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Abstract
Atoms of Confusion (AoC) are indivisible code patterns that may confuse developers when trying to understand

them, and that have less confusing equivalent patterns. Previous works suggest it is a good practice to avoid them.
While there are studies on AoC relating them to bugs, there is not much about their relationship with the practices
of Continuous Integration and Continuous Delivery (CI/CD). Since CI/CD is generally praised as a group of good
practices, related to better code being released reliably and faster to clients, there is a possibility that the presence of
CI/CD would also impact the presence of AoC, possibly making them less prevalent since they can be problematic
to development processes. To clarify this relationship, we analyzed 10 open-source long-lived Java libraries and 10
open-source Java projects for Android, to see if there was any difference in the AoC rate, diffusion, and density
before and after the implementation of CI/CD when comparing each project, the average total. We also analyzed
the atoms separately, checking for the most and least prevalent. Our results show the metrics have considerably
changed for all projects when checked separately, and less so on average, but we could not find a statistically
relevant relationship between most of these changes and CI/CD. We found a significant relation when checking the
growth rate on one of the metrics. We also found that the most prevalent atom is the Logic as Control Flow,
and the least is the Arithmetic as Logic.

Keywords: Software Engineering, Atoms of Confusion, Continuous Integration, Continuous Delivery, Mining Reposito-
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1 Introduction

Software Engineering is trying to find solutions to reach
both fast software production and high-quality software prod-
uct delivery. This is also true for open-source projects widely
used by end users and companies around the world (Øyvind
Hauge et al., 2010; Lenarduzzi et al., 2020), and they keep
growing in scale. As such, developers should learn and adopt
practices and methods that would help them in this regard.
Continuous Integration (Fowler and Foemmel, 2006) and

Continuous Delivery (Humble and Farley, 2010) are a set of
practices in software engineering, which consists of pipelines
that automatize the building, testing, and delivery processes
of software, making it a faster and more reliable way to pro-
duce valuable software artifacts in short cycles (Chen, 2015).
Since quickness is relevant, it is undesirable to lose more

time than necessary on activities such as understanding
source code, which is an essential software developing task,
but also very time-consuming, having developers spend 50%
of their time on it (Minelli et al., 2015; Xia et al., 2018). One
factor that can increase the time spent on such activities is
confusion. In summary, confusion is the lack of certainty
a developer has about the execution of a piece of code. To
avoid consuming even more time on this kind of task, it is
important for projects to minimize the proportion of confus-
ing code they contain.
Considering this, an Atom of Confusion (AoC) was first

defined as the smallest piece of code that may confuse de-
velopers (Gopstein et al., 2017). An example of AoC is the
Pre-Increment/Decrement, an atom candidate for both C
and Java languages, which happens when an increment (or

decrement) of a variable happens before it is assigned in
the same line of code (e.g., a = ++ b). There is also the
Post-Increment/Decrement, where the increment/decre-
ment occurs after the assignment (e.g., a = b++).
Since this initial definition, previous works have already

studied the prevalence ofAoC (Gopstein et al., 2018;Mendes
et al., 2022; Tahsin et al., 2023), and even their impact dur-
ing development (Gopstein et al., 2018; Bogachenkova et al.,
2022; Pinheiro et al., 2023). Results vary, but the presence
of atoms is generally considered a problem. Loosely related,
there also have been studies aiming to understand the pres-
ence of CI/CD and the possible impact it has on variables
regarding software development (Almeida et al., 2022; Fair-
banks et al., 2023; Liu et al., 2023).
By definition, AoC are a source of code misunderstand-

ing, impacting software development and maintenance tasks.
Meanwhile, CI/CD is a well-known practice in Software En-
gineering that seeks to increase software quality and speed
up software delivery. However, there is a gap in research re-
garding the relationship betweenAoC andCI/CD thatmay be
relevant. Since AoC can confuse, they could also cause prob-
lems related to slowness in software comprehension, mainte-
nance, evolution, and even the introduction of bugs since the
code becomes more difficult to understand. These are prob-
lems that CI/CD adoption generally aims to solve or mitigate
by using code reviews and code quality checkers, including
static code analysis. Therefore, it is reasonable to suppose a
connection between the adoption of CI/CD practices in a soft-
ware project and the presence of AoC in such a project. More
specifically, the CI/CD practices may reduce the presence of
AoC or, at least, slow down their growth.
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Therefore, to fill this gap, we conducted an empirical study
to gather evidence on whether the practice of CI/CD has any
impact on the distribution and prevalence of atoms of con-
fusion in open-source projects. To achieve this, we establish
a set of metrics to serve as a proxy for measuring the dis-
tribution and prevalence of AoC. Both metrics were calcu-
lated from data extracted from 20 open-source Java projects
(10 long-lived libraries and 10 Android projects) using static
code analysis tools developed on top of Spoon (Pawlak et al.,
2016). This study extends our previous study (Feijó et al.,
2023) that deeper the investigation and includes new analy-
ses to support our findings and draw our conclusions.

