20 did not specify any conditioning factors in their con-
tent.

Table 6. Conditioning factors for transparency in SECO

ID Conditioning Factors Studies
CF1 The existence of communication channels be- S02, S03, S04,
tween actors and keystone S07, S08, S17,
and S21
CF2 Information about platform made available inan S06, S07, S10,
accessible way S14, S15, and
S22
CF3 The actors’ understanding of SECO information ~ S06, S07, S10,
S15, S19, and
S22
CF4 The quality of platform information provided S06, S07, S10,
by a keystone and S18
CF5 The usability of interfaces with platform docu- S06, S07, S10,
mentation and S18
CF6 The auditability of platform processes and infor- S06, SO7, and
mation S10
CF7 Visualization of the evolution of projects in S13, S21, and
SECO S23
CF8 Reliability of information provided by a key- S03 and S13
stone

CF1 highlights that communication channels (e.g., forums
and contact emails) are an important instrument for capturing
and monitoring the implementation of requirements coming
from the developer community. CF2 emphasizes that all ac-
tors must be able to access the information available about
a common technological platform. CF3 describes that actors
must be able to understand the information provided about a
technological platform. CF4 describes that the quality of plat-
form information provided by a keystone helps actors, espe-

Zacarias et al. 2024

cially developers, to more easily learn how SECO processes
work.

CF5 explains that good usability of interfaces contributes
to better interaction of actors with the documentation pro-
vided. CF6 explains that actors should be able to certify plat-
form processes and information provided are correct and true.
CF7 highlights that actors must be aware of changes and up-
dates made in a common technological platform. CF8 em-
phasizes that actors must trust the information provided by a
keystone. Therefore, these conditioning factors contribute to
the open flow of information within a SECO. The more fac-
tors present, the more easily transparency can be achieved in
a SECO.

In our analysis, we can highlight the recurrence of
characteristics defined by Leite and Cappelli (2010) for
transparency (accessibility, usability, informativeness, un-
derstandability, and auditability) in studies S06, S07, and
S10. These studies explore SECO portals and try to associate
these characteristics of Web portals in the SECO context to
assess the degree of transparency.

It is also possible to notice the recurrence of factors re-
lated to communication (S02, S03, S04, S07, S08, S17, and
S21), visibility, and access to information about projects and
codes contained in the SECO platform (S13, S21, and S23).
Transparent environments and social coding platforms help
developers stay up-to-date on changes in the development
and maintenance phases of a project, as highlighted in S9.
There is potential for such transparency to radically improve
collaboration and learning in complex knowledge-based ac-
tivities, as mentioned in S21.

Transparency is also related to the degree of openness and
security of a SECO (S13). For a keystone to be able to coor-
dinate such an open business model, it is necessary to define
to which degree each type of actor will have access to infor-
mation to avoid overload and guarantee the preservation and
security of confidential data. According to S22, in addition
to transparency, availability, accessibility, reciprocity, and li-
censing factors must also be considered in this process.

Finally, S18 presents a transparent vision based on in-
formation about SECO health, which influences ecosystem
growth. S03 and S13 state that the information provided must
be true and address how this affects the credibility and trust
of actors in a SECO.

4.1.4 SQ3: What types of SECO processes must be
transparent?

This SQ seeks to summarize which SECO processes should
be transparent and how they are being explored or addressed
by the solutions identified in SQ1. Table 7 presents a list of
these processes that were identified in the studies, written by
the authors. It should be noted that this is a view based on
the selected studies. The levels of transparency for these pro-
cesses depended on the business context and organizational
objectives of each SECO. In any case, we want to highlight
that these processes need attention when talking about trans-
parency in SECO.

The process of accessing documentation, source code, and
tools is the most cited among the selected studies (P1). This
is due to the developers’ need to have access to information

Investigating Conditioning Factors for Transparency in Software Ecosystems

Table 7. Processes that must be transparent in SECO

ID Processes Studies

P1 Access to documentation, source code, and tools S06, S07, S15,
S16, S18, S19,
and S22

P2 Access to information about code in repositories S07, S09, S10,
S12, S15, and
S21

P3 Communication channels between actors and keystone S01, S02, S06,
S07, S08, and
Si1

P4 Processes related to SECO governance S02, S04, S14,
S18, and S20

P5 Access to information about requirements flow S08, S13, S17,
and S20

P6 Processes related to data collection, processing, and sharing S01, S03, S05,
and S20

P7 Access to information about SECO architecture S20 and S23

required to know and learn how to use the SECO platform,
in addition to allowing for interactivity in forums.

Regarding accessing information about code in reposito-
ries (P2), it helps actors, especially developers, to be aware
of changes and updates of software technologies on the plat-
form, avoiding compatibility problems with products. An-
other highlighted process is related to the communication
channels between actors and keystone (P3). Transparency in
communication between actors and keystone is a key element
in coordinating SECO activities, mainly in maintaining the
engagement that keeps SECO active.

Processes related to SECO governance (P4) need to be
transparent as it is a key success factor for SECO as fun activ-
ities occur simultaneously. Regarding access to information
about the flow of requirements (P5), the transparency of this
process supports the management of demands in SECO, al-
lowing a keystone to demonstrate credibility in meeting the
needs of actors.

The transparency of the processes related to the collection,
processing, and sharing of data (P6) contributes to the infor-
mation being perceived as reliable and true, providing cred-
ibility in SECO. Finally, access to information about SECO
architecture (P7) can improve the vision of the technical as-
pects that allow the expansion of a SECO platform. For third-
party developers to be able to make some code contribution
to the common technological platform, they need to know
and understand the technical and architectural aspects of that
platform.

4.1.5 SQ4: What are the concerns for transparency in
SECO?

SQ4 aims to identify concerns for research on SECO trans-
parency. Following the main concerns (open source ecosys-
tems, governance, analysis, openness, quality, and software
architecture) related to SECO presented by Barbosa et al.
(2013), we could identify five concerns for transparency in
SECO from the studies (SO01, S02, S03, S06, S08, S17, and
S19). We regarded the characteristics related to transparency
defined by Leite and Cappelli (2010) to state them. Although
many concerns are related to software development, others
are specific to requirements engineering in SECO due to the
complexity and diversity of interests among actors in this
context.

Attracting and engaging potential partners (actors) to
OSSECO: the number of actors interacting with OSSECO
directly influences the ecosystem’s health indicators, i.e. pro-

Zacarias et al. 2024

ductivity, robustness, and niche creation. Therefore, it is es-
sential to define processes to attract and engage more ac-
tors, mainly developers, to OSSECO (S01 and S02). One of
the strategies is related to the informativeness characteristic
related to transparency, which considers the quality of the
information available about the common technological plat-
form. This information allows actors to get to know and learn
OSSECO processes, improving their experience and, poten-
tially, the number of contributions on the platform.

Handling large volumes of data in OSSECO: there are
large volumes of data transiting through OSSECO, due to
its open characteristic that allows contributions of different
actors who can enter and leave the ecosystem at any time. Of-
ten, keystones face problems related to access and use of this
data by them. Although on the one hand, free access to data
can be positive from the perspective of transparency, on the
other hand, undefined access to a large volume of data can
make it difficult to interact with the common technological
platform. Therefore, it is necessary to build visual data tools
that add transparency resources and investigate how to mod-
erate the permissions and access levels of different actors to
data shared in an OSSECO (S03 and S05), contributing to
better usability and understanding of this data.

Guaranteeing access and understanding of keystone’s
actions and strategies in SECO: software product manage-
ment strategies must be established by a keystone and must
be communicated and understood by other SECO actors. To
achieve this, there is a need to create an information archi-
tecture, that is, an organized information structure that guar-
antees accessibility and understanding by these different ac-
tors. This architecture contributes to improving the interac-
tion of actors with information about the common technolog-
ical platform since all its actions and strategies for the use
of human and technical resources can be understood and fol-
lowed by them. Consequently, this concern can improve the
trust and credibility of a keystone and facilitate governance
actions (S4).

Defining the level of transparency of software architec-
ture in SECO: when we talk about defining the level of data
and information transparency of a SECO, we consider that,
in some ecosystems such as PSECO and hybrid SECO, some
data and information must be protected or have access re-
stricted following the keystone’s business rules. This must
be taken into account at the same time that open data needs
to have its access facilitated and guaranteed by actors. There-
fore, to support decision-making on the level of transparency
agreed in a SECO, it is necessary to propose a software ar-
chitecture model for the common technological platform that
makes it possible to operationalize the different levels of
transparency of data and information. One of the solutions to
this concern is the concept of interface translucency in SECO
architecture (S23), which allows managing accessibility to
data through an architectural organization of the technologi-
cal platform. However, this concept still needs to be further
investigated.

Maintaining effective and transparent communication
channels: communication channels (e.g., forums, issues,
emails, etc.) are one of the main sources of demands from
the developer community in a SECO. These demands may
become future requirements for improving common techno-

Investigating Conditioning Factors for Transparency in Software Ecosystems

logical platforms. Therefore, there is a growing need for re-
search focused on establishing transparent communication
channels and better solutions to collect feedback from dif-
ferent actors. In addition to facilitating the sending of com-
munity demands, communication channels must provide re-
sources that enable keystone to manage all the requirements
that emerge from them, while at the same time being account-
able (auditability) for their decisions to other actors (SO8 and
S17).

4.2 Results of Field Study

After running the field study, we organized and analyzed data
from all 16 participants to answer this study’s RQ: “What is
the importance level of conditioning factors for transparency
according to developers in the context of an OSSECO?”

4.2.1 Demographic Data

Table 8 presents a summary of information characterizing
the profile of the participants. We assigned an identifier (ID)
to each software developer, following the order of the inter-
views carried out (D1 to D16), to identify them throughout
this article.

Regarding professional careers, four participants work in
an academic career, ten in an industrial career, and two in
both academic and industrial careers. Concerning academic
qualifications, two participants have a high school or techni-
cal degree, seven have a bachelor’s degree, six have a special-
ization degree, and one has a master’s degree. The average
experience as a professional developer among participants
is approximately six years and the average experience with
GitHub is approximately five years. It is worth mentioning
that developers only considered experience as professional
developers when answering the questionnaire, but some of
them had previously used GitHub for studies. Finally, regard-
ing the purpose of using GitHub, eight participants answered
that use it for academic projects, ten for professional projects,
and 14 for personal projects.

4.2.2 Conceptual Framework for Understanding Trans-
parency in SECO

The main outcome of our research is the proposed conceptual
framework for transparency in SECO (Figure 6). The concep-
tual framework emerged from the SMS and the field study
data. Parahoo (2014) states that a conceptual framework is
fundamental in organizing research and establishing an ar-
gument based on foundations and concepts (Green, 2014).
According to Kon et al. (2015), a conceptual framework as-
sists in the understanding of the elements that make up the
research objective and the relationships between them. In ad-
dition to this unifying vision, another purpose of a conceptual
framework is to promote the development and improvement
of academic and industrial practices (Issac et al., 2004).

The central concept of the proposed conceptual framework
is transparency in SECO in which software functions are
disclosed to users and developers. On the left side of the
framework, we list the two categories: conditioning factors
for transparency and processes that must be transparent.

Zacarias et al. 2024

These categories emerged by consolidating the results of the
SMS that were later verified with software developers in the
field study. The existence of the elements from these cate-
gories can contribute to improving transparency in SECO.
The category listed below is related to solutions to provide
transparency in SECO. It is a consolidation of the results
presented in Figure 5, which were identified in the SMS.

On the right side of the framework, we present other two
categories that are directly influenced by transparency in
SECO. The benefits of transparency consist of positive ad-
vantages of promoting transparency in SECO and the con-
sequences of lack of transparency refer to some problems
that are generated when transparency is not enough in SECO.
The category of benefits of transparency emerged from the
SMS and was later discussed with the software developers
in the field study. Concerning the consequences of lack of
transparency, these results were mentioned only in the field
study, during the discussion and evaluation of the previous
categories. The following sections detail the four categories
addressed in the field study.

4.2.3 Conditioning Factors for Transparency

As described in Section 3.2.3, we coded iteratively the re-
sponses of the participants (software developers) in order to
answer the RQ: “What is the importance level of condition-
ing factors for transparency according to developers in the
context of an OSSECO?”. This process allowed us to cap-
ture the perceptions of 16 software developers regarding the
conditioning factors for transparency identified in the SMS.
Figure 7 illustrates the importance attributed to each factor
by the interviewed developers. In the following sections, we
will delve into a detailed presentation of the significance of
each factor for these developers.

(CFO01) - The existence of communication channels be-
tween actors and keystone

The communication channels for 12 (75%) developers
are considered very important and important for four (25%)
developers. The communication channels provided by the
platform are crucial for communicating changes made on
the platform. The developers mentioned the example of be-
ing informed about changes made on the platform. This in-
stance underscores the importance of effective communica-
tion on platforms such as GitHub, particularly between vari-
ous actors and the keystone within the ecosystem. D4 stated:
“There was a change in the security aspect, and they in-
formed us about it, mentioning that something would become
outdated. In this specific instance, this communication was
important”. These channels enable developers to maintain a
comprehensive development environment in a single space
and stay connected with other developers within that envi-
ronment. D1 explained that: “It is very important because it
is a way to interact with other developers in a single space
for the complete development of a project”. According to
some developers, asynchronous communication contributes
to collaborative development, making the software develop-
ment process easier. D10 shared that: “It is very important
to have asynchronous communication in collaborative devel-
opment for code control and advancing related activities. So,
if it were not easy to communicate with the team, develop-

Investigating Conditioning Factors for Transparency in Software Ecosystems

Zacarias et al. 2024

Table 8. Characterization of the developers

ID Professional Career Academic Qualification = Experience as Experience with Purpose of using GitHub
Professional GitHub
Developer
D1 Academic High school or technical 3 years 3 years Academic project
degree
D2 Industrial High school or technical 2 years 8 years Personal project, professional project (indus-
degree try) and academic project

D3 Academic and Industrial Bachelor’s degree 3 years 4 years Personal project, professional project (indus-
try) and academic project

D4 Academic Bachelor’s degree 4 years 4 years Professional Project (industry) and academic
Project

D5 Industrial Specialization degree 5 years 3 years Personal project and academic project

D6 Industrial Specialization degree 8 years 6 years Personal project, professional project (indus-
try) and academic project

D7 Academic Specialization degree S years 4 years Personal project and professional project

D8 Academic Bachelor’s degree 5 years 5 years Personal project and academic project

D9 Industrial Bachelor’s degree 3 years 6 years Personal project and professional project (in-
dustry)

D10 Industrial Bachelor’s degree 3 years 5 years Personal project, professional project (indus-
try) and academic project

D11 Industrial Specialization degree 4 years 5 years Personal project, professional project (Indus-
try) and academic project

D12 Industrial Bachelor’s degree 3 years 5 years Personal project and academic project

D13 Industrial Specialization degree 7 years 6 years Personal project, professional project (indus-
try) and academic project

D14 Academic and Industrial Master’s degree 4 years 7 years Personal project, professional project (indus-
try) and academic project

D15 Industrial Specialization degree 21 years 5 years Personal project and academic project

D16 Industrial Bachelor’s degree 12 years 3 years Personal project and academic project

1| CF01: The existence of communication channels between actors and keystone
1+ CF02: Information about platform made available in an accessible way

! CF03: The actors’ understanding of SECO information

| CF04: The quality of platform infermation provided by a keystone

1+ CFO5: The usability of interfaces with platform documentation

' CFO6: The auditability of platform processes and information

| CFO7: Visualization of the evolution of projects in SECO

1 CFO8: Reliability of information provided by a keystone

I CONDITIONING FACTORS FOR TRANSPARENCY (CF) I
1
1
1

contribute to

E PTO1: Access to documentation, source cede, and tools

! PTO2: Access to infarmation about code in repositeries

| PTO3: Communication channels between actors and keystone
i PT04: Processes related to SECO governance :
| PTO5: Access to information about requirements flow !
| PTOG: Processes related to data collection, processing, and sharing !
1 PTO7: Access to infarmation about SECO architecture i

! contribute to
i

improve

BTOL: Attraction of more developers to the platform
BT02: Harmonious development with peers

— BT03: Developer learning support

| BT04: Developer retention on the platform
: trol over project infermation

I BENEFITS OF TRANSPARENCY (BT)

generates

mitigates

CONSEQUENCES OF LACK OF TRANSPARENCY (CT)

1 CTO1: Low developer productivity

| CT02: Difficulty understanding project information
ECTOS: Decreased developer interest in using the platform
| CT04: Delays in project development/delivery

SOLUTIONS TO PROVIDE TRANSPARENCY (5T)

Tools/Frameworks

5TO1: User eXperience evaluation tool {T2-UXT)

STO2: In instrument for assessing transparency in SECO portals
5T03: Anomaly detection mechanism in commits

5T04: Questionnaire to assess transparency in SECO portals
STO5: Intelligent software assurance and monitaring (ISAM) provider
5TO6: Application transparency framework (AT)

ST07: Frameweork for measuring the SECO health

STO8: OSCOMM framewerk for the SECO openness

Models

T09: Conceptual model of an open data ecosystem (ODE)
T10: Conceptual model for SECO governance

wv o n

T11: Requirements analysis and management for benefiting openness (RAMBO) model

5T12: Collaberation models for SECO

5T13: Open software enterprise (OSE) model

5T14: Clopenness assessment model (CAM)

Practices

5T15: Data protection legizlation practices

5T16: Continuous flows of emerging requirements in SECO
5T17: SECO openness for requirements engineering

5T18: Feedback for transparency in SECO

5T19: Interface translucence for scalable collaboration in SECO
Methods

5T20: PALERMO: the partner selection reference method
Theories

5T21: Socio-technical theory of coordination (STTC)

Figure 6. Conceptual framework for understanding transparency in SECO

ing software might be more difficult”. This perspective em-
phasizes the need for effective and accessible communica-
tion for both the platform and collaborative software devel-
opment projects.

(CF02) - Information about platform made available
in an accessible way

The availability of information accessible for nine
(56.25%) developers is considered very important, and im-
portant for seven (43.75%) of them. Developers emphasize

that if information is easily accessible, obtaining and uti-
lizing the platform more effectively becomes possible. D6
stated that: “/¢ is very important because the presentation
of information might be a determining factor in choosing
between platforms. I notice this when there is ease in using
a tool”. D7 added that: “I consider it extremely important to
make information more accessible because the simpler the
information, the better its access. If it is accessible, the de-
veloper can obtain that information and use the platform”.