The first set of metrics is used to measure the distribution
of AoC and it is composed of AoC Rate (ACR), which we
define as the number of AoC per line of code; AoC Diffu-
sion (ACDIF), which we define as the percentage of classes
that contain AoC; and AoC Density (ACDEN), which we de-
fine as the number of AoC per class that contains atoms. The
second set is intended to measure the prevalence of AoC, it
is: AoC Frequency Percentage (FP), which we define as the
number of releases that contain a type of atom divided by the
total amount of releases; and AoC Relative Percentage (RP),
which we define as the number of atoms of a certain type
divided by the total number of atoms.

All the 20 projects (and their releases) used as subjects in
our empirical investigation were selected by well-defined cri-
teria to guarantee their relevance and fulfill this paper’s goal.
The data analysis was made on the projects separately and
as a group on average. We used the Wilcoxon Signed-Rank
Test to check the statistical significance when comparing the
grouped data before and after CI/CD, and a data distribution
analysis to better visualize the data within the same periods,
both on average and for each project, using plots.

Our findings reveal a lack of statistically relevant connec-
tion between CI/CD adoption and the AoC distribution met-
rics in the studied projects, except for the geometric mean
of the ACDIF, which got lower after CI/CD. Regarding the
AoC prevalence metrics, considering both before and after
CI/CD, the results showed us that the most prevalent atom is
the Logic as Control Flow, both in FP and RP, while the
least prevalent is the Arithmetic as Logic, if not count-
ing atoms that are not present. We also found that the FP of
all types of atoms increased when comparing before and after
CI/CD.

This paper is divided into the following. In Section 2 we
explain the fundamentals and theory behind Atoms of Confu-
sion and CI/CD that serve as the base for this study. Section 3
describes the methodology we used to get our data and the
projects from which we extracted it, showing the important
metrics and the process we utilized to get our results. In Sec-
tion 4, we show the results we got from our analyses and dis-
cuss them while properly answering our research questions,
followed by their implications for future works and develop-
ers. In Section 5, we discuss the possible threats to the va-
lidity of our study. In Section 6, we discuss the related work
and, in Section 7, we present the paper’s final remarks, fol-
lowed by Section 8 where we reference the repository where
our data and code is available.

2 Background

2.1 Atoms of Confusion
Confusion is defined by Gopstein et al. (2017) as when the

developer’s interpretation of a piece of code differs from the
machine’s interpretation. In other words, a confusing code
executes in a way developers do not expect. Following that,
Gopstein et al. (2017) also defined the concept of Atoms of
Confusion for the first time as the smallest piece of code ca-
pable of confusing developers. Castor (2018) complemented
the definition of Atoms of Confusion as easily identifiable
and indivisible patterns of code that are likely to confuse de-
velopers, and that have an equivalent block of code that is
less likely to confuse.
While the original study and list of Atoms of Confu-

sion was based on the C programming language (Gopstein
et al., 2017), different programming languages have different
Atoms of Confusion candidates, and there are already studies
that proposed their lists of AoC candidates for specific pro-
gramming languages (Castor, 2018; Langhout and Aniche,
2021; Torres et al., 2023; Costa et al., 2023).
By definition, AoC can be transformed into other patterns

of code that function in the same way and which are less
likely to be confusing, making the use of AoC unnecessary.
However, they are still prevalent in software projects from
various contexts (Gopstein et al., 2018; Mendes et al., 2022),
even finding themselves overlapping with recommendations
from popular code style guides (Gopstein et al., 2017).
AoC tend to grow in numbers when the project grows

in size, even disproportionally so when compared to the in-
crease in lines of code (Mendes et al., 2022). They were also
shown to be connected to the presence of bugs and frequently
appeared in bug fixes (Gopstein et al., 2018), pointing to
the possibility of them being dangerous and a problem that
projects may want to get rid of. However, their impact is lack-
ing, or at least unclear, in the context of code reviews, seem-
ingly not causing confusion comments, nor being removed
on pull requests (Bogachenkova et al., 2022).
Table 1 shows all the types of atom candidates from the

Java programming language we analyzed throughout this pa-
per, with a code example of the atom, and of the less confus-
ing equivalent.