Investigating Conditioning Factors for Transparency in Software Ecosystems

Zacarias et al. 2024

CF1

5%

56.25% 43.75%

CF2

CF3

CF4

37.50%

CF5

CF6

37.50%

CF7

CF8

43.75%

0% 10% 20% 30% 40%

H Very Important B Important

50%

i Not So Important

25%

56.25%

6.25% |

50% 12.50%

50% 6.25%

60% 70% 80% 90% 100%

Unimportant

Figure 7. Developers’ evaluation of the conditioning factors for transparency

The developers stated that searching for or acquiring de-
sired information can significantly influence the DX in pro-
jectors. If there are difficulties in this process, it can result
in a negative experience, impairing developer satisfaction.
D4 stated that: “It is important because if there is difficulty
in finding information or getting the desired information,
it creates a poor experience for the developer, impairing
satisfaction. Hence, the ease of obtaining information is cru-
cial to our projects’. Furthermore, developers mention that
the clear and accessible presentation of information can be a
determining factor in choosing different platforms.

(CFO03) - The actors’ understanding of SECO informa-
tion

Understanding the information presented on the platform
for six (37.50%) developers is considered very important, im-
portant for seven (43.75%) of them, and not so important for
three (18.75%) developers. The developers highlight a chal-
lenge faced by platforms such as GitHub that present a large
amount of information within a single interface. Information
overload can severely compromise the quality and usability
of the platform, hindering users’ understanding of project in-
formation. Excessive transparency can thus undermine infor-
mation comprehension. Balancing transparency and usability
is crucial for developers to ensure an effective platform ex-
perience. D1 stated that: “A lot of information is presented
in a single interface, which compromises the quality of the
information, as it impairs the platform s usability and under-
standing of project information. Excessive transparency can,
therefore, jeopardize the understanding of information”.

The lack of understanding also generates problems in the
project and the development of systems, harming both the
project and the team. D11 shared that: “I think it could harm

size the importance of clarity and organization in technical
documentation, as the absence of these elements can nega-
tively impact the developer’s experience. D5 explained that:
“When dealing, for example, with poorly organized documen-
tation, sometimes we give up using a specific tool and look
for other alternatives”.

(CF04) - The quality of platform information provided
by a keystone

The quality of information for six (37.50%) developers
is considered very important, important for ten (56.25%) of
them, and only one (6.25%) developer considers it unimpor-
tant. The quality of the information is a determining factor so
that developers maintain interest in the platform and feel safe
to use it. D4 argued that: “I think it has a decisive impact on
the continued use of the platform. Suppose it is information
that does not have quality and is not accurate. In that case,
this ends up causing the developer to lose interest because it
generates some problems and maybe even insecurity”. An-
other developer confirms this factor. D15 mentioned that:
“The quality of the information is very important because the
quality meets the users’ satisfaction. If the information is of
good quality, the developers will be more interested in using
the platform”.

In this way, when the quality of information is present in
its interface and documentation, it generates comfort for the
developer to use the platform. D12 mentioned that: “The
information in the documentation and interface is precise.
The documentation is a great bonus that makes the qual-
ity of information important”. Additionally, the quality of
the information helps the developer obtain more accurate
results. D8 shared that: “Quality helps to obtain accurate
information, as is the example of libraries”.

my project and the team. When the documentation is unclear
about a process or instruction, this situation causes the de-
veloper to create bad practices in using the platform, as they
cannot fully learn the processes”. D4 mentioned that: “This
can hinder the project, as lacking detailed or clear infor-
mation can slow development”. The developers also empha-

(CFO05) - The usability of interfaces with platform doc-
umentation

The platform interface usability for four (25%) developers
is considered very important; 11 (68.75%) of them consider
it important, and only one (6.25%) developer considers it not
so important. Developers highlight the interplay between us-

Investigating Conditioning Factors for Transparency in Software Ecosystems

ability and information availability within platforms such as
GitHub. Developers’ acknowledgment of the learning curve
and the platform’s focus on information access underscores
the importance of ongoing efforts to refine and improve us-
ability. By enhancing usability, GitHub can foster a more in-
tuitive and user-friendly environment, maximizing its effec-
tiveness for developers. D7 stated that: “It is not easy to use
or intuitive at this initial stage. However, it is a matter of
learning,; it could be better in that aspect. GitHub does not
prioritize offering 200% usability. It aims to display all the
data on the screen so you can work with it, but it will take
some time to get used to. GitHub's focus is on information
availability. So, for the platform, it’s more important to have
access to information than usability, ensuring that informa-
tion is available at your fingertips”.

A good interface helps in the quick understanding of in-
formation. It helps the developer dedicate more time to their
projects instead of trying to solve problems with the platform
itself. D10 stated that: “Yes, it is very important, especially

Zacarias et al. 2024

projects, having mechanisms that help check the traceability
of information and control the project is crucial”. D3 added
that: “Knowing where to find information is very important,
especially when we work on large projects”.

(CF07) - Visualization of the evolution of projects in
SECO

The possibility of following the evolution of projects for
nine (56.25%) developers is considered very important, im-
portant for six (37.50%) of them, and not so important for
just one (6.25%) developer. The visualization of projects
helps developers who work on large projects to have con-
trol over the contributions arranged in the projects present
in the platform environment. D13 argued that: “I¢ is very
important, especially when working on large projects involv-
ing several people. A key GitHub factor is visualizing what
happens on each project and which people contribute to the
code”. So, this factor is important when the developer is part
of a big team. D4 said that: “Yes, it is important because it
makes it easier to follow changes, even more so in a big team.

in terms of speed of understanding of information. Often, we
do not have much time to look for ways to solve platform-
related problems because we need to focus on work”. Ac-
cording to the developers, the interface’s usability is cru-
cial in making the programming world accessible to new de-
velopers. D2 stated that: “Usability is essential, especially

Controlling versions also makes it easier to identify and re-
vert changes when necessary. This helps prevent conflicts be-
tween developers”. This visualization possibility allows the
developer to view project architecture management, which
contributes to projecting management. D6 shared that: “This
brings a project architecture management benefit and pro-

for collaborating and onboarding new individuals into an
ecosystem. Therefore, usability is important for us to make
this world of direction accessible to new developers”.

(CF06) - The auditability of platform processes and in-
formation

The auditability of platform processes and information is
considered very important for six (37.50%) developers, im-
portant for eight (50%) of them, and only two (12.50%) con-
sider it unimportant. The developer’s statement underscores
the significance of audibility, control, and community en-
gagement within the GitHub ecosystem. By providing devel-
opers with the tools and platform to manage their projects
transparently and participate in a collaborative community,
GitHub facilitates the exchange of knowledge, fosters in-
novation, and drives the growth of the developer commu-
nity. D7 shared that: “GitHub is excellent because it pro-
vides a community that can assist you while you contribute.
These two points are essential: managing their projects,
the auditability of project processes, and being part of a
community where you can contribute. It is a two-way street,
receiving and offering help to drive the growth of this com-
munity”. The developers emphasize also that this factor is
important for tracking and understanding what is happening
with the code. The statement suggests that code tracking is es-
sential to comprehend its origin, purpose, and context within
a project. D11 shared that: “I¢ is important because we can
track what is happening with our code. We can try to under-
stand where it came from, why it came, and why it was made.
So we need to understand the context of a project”.

The developers also mentioned that controlling the project
may not be as challenging in small teams. However, in larger
projects, mechanisms that assist in verifying the traceabil-
ity of information and project control are crucial. D14 said
that: “I think it is very important. In a small team, having

vides a view to projecting management through metrics”.

Moreover, the developers mentioned that visualization of
the evolution of projects in SECO allows for a comprehen-
sive view of all contributions made to the repository, en-
abling the assessment of each team member’s activity dura-
tion. D14 said that: “Having this complete view of the project
is very important. We can have an overview of all the contri-
butions to the repository and evaluate each project member s
activity time”’.

(CF08) - Reliability of information provided by a key-
stone

The reliability of the information for seven (43.75%) de-
velopers is considered very important, important for eight
(50%) of them, and only one (6.25%) is considered unim-
portant. One of the interesting points is that the developers
consider that the information’s reliability is not the platform’s
responsibility but that of the developers who are consumers
of the information. D14 mentioned that: “It is hard to see
that information on GitHub is reliable, especially from third
parties. However, it is not the platform’s role to verify the
information’s reliability; it is the developers”. D15 shared
that: “The reliability factor should be the responsibility of
the developers who disclose information. The platform can-
not have control over everything that is disclosed in the
environment. However, reliability is very important”. D16
shared that: “The reliability of the information is not GitHub
responsibility, but that of the developers who consume the
information. However, reliability is important for platform
developers”.

The developers highlighted the importance of having ac-
cess to information about the organization of a project and the
people involved related to reliability. D12 shared that: “/¢ is
very important because seeing all the information about the
organization of a project and the people involved influences

control of the project is not that difficult. In the case of super

my decision-making and my work”.

Investigating Conditioning Factors for Transparency in Software Ecosystems

4.2.4 Processes that Must Be Transparent

During the field study, some developers mentioned processes
that must be transparent in SECO. We confirmed five pro-
cesses that must be transparent based on the participants’ re-
sponses (Figure 6) and detailed them below.

(PTO1) - Access to documentation, source code, and
tools

Some developers emphasized the importance of the rela-
tionship between documentation quality and the interface in
people’s ability to reproduce procedures efficiently. Clarity
in the provided information is crucial in this context. De-
velopers assert that detailed and quality documentation is
fundamental to empowering users to replicate procedures
in their work environments, contributing significantly to ef-
fectiveness and productivity. D5 shared that: “That is more
about knowing whether the tool is reliable and if and offers
security. Sometimes, this reliability is tied to the interface
or documentation, while other times, it is associated with a
specific piece of code to verify its origin and accountabil-
ity”. D11 shared that: “I notice that the impact is on how to
use the platform in the best possible way. So when we have
documentation that teaches step by step with quality, people
can reproduce that on their machines or in the work they are

(PTO02) - Access to information about code in reposito-
ries

The developers emphasized the importance of checking
the last update date when analyzing a repository, especially
when considering adding libraries or code. This underscores
the need for clarity in code differences to prevent them from
hindering the team from keeping up with changes in the
project. Additionally, this highlights the importance of trans-
parency and practical code understanding, especially in dy-
namic and multifaceted work environments. D2 explained
that: “It is one of the first things I do, without a doubt, when
1 look at any repository. What is the date of its last update?
When adding any library or code, we must see its support
status and how updates are. We are suspicious of the project
when we see something is too old and has stayed the same”.
D3 shared that: “In an environment with multiple simulta-
neous activities across various work fronts such as develop-
ment, testing, and database, clarity in the code difference
becomes essential to prevent it from being a barrier to the
team keeping up with the changes in the project”.

(PT03) - Communication channels between actors and
keystone

The developers mentioned the need for communication
channels on the platform, emphasizing their importance for
various users, whether for security or convenience. This
underscores the importance of communication channels
in development platforms. D4 shared that “Having these
communication_channels on the platform is crucial. Some
users use the platform’s communication means, either for se-
curity reasons or simply for convenience. Therefore, these
features need to be accessible to all users”.

(PTO06) - Processes related to data collection, process-
ing, and sharing

The discussion on the importance of transparency points
to data collection, processing, and sharing processes, high-

Zacarias et al. 2024

lighting its relevance, especially in a teamwork context. One
developer mentioned the need for notifications to ensure all
members know about integration and information. D4 shared
that “This situation becomes more relevant when working
in a team, especially since it is possible to carry out inte-
grations and share the information within projects. Thus, we
must start receiving notifications about these integrations”.

(PTO07) - Access to information about SECO architec-
ture

The developers mentioned how information about the evo-
lution of the project’s architecture goes beyond the techni-
cal aspect, providing valuable insights for various areas, in-
cluding the business domain. The emphasis on the impor-
tance of information about the platform and architecture high-
lights how transparency in these areas is crucial for the ef-
ficient progress of developers during the project lifecycle.
D6 shared that: “A benefit of managing the evolution of the
project’s architecture is the possibility of gaining valuable
insights. This includes working on the effort required for the
project, among other metrics that can be used in the business
area. It is possible to obtain a range of information grounded
in this data”. D10 shared that: “In general, I believe the
information about the platform s version and architecture is
important so developers can progress easily during project
development”.

The remaining processes that must be transparent in SECO
(PTO04: Processes related to SECO governance and PTOS5:
Access to information about requirements flow), identified
through SMS, were not mentioned by the developers but are
described in Section 4.1.4. Furthermore, the category “solu-
tions to provide transparency”, presented in Figure 6, was
not confirmed during the field study, as it involves specific
solutions derived from studies identified in the SMS. The
solutions to provide transparency are described in Sec-
tion 4.1.2.

4.2.5 Benefits of Transparency

During the interviews, participants reported 5 benefits of
transparency in SECO. Throughout the following, we de-
tailed each benefit of transparency in SECO.

(BTO01) - Attraction of more developers to the platform

The developers emphasized the importance of easy access
to information, highlighting that it optimizes time dedicated
to projects and fosters a culture of collaboration by facilitat-
ing assistance among developers. This, in turn, attracts more
professionals to use the platform, underscoring the notion
that transparency and collaboration are essential factors for
the success and growth of a developer community. D1 shared
that: “It is very important because when we manage to have
access to information in an accessible way, this helps us to
dedicate more time to projects, help other developers, and
attract more developers to use the platform”. D5 shared that:
“Even when attempting to push a project to remote reposito-
ries like GitHub, we must reach out if we encounter any issue
with a third-party code or platform. Thus, this communica-
tion is crucial for maintaining and attracting new developers
to the platform”.

(BT02) - Harmonious development with peers

The developers highlighted the relevance of transparency

Investigating Conditioning Factors for Transparency in Software Ecosystems

and usability in collaborative development with other pro-
grammers. In essence, developers underscore the synergy
between transparency, usability, and collaborative develop-
ment, indicating that collaborative development based on
people’s feedback is essential for the success and growth
of significant projects in software development. D13 shared
that: “Large projects, such as React, Angular, and Flut-
ter, emerged due to this collaborative development based
on _peoples feedback. Transparency enables harmonious
development alongside other developers”.

(BT03) - Developer learning support

The developers mentioned that transparency boosts indi-
vidual learning by allowing the learning of diverse tools and
promotes collective learning by facilitating the exchange of
knowledge among developers. Thus, developers emphasize
the importance of transparency as a key factor for learning
and active participation in various projects. D1 stated that:
“It is fundamental because, through this, I have learned to
use various tools and engage in numerous projects, primarily
due to the ease of accessing information and transparency”.
D8 mentioned that: “The transparency allows us to learn
from other developers because we can leverage code from
other developers and thus add value to our project”.

(BT04) - Developer retention on the platform

Developers mentioned transparency as a crucial factor in
overcoming challenges faced by new users with little experi-
ence on the platform. As a result, the availability of documen-
tation and tutorials about the platform can promote a better
understanding of the environment, thereby encouraging de-
velopers’ continued involvement and engagement. D7 men-
tioned that: “A newcomer with limited experience using the
platform may need help navigating and accessing everything
immediately. If resources such as videos, documentation, or
study materials are available, that person could better mas-
ter the environment. This helps maintain developers using
the platform. So transparency is very important”. D2 said
that: It is very important, especially for using the platform.
Thus, transparency is important to keep developers using the
platform.

(BT05) - Control over project information

Developers mentioned that the most significant benefit of
this factor is for project managers, arguing that they can track
the progress of all demands. The ability to visualize the num-
ber of commits, conduct code reviews, and analyze the work-
ing time of each developer are pointed out as specific advan-
tages. This suggests that transparency benefits understand-
ing of the project and provides valuable insights for project
management. D10 shared that: “I believe the biggest benefit
of this factor is to the project managers because they can
see the evolution of all the demands. They can see the num-
ber of significant commits and how to conduct code reviews.
They can also analyze the entire working time of each de-
veloper”. D7 shared that: “It is extremely important to have
transparency in the information process, as it enables control
over your project. Creating a backup and shaping the project
according to preferences becomes feasible when all informa-
tion is clear”. Developers mentioned that the most signifi-
cant benefit of this factor is for project managers, arguing
that they can track the progress of all demands. The ability
to visualize the number of commits, conduct code reviews,

Zacarias et al. 2024

and analyze the working time of each developer are pointed
out as specific advantages. This suggests that transparency
benefits understanding of the project and provides valuable
insights for project management. D10 shared that: “/ believe
the biggest benefit of this factor is to the project managers
because they can see the evolution of all the demands. They
can see the number of significant commits and how to con-
duct code reviews. They can also analyze the entire work-
ing time of each developer”. D7 shared that: “It is extremely
important to have transparency in the information process,
as it enables control over your project. Creating a backup
and shaping the project according to preferences becomes
feasible when all information is clear”.

4.2.6 Consequences of Lack of Transparency

We asked developers about what consequences of the lack
of transparency in SECO. We identified 4 consequences of
lack of transparency. The right side of Figure 6 presents the
identified consequences of the lack of transparency. Below,
we detail each one of them.

(CTO01) - Low developer productivity

Developers have mentioned that usability and trans-
parency issues on the platform can impact developers’ pro-
ductivity. The lack of clarity and transparency can lead to
task delivery failures, resulting in potential negative impacts
on the schedule and project completion. The developers’
feedback underscores the importance of an intuitive user in-
terface and transparent information for project success. Such
challenges can be overcome with improvements in usability
and transparency, contributing to more efficient collabora-
tion and consistent work delivery by project team members.
D1 shared that: “Due to the platform s usability issues, some
members needed help to keep up with the project s progress,
leading to suboptimal productivity. Occasionally, someone
fails to deliver their work due to a usability and transparency
flaw”. D1 shared that: “Lack of transparency can contribute
to lower developer productivity, as people feel demotivated
when they do not find a transparent interface that helps them
move forward during the project”.

(CT02) - Difficulty understanding project information

Developers mentioned that the excessive amount of in-
formation presented in a single interface hinders the qual-
ity and usability of the information. Thus, developers state
that this compromises the quality and impairs the platform’s
usability, making project comprehension challenging. This
underscores the importance of achieving a balance in the
transparency of information. D1 shared that: “Much infor-
mation is presented in a single interface, which compromises
the quality of the information and impairs the platform's us-
ability and understanding of project information. Excessive
transparency can, therefore, jeopardize the understanding of
information”. D3 shared that: “I have encountered situations
where the text was mixed between English and Portuguese.
Additionally, I encountered confusing information, leading
to misunderstandings and making it harder to understand the

»

project”.
(CTO03) - Decreased developer interest in using the plat-
form

Investigating Conditioning Factors for Transparency in Software Ecosystems

Developers emphasized the importance of accuracy, trans-
parency, and quality of information on the platform. They
pointed out situations where the lack of these criteria can cre-
ate uncertainties for the developer, influencing their decision
to continue using the platform. This highlights the signifi-
cance of information transparency not only for the efficient
execution of tasks but also for maintaining the engagement
and interest of developers. D4 stated that: “If the information
is not accurate, transparent, or quality, it might lead to a loss
of interest for the developer in the platform, causing certain
issues. Such situations can create uncertainty for the devel-
oper, which is decisive for continuing to use the platform”.
D4 added that: “If there are frequent bugs or inconsistencies
in the information, it affects my confidence and interest in
continuing to use the platform”.