2.2 Continuous Practices in a Nutshell
Continuous Practices are a series of software engineering

practices whosemain purpose is to get changesmade on code
verified and into production, or into the hands of users and
customers, safely and quickly in a sustainable way (Humble,
2017). These practices are often divided into Continuous In-
tegration (CI), Continuous Delivery (CD), and Continuous
Deployment (CD), and are often summarized as CI/CD or
just CD.
CI/CD is closely related to the presence of pipelines

that automate recurring and repetitive tasks related to build-
ing, deploying, and testing software. There are CI/CD ser-
vices such as Jenkins, CircleCI, Travis, and GitHub Actions
that can be used to better coordinate the process involving
continuous practices and quality checks on the application
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Table 1. List of Atoms of Confusion identifiable by the BOHR tool. Adapted from Mendes et al. (2022)

Atom of Confusion Name Acronym Snippet with AoC Snippet without AoC

Infix Operator Precedence IOP int a = 2 + 4 * 2; int a = 2 + (4 * 2);

Post-Increment/Decrement Post-Inc/Dec a = b ++; a = b ;
b += 1 ;

Pre-Increment/Decrement Pre-Inc/Dec a = ++b ; b += 1 ;
a = b ;

Conditional Operator CO b = a == 3 ? 2 : 1; if ( a == 3){ b = 2;}
else {b = 1;}

Arithmetic as Logic AaL (a - 3) * (b - 4) != 0 a != 3 && b != 4

Logic as Control Flow LaCF a == ++a > 0 || ++b > 0 if (!( a + 1 > 0 )) {b += 1;}
a += 1

Change of Literal Encoding CoLE a = 013; a = Integer.parseInt("13", 8);

Omitted Curly Braces OCB if (a) f1 ( ); f2 ( ); if (a){ f1( ); } f2( ) ;

Type Conversion TC a = (int) 1.99f; a = (int) Math.floor(1.99f);

Repurposed Variables RV int a [] = new int[5];
a[4] = 3;
while (a[4] > 0) {

a[3 - v1[4]] = a[4];
a[4] = v1[4] - 1;}

System.out.println(a[1]);

int a [] = new int[5];
int b = 5 ;
while (b > 0) {

a[3 - a[4]] = a[4];
b = b - 1;}

System.out.println(a[1]);

source code and other artifacts, before being used in produc-
tion (Shahin et al., 2017).
According to Chen (2015), the implementation of CI/CD

offers several benefits such as reduced deployment risk and
increased release frequency. These benefits lowered costs
and made getting user feedback much easier and faster. Old
release practices required too much effort and time to use,
and often caused troubles. CI/CD eliminated these issues.
These benefits are corroborated by Itkonen et al. (2016)while
adding that both customers and developers could perceive
them.
In an effort to properly separate and define the continuous

practices and DevOps, Stahl et al. (2017) proposed a few
ways to understand the practices, as a set of separate defini-
tions. This was done because of the great ambiguity these
terms have both in the industry and in the literature. Con-
tinuous Integration is the frequent integration of developers’
works, usually daily at least. This is a practice dependent on
the developers’ behavior since they are the ones who actively
integrate their work. Continuous Delivery is treating each
change made to the project as a potential release candidate,
in other words, it needs to be properly tested and verified by a
continuous delivery pipeline. This is a development process,
not connected to a developer’s actions since the pipeline is
automatized. In fact, it is possible for a Continuous Deliv-
ery pipeline to be present, while some developers do not act
with Continuous Integration in mind, that is, they may not in-
tegrate their work quickly as per the CI practice. Continuous
Deployment is constantly and rapidly placing release candi-
dates, previously evaluated during Continuous Delivery, in a
production environment, usually for customer use.
According to these definitions, our focus is on the Contin-

uous Delivery aspect of CI/CD, or just CD. Liu et al. (2023)
often uses the complete acronym. Still, since their study’s
method of identifying CI/CD was the presence of CI/CD ser-
vices and pipelines, it implied their focus is the same as ours
in this aspect.

3 Study Methodology

3.1 Research Goal and Question
The main goal of this paper is to know the impacts that

CI/CD may have on the distribution and prevalence of AoC.
To guide our study, we asked the following research ques-
tions:
RQ1. Is there a statistically significant difference between the
distribution of Atoms of Confusion before and after CI/CD
adoption in open-source Java projects?
CI/CD is often related to faster releases and automation

by pipelines (see Section 2.2). A CI/CD pipeline often has
checkers for code quality for example. Since AoCs are unde-
sirable pieces of code, there is a possibility that CI/CD and
its practices have an impact on their distribution. Our objec-
tive with this question is to know if there is such an impact.
To see if there was an impact, we first needed metrics that
we could use as proxies for the distribution of AoC, to com-
pare before and after the implementation of CI/CD. The three
metrics we chose are the AoC rate, diffusion, and density (see
Section 3.3).
RQ2. Is there a difference in the prevalence of different types
of Atoms of Confusion before and after CI/CD adoption in
open-source Java projects?
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While our intentions with this question are not different
from the first one, our objective this time is to check if there
is an impact caused by the implementation of CI/CD for each
type of AoC. The different types of AoC have various de-
grees of prevalence, with some being very rare and others
very common. In fact, some types of AoC are even recom-
mended to be used in code style guides as mentioned be-
fore. These differences may imply that the quality checks of
CI/CD focus on some atoms but not all atoms. To answer
this question, we used metrics as proxies for the prevalence
of each type of AoC in terms of frequency and relative per-
centages (see more details in Section 3.4).
With these goals in mind, we first selected our projects

following a set of criteria (see Section 3.2), for a total of
20 projects. We then extracted the information from these
projects with two static analysis tools, BOHR (Mendes et al.,
2022)1 and JMetrix2, to acquire the data to be used during
the analysis to get the results we are searching for. Finally,
we discuss the different results and their implications.