(CTO04) - Delays in project development/delivery

The developers mentioned the critical importance of trans-
parency and understanding of information within the devel-
opment team, emphasizing how its absence can have sig-
nificant consequences, including project delays and impacts
on delivery. This discussion underscores the need for ef-
fective communication and mutual understanding, ensuring
success and efficiency in project execution. D7 shared that:
“Involving a team can bring problems because a lack of
understanding of information and transparency can lead to
actions that harm and delay system development. In turn, this
affects the system and the entire team”. D7 shared that: “/
think it delays the project. If they have some information that,
no matter how clear, the person cannot understand, they will
have to research and study it to try to understand it. There-
fore, the time spent on this activity can impact the delivery of

i)

the project”.

4.2.7 Guidelines for Using the Conceptual Framework

Overall, the main goal of our proposed framework lies in pro-
viding an overview of how scientific literature approaches
the topic of transparency in SECO with the results obtained,
evaluated, and refined based on software developers’ per-
spective. Transparency in SECO has received little attention
from the scientific community and the lack of studies fo-
cused on this topic makes it more difficult for researchers
to perform studies without a consolidated conceptual basis.
Therefore, our proposal is the first step for systematizing this
knowledge and encouraging the scientific community to fur-
ther investigate this topic given its importance in the software
industry.

The conceptual framework can be used in practice from an
Ask-Plan-Act process inspired by the guidelines of Greiler
et al. (2023). The framework may be used as a foundation
for systematic approaches developed to assist in the under-
standing of transparency in SECO. To do so, we suggest a
three-step process outlined below. It is important to notice
that the application flow presented next can be adjusted to fit
the specific needs and circumstances of the research context.

For illustrative case purposes, let’s consider the following
context: a group of researchers wants to understand what
causes delays in project development in SECO. They con-
sider that this problem may be related to transparency in
SECO. Thus, they can use our proposed conceptual frame-

Zacarias et al. 2024

work to help them design their research.

Ask: The first step to understanding transparency in SECO
consists of identifying what can affect it from the actors’ per-
spective in this context. For example, in our illustrative case,
the group of researchers wants to understand what causes
delays in project development in SECO which in our con-
ceptual framework is considered a consequence of lack of
transparency in SECO (CT04). The next step is to analyze
the framework’s left side which describes the conditioning
factors for transparency and processes that must be transpar-
ent in SECO. Then, researchers need to ask the actors which
SECO processes may be the origin of the problem from their
perspective. Our conditioning factors can serve as prompts
for gathering feedback through structured mechanisms, such
as surveys, or unstructured methods, such as retrospectives
and one-on-one meetings.

Plan: After collecting feedback, the responses must be
evaluated to determine which conditioning factors and SECO
processes require prioritization for improvement from a
transparency perspective. Let’s consider in our illustrative
case that software developers reported that communication
problems were impacting the progress of projects. In this
case, it is mainly related to CF1 (The existence of commu-
nication channels between actors and keystone) and PT03
(Communication channels between actors and keystone)
from our conceptual framework. Considering this informa-
tion, researchers can plan a solution focused on these ele-
ments.

Act: In this step, our conceptual framework can be used
as a reference to monitor and evaluate the results of the solu-
tion applied in the SECO context. It is important to highlight
that actions to implement transparency might vary depend-
ing on each SECO context, i.e., there is no general solution
to the underlying problems. Our framework suggests some
solutions identified in previous studies so that researchers
can replicate them or develop their solutions based on them.
The conditioning factors can also be used to derive measures
for assessing and monitoring the success of improvement ef-
forts and their benefits. For example, in our illustrative case,
researchers can develop a solution based on ST18 (Feedback
for transparency in SECO), including practices of continu-
ously collecting feedback from the software developer com-
munity about what delays the development of the projects.
This is one way to improve communication (CFO1 and PT03)
in the SECO context. Monitoring the success of improve-
ment solutions is essential to improve platform transparency
and mostly DX. Once the planned improvement solutions are
implemented, this three-step process can be repeated to con-
tinue progressing on this matter.

We highlight that this is an initial version of the conceptual
framework for understanding transparency in SECO, devel-
oped based on the systematic studies that were performed in
this research. This structure can be enriched and expanded by
the SE community as new studies are conducted on this topic,
with the identification of new elements or new categories for
the framework.

Investigating Conditioning Factors for Transparency in Software Ecosystems

5 Discussion and Implications

Research on the topic of transparency has several aspects, as
its definition varies according to the area of study. This arti-
cle aims to characterize conditioning factors for transparency
in SECO. In this context, we adopt the concept of trans-
parency from the software perspective since SECO main pur-
pose is to develop products and services based on a common
technological platform.

During the analysis of the 2,437 studies retrieved in our
database searches in the SMS, we observed that the scien-
tific literature still pays little attention to this subject. Despite
being a fundamental element for the dynamics of relation-
ships among multiple actors present in a SECO, several stud-
ies only mention transparency but do not deepen a discussion
about the topic in SECO, bringing few insights to researchers
in the field. Therefore, our final set has only 23 studies, which
allowed us to gather relevant data to answer our questions.

Considering the impacts of transparency in SECO and the
low number of selected studies with a real focus on the sub-
ject, it reveals the need to investigate this topic in more depth.
The importance of transparency in SECO has gained more
strength as the need to attract and keep developers actively
contributing to a platform has become essential for SECO
sustainability (Meireles et al., 2017, 2019; Jansen, 2020).

Based on this need, we conducted the field study to un-
derstand and characterize, in greater depth, the conditioning
factors for transparency in SECO. By analyzing them from
the perspective of software developers who work in a SECO,
we are able to view them more pragmatically, in addition to
confirming these findings of the literature.

Based on the responses of the 16 participants, we can
highlight that all factors are very important or important for
most software developers. The following factors were con-
sidered very important by more than half of the developers
for their performance at the GitHub platform: (CF1) the ex-
istence of communication channels between actors and key-
stone; (CF2) Information about platform made available in
an accessible way; and (CF7) Visualization of the evolution
of projects in SECO.

Initially, we identified that for developers to remain on the
platform it is necessary that information be made available in
an accessible way (CF2) and the platform has interfaces with
good usability to facilitate that access (CF5). In addition, the
quality of information available (CF4) is a determining factor
for them not to lose interest in using the platform, as well as
the reliability level of that information (CF8). Otherwise, this
can contribute to software developers going away over time,
especially beginners.

Many developers pointed out that some of these condi-
tioning factors of transparency on the platform can directly
influence a project’s success or failure. Problems in access
to information (CF2) or in platform usability (CF5) can de-
lay project execution, as developers can spend a lot of time
looking for important information on the platform for their
progress. The information needs to be presented with the ex-
pected quality (CF4) and mainly correct and concise to facil-
itate its understanding (CF3), as it can lead to environment
misuse, in GitHub’s case, the versioning environment.

Compared with Dabbish et al. (2012), which investigated

Zacarias et al. 2024

the value of information transparency on GitHub, this study
results corroborate that transparency improves the work qual-
ity of developers and it is inserted in the propagation of com-
munity sense since it directly impacts the arrival and perma-
nence of new developers. Inferences from the information
provided also have a proportional impact on learning, en-
gagement, and DX while using the platform, in complex ac-
tivities environments such as GitHub.

We could also verify in both studies that transparency is
addressed according to the keystone’s business context and
the relationship with its developer niche in each SECO. For
example, in a PSECO, some information and processes may
have access constraints for third parties to ensure the se-
curity and privacy of sensitive data. In an open SECO, in
which much information is available, it is important to es-
tablish different levels of transparency to avoid information
overload when users access it. Some participants in the field
study mentioned that they did not know how GitHub man-
aged projects’ data regarding access level and privacy.

Corroborating with Manikas and Hansen (2013), this need
is allied to SECO openness, aiming at its expansion and con-
solidation in the market. It has been a real challenge for a
keystone. Considering transparency of SECO information
and processes is crucial to attract new actors, our conceptual
framework (Figure 6) can be a good tool to help keystones
in strategic actions in SECO. For example, when facing a
contributor loss problem at SECO, keystones can have an
overview of critical points for transparency using the frame-
work. They can check whether the problem’s origin is a lack
of a conditioning factor or an issue with some process and
which kind of consequences they should avoid. It is worth
highlighting that although we report on solutions to provide
transparency described in Section 4.1.2, we cannot claim cor-
relation or causal relationships across the constructs captured
by our framework. We hope future work will expand our
framework and build theories of improving transparency in
SECO, not just describing or predicting it.

Considering the number of mentions, the studies selected
in this SMS and the responses in the field study made it pos-
sible to identify the three main related topics to the extracted
categories in all research questions and directly impacted by
transparency: access to information, communication chan-
nels, and requirements engineering. Then, we present some
perceptions and insights regarding future research on trans-
parency in SECO from this discussion.

5.1 Access to Information

As highlighted in CF2 (S06, S07, S10, S14, S15, and S22)
and P1 (S06, S07, S15, S16, S18, S19, and S22), access to
information about the platform documentation, source code,
tools, or requirements is one of the main ways to add trans-
parency in a SECO. By opening their platform architectures,
keystones seek to bring more developers to contribute to their
ecosystems. The participants in the field study mentioned
that platforms, such as GitHub, might not be so easy for be-
ginner developers. Therefore, keystones must organize the
information available to facilitate its access (CF2) through
easy and intuitive interfaces (CF5) to facilitate the learning
of use for these beginner developers. Likewise, the quality

Investigating Conditioning Factors for Transparency in Software Ecosystems

of the information provided (CF4) will facilitate understand-
ing (CF3) and this learning process and, consequently, at-
tract more and more developers. The participants in the field
study mentioned that platforms, such as GitHub, might not
be so easy for beginner developers. Therefore, keystones
must organize the information available to facilitate its ac-
cess (CF2) through easy and intuitive interfaces (CF5) to
facilitate the learning of use for these beginner developers.
Likewise, the quality of the information provided (CF4) will
facilitate understanding (CF3) and this learning process and,
consequently, attract more and more developers. However,
the participants highlighted the challenge of GitHub. Infor-
mation overload poses a dual threat to platform usability and
quality. Firstly, it can compromise the platform’s usability
by overwhelming users with too much information, leading
to confusion and frustration. When users are overwhelmed
with excessive data, they may struggle to find the specific
information they need, resulting in a suboptimal user experi-
ence. Secondly, information overload can impede users’ un-
derstanding of project information. Excessive transparency,
while often viewed as a positive trait, can paradoxically lead
to diminished comprehension.

Addressing the challenge of information overload is essen-
tial for platforms such as GitHub to maintain usability, qual-
ity, and effectiveness. By carefully balancing transparency
and usability, GitHub can create an interface that empowers
users to efficiently navigate project information and collab-
orate effectively, ultimately enhancing the overall platform
experience. Hence, these developers need to have access to
all these artifacts so that they can perform development activ-
ities autonomously. This first contact is crucial for contribut-
ing to an SECO. Moreover, the quality of the available con-
tent is fundamental since the difficulty faced by third-party
developers in the first contact can push them away from the
platform, as also highlighted by Setzke et al. (2019).

5.2 Communication Channels

As mentioned by Manikas and Hansen (2013), the SECO
level of openness strongly affects social networks and their
actors. Therefore, communication channels are critical to
aligning keystone’s perspectives with the needs of its de-
veloper community. That said, the communication channels
were highlighted with a condition - CF1 (S02, S03, S04, S07,
S08, S17, and S21) and a process that must be transparent -
P3 (S01, S02, S06, S07, S08, and S11) in a SECO.

The communication channels available on the platform
(CF1), the possibility of viewing project evolution (CF7),
and the information reliability (CF8) provided are trans-
parency factors that impact project management and collab-
orative development. The participants in the field study be-
lieve that CF2 is important to concentrate all the storage
and exchange of information in a single environment. This
improves project management and tracking of implemented
changes.

Transparency in communication between actors and key-
stone is a fundamental element in coordinating SECO ac-
tivities, mainly in maintaining the engagement that keeps a
SECO vibrant. The open flow of information generates more
credibility for a keystone (S03 and S13) since it values con-

Zacarias et al. 2024

tact between different actors and encourages exchanges be-
tween them, generating a sense of community over the SECO
platform.

5.3 Requirements Engineering

With a wide variety of actors, it is natural that different sets
of needs and demands arise from each group. Such sets be-
come the requirements for platform evolution. As mentioned
by Vegendla et al. (2018), transparency in the flow of require-
ments contributes to maintaining the quality of a SECO.

Studies related to P5 (S08, S13, S17, and S20) point out
that the way the requirements are handled by a keystone
demonstrates how much effort it takes to deal with trade-off
issues and strives to adapt the SECO platform to its commu-
nity. It should be noticed that S8 also brings some practices
to give transparency to handle continuous flows of emerging
requirements in a SECO.

In this situation, the reliability of the information provided
by a keystone is very important because it is directly related
to increasing trust in a SECO. In the field study, some par-
ticipants mentioned that platforms, such as GitHub, should
make information about their evolution more clear and up-
dated to allow them to follow these changes. As mentioned
by Obie et al. (2023), this information transparency is impor-
tant for building trust. Some transparency actions can be used
to build trust in a SECO: i) collaborative decision-making:
involving stakeholders in decision-making processes related
to requirements can enhance trust. By seeking input, con-
sidering diverse perspectives, and making decisions collab-
oratively, trust is built through shared ownership of out-
comes; ii) clear communication: open and transparent com-
munication about requirements, progress, and challenges
fosters trust among stakeholders. Regular updates, status
reports, and feedback mechanisms can ensure that every-
one is informed and involved in the platform updates; and
iii) feedback mechanisms: implementing feedback mecha-
nisms where stakeholders can provide input on requirements
and processes demonstrates the keystone’s commitment to
listening and adapting to stakeholders’ needs. Actively solic-
iting and responding to feedback can build trust by showing
that stakeholder input is valued.

Transparency in the flow of requirements and information
within the SECO is crucial for building trust among stake-
holders (Knauss et al., 2018; Vegendla et al., 2018; Malcher
et al., 2023). By sharing detailed information, encouraging
active participation, and maintaining clear documentation,
keystone can establish a foundation of trust with stakeholders
(Hou and Jansen, 2023). Transparency in decision-making
and communication processes can further enhance trust and
credibility within a SECO.

5.4 Future Perspectives

The analysis of the results of the SMS and the field study
enabled us to get some perceptions and insights regarding
future research on transparency in SECO. We express the
following needs as requirements for the advancement of re-
search on this topic.

Investigating Conditioning Factors for Transparency in Software Ecosystems

Information architecture models focused on trans-
parency. To ensure that third-party developers and other
types of actors can interact satisfactorily with the documen-
tation on the SECO platform made available by a keystone
in their web portals, it is necessary to propose models for in-
formation architecture aimed at transparency. The aim is to
organize information in such a way that it promotes a con-
dition that allows individual access, ease of use, quality of
content, understanding, and auditing.

The impacts of transparency on DX at SECO. To keep
developers contributing to SECO, it is important to investi-
gate the relationship of the transparency characteristics, pre-
sented by Leite and Cappelli (2010), with DX. Proposing
transparency solutions aimed at improving DX in SECO ben-
efited the attractiveness and engagement of new third-party
developers, important actors for the expansion of the plat-
form.

New solutions for requirements flow transparency in
SECO. Due to the continuous flow of emerging require-
ments in SECO, managing demands from different actors is
increasingly complex. Thus, proposing new solutions for the
transparency of the requirements flow in SECO can facilitate
management and open innovation within a SECO, in addition
to contributing to the credibility of a keystone.

New solutions to assessing transparency in SECO.
There is a need to investigate additional ways to assess trans-
parency within a SECO. Although there is an emerging ma-
turity in the adoption of actions that implement this require-
ment and its benefits for the dynamics of the ecosystem, a
better understanding of what would be the appropriate level
of transparency for a SECO and what really needs to be con-
sidered in this assessment is still required.

6 Threats to Validity and Credibility

This work presents two different studies (SMS and field
study) and each of them has specific threats and limitations.
Thus, we report the identified threats and strategies to miti-
gate them.

Some threats to the validity of this SMS were identified.
During the course of this research, we sought to minimize
the influence of these threats and reduce their possible risks.
Descriptive validity: to reduce this threat, a data collection
form has been designed to support the recording of data to an-
swer the questions. Theoretical validity: the studies were an-
alyzed and selected under the aegis of software transparency
by Leite and Cappelli (2010). The search string was defined
inclusively to capture studies related to concepts of trans-
parency in SECO, but we also recognize that we could have
applied the forward snowballing and included more sources
to try to increase the number of selected studies.

Generalizability: generalization is not a huge threat once
we have used a structured protocol based on Petersen et al.
(2015), which facilitates replication. We also make available
the datasets in the supplementary material. Interpretive valid-
ity: to minimize the researchers’ bias, when there was doubt
in executing the selection process, this was discussed be-
tween two researchers extensively and the differences were
analyzed together with a third researcher until there was a

Zacarias et al. 2024

consensus. It is worth highlighting that the protocol for SM'S
does not consider the quality of the retrieved studies.

In contrast to quantitative studies, qualitative studies are
more prone to threats to credibility. Protocol: as threats to
rigor and reliability, semi-structured interviews can intro-
duce biases, contain ambiguous questions, and be incom-
plete, even with all the care and attention from researchers.
To minimize this threat, we defined the semi-structured in-
terview protocol, being improved after carrying out the pilot.
Second, we coded carefully each transcribed interview itera-
tively. This approach allowed us to link transcripts directly
to each participant’s video recordings, helping to correct any
errors introduced by the automatic transcription process. The
coding results were also discussed by at least two researchers
and verified by two others with at least 15 years of expe-
rience in software engineering and qualitative studies until
there was consensus on the categorizations.

Sample: we used the non-probabilistic convenience sam-
pling technique, following the guidelines of Kitchenham
et al. (2015), due to the impossibility of precisely defining
the total number of participants eligible for this research.
The strategies for attracting participants were specifically
aimed at software developers who use GitHub to manage
their projects, in addition to the snowball sampling technique,
in which the first participants nominated other professionals
to participate in the interview.

The number of interviews carried out was based on the
concept of Guest et al. (2006) saturation. Ribeiro et al. (2022)
and Steglich et al. (2023) conducted field studies with soft-
ware developers considering Guest et al. (2006) and reinforce
that the main important criterion is saturation, that is when
any new interview with relatively homogeneous individuals
does not provide any new data or information. For exam-
ple, Ribeiro et al. (2022) reached saturation with 15 inter-
views and Steglich et al. (2023) with 20 interviews. In this
study, saturation was obtained with 16 interviews, follow-
ing Guest et al. (2006).

Context: it is important to highlight that the participants
are Brazilian. The findings of this study are more relevant at
a national level and can be extended to similar contexts, but
do not necessarily generalize to the global software industry.

7 Conclusion

This article aimed to characterize conditioning factors for
transparency in SECO. To do so, we conducted two studies
to identify and analyze such factors. Firstly, we conducted
an SMS on scientific databases and digital libraries to map
and analyze the state-of-the-art of transparency and selected
23 studies for our analysis. Secondly, we conducted a field
study with 16 software developers to characterize the impor-
tance of conditioning factors for transparency identified in
the previous study for their performance on GitHub, a plat-
form to support project-based ecosystems (Lungu and Lanza,
2010; Liao et al., 2019).

As the main contribution, we provided in the first study
a comprehensive view of solutions, conditioning factors,
processes, and concerns related to transparency in SECO,
with the discussion centered on three main topics: access

Investigating Conditioning Factors for Transparency in Software Ecosystems

to information, communication channels, and requirements
engineering. We extended the contributions in the second
study with a conceptual framework to better understand trans-
parency in SECO. This framework is constituted by the con-
ditioning factors for transparency, processes that must be
transparent, benefits of transparency, consequences of lack
of transparency, and solutions for transparency that emerged
from the results of both studies.

In addition, this research also has implications for
academia and industry. Academics can find in this work
a conceptual framework to better understand transparency
in SECO. We also have listed future perspectives that can
contribute to the advancement of state-of-the-art. With this
conceptual framework, practitioners can understand trans-
parency as a key element in dealing with requirements that
emerge from different communication channels in platform
openness. We have presented solutions and conditioning fac-
tors that can help them to adopt initiatives to contribute to
the open flow of information in a SECO and, thus, attract
and engage new actors in a common technological platform.

The main takeaway message of this article is software
transparency research has been growing, but there is still a
lack of studies that focus more on transparency in SECO.
Despite that, this non-functional requirement is crucial for
the SECO coordination and operation in practice. So, trans-
parency in SECO is a research field that still has a lot to be
explored.

For future work, we suggest investigating solutions to as-
sess transparency that could be applied to different SECO
types: open source, proprietary, and hybrid. In addition, we
have to investigate the relationship between the categories of
the conceptual framework — thoroughly examine the relation-
ship, for example, between the conditioning factors for trans-
parency and the solutions for providing transparency identi-
fied through the SMS. Additionally, it is important to deter-
mine whether the solutions for providing transparency can
be applied to a single conditioning factor or multiple factors.
Moreover, it is also necessary to conduct studies in order
to propose effective actions for increasing transparency of
SECO information and processes.

Acknowledgements

This study was financed in part by the Coordenagao de Aperfeicoa-
mento de Pessoal de Nivel Superior — Brasil (CAPES) — Finance
Code 001 and Grant 88887.928989/2023-00. The authors also thank
CNPq (Grant 316510/2023-8), UNIRIO (DPq/PPQ 2022 & 2023)
& FAPERJ (Grant 211.583/2019) for partial support.

References

Barbosa, O., Santos, R. P. d., Alves, C., Werner, C., and
Jansen, S. (2013). A Systematic Mapping Study on Soft-
ware Ecosystems through a Three-dimensional Perspec-
tive. In Jansen, S. et al. (eds.) Software Ecosystems: An-
alyzing and Managing Business Networks in the Software
Industry, pages 59-84. Edward Elgar Publishing.

Beelen, L., Jansen, S., and Overbeek, S. (2022). Are you

Zacarias et al. 2024

of value to me? a partner selection reference method for
software ecosystem orchestrators. Science of Computer
Programming, 214:102733.

Camelo Rincon, M. S. (2020). Analisis de la transparencia
organizacional y el poder econdémico a partir la teoria de
juegos. Revista Universidad y Empresa, 22:257.

Cataldo, M. and Herbsleb, J. (2010). Architecting in soft-
ware ecosystems: Interface translucence as an enabler for
scalable collaboration. In ECSAW’10: Proceedings of the
1V European Conference on Software Architecture Work-
shops, pages 65-72.

Charmaz, K. (2006). Constructing grounded theory : a prac-
tical guide through qualitative analysis. Sage Publications,
London; Thousand Oaks, Calif.

Chen, Z., Ma, W., Chen, L., and Song, W. (2022). Collabo-
ration in software ecosystems: A study of work groups in
open environment. Information and Software Technology,
145:106849.

Corbin, J. and Strauss, A. (2014). Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory. SAGE Publications.

Cysneiros, L. M. (2013). Using i* to elicit and model trans-
parency in the presence of other non-functional require-
ments: A position paper. In Castro, J., Horkoff, J., Maiden,
N. A.M,, and Yu, E. S. K., editors, Proceedings of the 6th
International i* Workshop 2013, Valencia, Spain, June 17-
18, 2013, volume 978 of CEUR Workshop Proceedings,
pages 19-24. CEUR-WS.org.

Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. (2012).
Social coding in github: transparency and collaboration
in an open software repository. In Proceedings of the
ACM 2012 conference on computer supported cooperative
work, pages 1277-1286.

Dyba, T., Dingsoyr, T., and Hanssen, G. K. (2007). Applying
systematic reviews to diverse study types: An experience
report. In First international symposium on empirical soft-
ware engineering and measurement (ESEM 2007), pages
225-234. IEEE.

Fahl, S., Dechand, S., Perl, H., Fischer, F., Smrcek, J., and
Smith, M. (2014). Hey, nsa: Stay away from my market!
future proofing app markets against powerful attackers.
In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, page
1143-1155, New York, NY, USA. Association for Com-
puting Machinery.

Fontdo, A., Cleger-Tamayo, S., Wiese, I., Pereira dos San-
tos, R., and Claudio Dias-Neto, A. (2021). A developer
relations (devrel) model to govern developers in software
ecosystems. Journal of Software: Evolution and Process,
page €2389.

Goyal, R., Ferreira, G., Késtner, C., and Herbsleb, J. (2018).
Identifying unusual commits on github. Journal of Soft-
ware: Evolution and Process, 30(1):¢1893.

Green, H. E. (2014). Use of theoretical and conceptual frame-
works in qualitative research. Nurse researcher, 21(6).
Greiler, M., Storey, M.-A., and Noda, A. (2023). An action-
able framework for understanding and improving devel-
oper experience. [EEE Transactions on Software Engi-

neering, 49(4):1411-1425.

Investigating Conditioning Factors for Transparency in Software Ecosystems

Guest, G., Bunce, A., and Johnson, L. (2006). How many
interviews are enough? Field Methods - FIELD METHOD,
18:59-82.

Haenni, N., Lungu, M., Schwarz, N., and Nierstrasz, O.
(2014). A quantitative analysis of developer informa-
tion needs in software ecosystems. In Proceedings of
the 2014 European Conference on Software Architecture
Workshops, pages 1-6.

Hanssen, G. and Dyba, T. (2012). Theoretical foundations
of software ecosystems. In Proceedings of the 4th Interna-
tional Workshop on Software Ecosystems (IWSECO) - 3rd
International Conference on Software Business (ICSOB),
volume 879, pages 6—17.

Hanssen, G. K. (2012). A longitudinal case study of an
emerging software ecosystem: Implications for practice
and theory. Journal of Systems and Software, 85(7):1455—
1466.

Herbsleb, J. (2016). Building a socio-technical theory of
coordination: why and how (outstanding research award).
In Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineer-
ing, pages 2-10.

Herbsleb, J., Kastner, C., and Bogart, C. (2016). Intelli-
gently transparent software ecosystems. [EEE Software,
33(01):89-96.

Hosseini, M., Shahri, A., Phalp, K., and Ali, R. (2016). A
modelling language for transparency requirements in busi-
ness information systems. In Nurcan, S., Soffer, P., Ba-
jec, M., and Eder, J., editors, Advanced Information Sys-
tems Engineering, pages 239-254, Cham. Springer Inter-
national Publishing.

Hou, F. and Jansen, S. (2023). A systematic literature review
on trust in the software ecosystem. Empirical Software
Engineering, (8).

Issac, G., Rajendran, C., and Anantharaman, R. (2004). A
conceptual framework for total quality management in
software organizations. Total Quality Management &
Business Excellence, 15(3):307-344.

Jansen, S. (2020). A focus area maturity model for software
ecosystem governance. Information and Software Tech-
nology, 118:106219.

Jansen, S., Brinkkemper, S., Finkelstein, A., and Bosch, J.
(2009). Introduction to the proceedings of the first work-
shop on software ecosystems. In Proceedings of the First
Workshop on Software Ecosystems, CEUR-WS, page 1-2.

Jansen, S., Brinkkemper, S., Souer, J., and Luinenburg, L.
(2012). Shades of gray: Opening up a software produc-
ing organization with the open software enterprise model.
Journal of Systems and Software, 85(7):1495-1510.

Jansen, S., Cusumano, M. A., and Brinkkemper, S. (2013).
Software ecosystems: analyzing and managing business
networks in the software industry. Edward Elgar Publish-
ing.

Kilamo, T., Hammouda, I., Mikkonen, T., and Aaltonen, T.
(2012). From proprietary to open source—growing an
open source ecosystem. Journal of Systems and Software,
85(7):1467-1478. Software Ecosystems.

Kitchenham, B. and Charters, S. (2007). Guidelines for per-
forming systematic literature reviews in software engineer-

Zacarias et al. 2024

ing. EBSE Technical Report EBSE-2007-01.

Kitchenham, B. A., Budgen, D., and Brereton, P. (2015).
Evidence-Based Software Engineering and Systematic Re-
views. Chapman & Hall/CRC.

Knauss, E., Damian, D., Knauss, A., and Borici, A. (2014).
Openness and requirements: Opportunities and tradeoffs
in software ecosystems. In 2014 [EEE 22nd International
Requirements Engineering Conference (RE), pages 213—
222. IEEE.

Knauss, E., Yussuf, A., Blincoe, K., Damian, D., and Knauss,
A. (2018). Continuous clarification and emergent require-
ments flows in open-commercial software ecosystems. Re-
quirements Engineering, 23:97-117.

Kon, F., Hazzan, O., Yuklea, H., Cukier, D., and Melo, C.
d. 0. (2015). A conceptual framework for software startup
ecosystems: the case of israel.

Leite, J. C. S. P. and Cappelli, C. (2010). Software trans-
parency. Business & Information Systems Engineering,
2:127-139.

Liao, Z., Wang, N., Liu, S., Zhang, Y., Liu, H., and Zhang,
Q. (2019). Identification-method research for open-source
software ecosystems. Symmetry, 11(2).

Lindker, J. and Wnuk, K. (2016). Requirements analysis
and management for benefiting openness. In 2016 [EEE
24th International Requirements Engineering Conference
Workshops (REW), pages 344-349. IEEE.

Lungu, M. and Lanza, M. (2010). The small project observa-
tory: A tool for reverse engineering software ecosystems.
ICSE 10, page 289-292, New York, NY, USA. Associa-
tion for Computing Machinery.

Malcher, P., Silva, E., Viana, D., and Santos, R. (2023). What
do we know about requirements management in software
ecosystems? Requirements Engineering, 28(4):567-593.

Manikas, K. (2016). Revisiting software ecosystems re-
search. Journal of Systems and Software, 117:84—103.

Manikas, K. and Hansen, K. M. (2013). Software
ecosystems—a systematic literature review. Journal of Sys-
tems and Software, 86(5):1294—1306.

Meireles, A. 1., dos Santos, R. P., and Cappelli, C. (2017).
Construindo um questionario para avaliar transparéncia
em portais de ecossistemas de software (building a ques-
tionnaire to evaluate transparency in software ecosystem
portals). In Anais do VIII Workshop sobre Aspectos da In-
teragdo Humano-Computador para a Web Social, pages
25-35. SBC.

Meireles, A. 1., dos Santos, R. P., and Cappelli, C. (2019). An
instrument for the evaluation of transparency mechanisms
in software ecosystem portalsalexandre. iSys-Brazilian
Journal of Information Systems, 12(2):05-38.

Molder, J. t., Lier, B. v., and Jansen, S. (2011). Clopen-
ness of systems: The interwoven nature of ecosystems. In
IWSECO@ ICSOB, pages 52—64. Citeseer.

Monteith, J. Y., McGregor, J. D., and Ingram, J. E. (2014).
Proposed metrics on ecosystem health. In Proceedings
of the 2014 ACM international workshop on Software-
defined ecosystems, pages 33-36.

Motta, R. C., De Oliveira, K. M., and Travassos, G. H. (2018).
On challenges in engineering iot software systems. In Pro-
ceedings of the XXXII Brazilian symposium on software

Investigating Conditioning Factors for Transparency in Software Ecosystems

engineering, pages 42-51, New York, NY, USA. ACM.

Obie, H. O., Ukwella, J., Madampe, K., Grundy, J., and
Shahin, M. (2023). Towards an understanding of devel-
opers’ perceptions of transparency in software develop-
ment: A preliminary study. In 2023 38th IEEE/ACM Inter-
national Conference on Automated Software Engineering
Workshops (ASEW), pages 40—45.

Oliveira, J. and Alves, C. (2021). Software ecosystems gov-
ernance — an analysis of sap and gnome platforms. In 2021
47th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pages 296-299.

Parahoo, K. (2014). Nursing research: principles, process
and issues. Bloomsbury Publishing.

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guide-
lines for conducting systematic mapping studies in soft-
ware engineering: An update. Information and Software
Technology, 64:1-18.

Ralph, P. (2021). Acm sigsoft empirical standards released.
SIGSOFT Softw. Eng. Notes, 46(1):19.

Ribeiro, B. B., Costa, C., and Pereira dos Santos, R. (2022).
Understanding and analyzing factors that affect merge con-
flicts from the perspective of software developers. Jour-
nal of Software Engineering Research and Development,
10:12:1-12:17.

Runeson, P., Olsson, T., and Lindker, J. (2021). Open data
ecosystems — an empirical investigation into an emerging
industry collaboration concept. Journal of Systems and
Software, 182:111088.

Santos, R., Cappelli, C., Maciel, C., and Leite, J. C. S.
d. P. (2016). Transparéncia em ecossistemas de soft-
ware. In WDES’16. Anais do X Workshop em Desenvolvi-
mento Distribuido de Software, Ecossistemas de Software
e Sistemas-de-Sistemas, pages 7579, Porto Alegre, RS,
Brasil. SBC - Sociedade Brasileira de Computagao.

Santos, R. P. d. (2016). Managing and Monitoring Soft-
ware Ecosystem to Support Demand and Solution Analysis.
Tese de doutorado, COPPE/UFRIJ, Universidade Federal
do Rio de Janeiro, Rio de Janeiro, Brasil.

Schultis, K.-B., Elsner, C., and Lohmann, D. (2014). Ar-
chitecture challenges for internal software ecosystems: A
large-scale industry case study. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations

Zacarias et al. 2024

of Software Engineering, pages 542-552.

Setzke, D. S., Bohm, M., and Krcmar, H. (2019). Platform
openness: A systematic literature review and avenues for
future research.

Shaw, M. (2003). Writing good software engineering re-
search papers. In 25th International Conference on Soft-
ware Engineering, 2003. Proceedings., pages 726-736.
IEEE.

Singer, J., Sim, S. E., and Lethbridge, T. C. (2008). Soft-
ware engineering data collection for field studies. In Guide
to Advanced Empirical Software Engineering, pages 9—34.
Springer.

Souza, K. E. S. d., Zacarias, R. O., da Rocha Seruffo, M. C.,
and Santos, R. P. d. (2020). T2-uxt: A tool to support trans-
parency evaluation in software ecosystems portals. In Pro-
ceedings of the 34th Brazilian Symposium on Software En-
gineering, pages 415-420, New York, NY, USA. ACM.

Steglich, C., Marczak, S., dos Santos, R. P., Guerra, L., Mos-
mann, L., Moreira, M., and Perin, M. (2023). Factors
that affect developers’ decision to participate in a mobile
software ecosystem. Journal of Systems and Software,
205:111808.

Valenca, G., Kneuper, R., and Rebelo, M. E. (2020). Privacy
in software ecosystems - an initial analysis of data protec-
tion roles and challenges. In 2020 46th Euromicro Confer-
ence on Software Engineering and Advanced Applications
(SEAA), pages 120-123.

Vegendla, A., Duc, A. N., Gao, S., and Sindre, G. (2018). A
systematic mapping study on requirements engineering in
software ecosystems. Journal of Information Technology
Research (JITR), 11(1):49-69.

Villamizar, H., Escovedo, T., and Kalinowski, M. (2021).
Requirements engineering for machine learning: A sys-
tematic mapping study. In 2021 47th Euromicro Confer-
ence on Software Engineering and Advanced Applications
(SEAA), pages 29-36.

Zacarias, R. O., Gongalves, R. F., and dos Santos, R. P.
(2023). Investigating transparency in software ecosys-
tems. In Proceedings of the XXXVII Brazilian Symposium
on Software Engineering, pages 132—141, New York, NY,
USA. ACM.

	Introduction
	Background
	Software Ecosystems
	Transparency
	Related Work

	Research Method
	Systematic Mapping Study
	Definition of Research Questions
	Search
	Study Selection
	Data Extraction and Analysis

	Field Study
	Planning
	Execution
	Data Analysis Procedures

	Results
	Results of Systematic Mapping Study
	Demographic Data
	SQ1: What types of solutions are used to provide or assess transparency in SECO?
	SQ2: What are the conditioning factors for transparency in SECO?
	SQ3: What types of SECO processes must be transparent?
	SQ4: What are the concerns for transparency in SECO?

	Results of Field Study
	Demographic Data
	Conceptual Framework for Understanding Transparency in SECO
	Conditioning Factors for Transparency
	Processes that Must Be Transparent
	Benefits of Transparency
	Consequences of Lack of Transparency
	Guidelines for Using the Conceptual Framework

	Discussion and Implications
	Access to Information
	Communication Channels
	Requirements Engineering
	Future Perspectives

	Threats to Validity and Credibility
	Conclusion