3.2 Selection of Projects
We select 20 open-source projects to serve as subjects of

our empirical investigation, divided into two groups: long-
lived Java libraries (in the first 10 rows of Table 2) and Java-
based Android projects (in the last 10 rows of Table 2). All of
them are freely available on GitHub, and were chosen based
on the following criteria, inspired by the ones used in (Fair-
banks et al., 2023): (i) the projects must have adopted CI/CD
at some point in their development; (ii) the projects must
have been active as recently as 2022; (iii) they must have
at least 25 stars and at least 2 contributors, to avoid personal
and school projects; and (iv) the projects must have at least
8 release version tags, otherwise the project’s history with
CI/CD and AoC would be too short, threatening the statisti-
cal analysis.
For the Java libraries, we chose some of the projects

from Almeida et al. (2022). These repositories were curated
from the SmartShark dataset3, and filtered by checking the
presence and proper use of CD. They are all from Apache.
We filtered 8 projects from the 25 total. Some projects that
passedmost but not all the filters in the work of Almeida et al.
(2022) were manually checked for the presence of CI/CD
and were considered candidates for our study if they passed
the criteria we established. We chose 2 projects using this
method.
For the Android projects, wemanually filtered the projects

identified by Liu et al. (2023) that adopted a CI/CD service.
Their dataset contained a large number of Android repos-
itories from three different sites. We limited ourselves to
repositories on GitHub, totaling around 4, 000. We then used
Python, and the ghAPI4, a Python library, to communicate
with GitHub’s API and create the main filtering, following
our selection criteria. After filtering the repositories, we were
left with 240 eligible projects to select from. With these 240
eligible projects, we then randomly selected a project from

1https://github.com/wendellmfm/bohr
2https://github.com/lincolnrocha/JMetriX
3https://smartshark.github.io/
4https://ghapi.fast.ai/

it and had to manually check for imperfections in our fil-
tering. For example, we took out projects that had CI/CD
implemented, but the implementation happened too early or
too late in their development process, as such, they had lit-
tle to no history with CI/CD, or little to no history without,
which would generate bad comparisons or no comparisons
at all. As such, we took out projects with three releases or
less before and after the implementation of CI/CD. A large
number of projects were filtered because of this. We also
took out projects that had 10% or more of other program-
ming languages, since our tools only worked with Java code.
There were also cases of projects that did not appear to have
any CI/CD when manually checked. When a selected project
wasn’t discarded for the above reasons, it was added to our
project list, and this process was repeated until we got 10
Android projects.

Table 2. GitHub’s Information of Studied Projects.

Project #Stars #Tags #Commits

commons-lang 2, 503 96 7, 270
commons-dbcp 312 66 2, 827

struts 1, 216 143 6, 658
commons-codec 409 44 2, 423
commons-bcel 216 35 2, 508

commons-compress 282 76 4, 129
commons-configuration 179 77 3, 857

commons-net 211 75 2, 918
freemarker 874 44 2, 343

commons-vfs 197 55 3, 656

infinity-for-reddit 3, 461 118 2, 033
gestureviews 2, 325 16 432

discreet-launcher 167 61 639
xupdate 2, 134 32 246

colorpickerview 1, 417 19 278
opentracks 678 141 5, 311

presencepublisher 70 50 206
asteroidossync 91 28 1, 088

unexpected-keyboard 619 28 616
shitter 197 108 1, 678

3.3 AoC Distribution Metrics
As seen earlier in Section 3, the metrics we chose are the

AoC rate, diffusion, and density. We intended to use these
metrics because they are less dependent on the size of the
project, as there is a tendency for the number of AoC to grow
as the projects grow in size (Mendes et al., 2022). So, if we
only compared the raw number of AoC, this tendency would
overwhelm any possible impact CI/CD could have.
For the AoC rate, since it is the number of AoC per line

of code, it can represent the distribution of AoC indepen-
dently from the project size. The diffusion is a percentage
that shows how spread out the atoms are in the project classes,
with a 100% percentage indicating that all classes have at
least one atom. The density shows how many atoms are con-
tained within a single atom-containing class, on average, and
this can also show us how spread out the atoms are, but dif-
ferently from the diffusion: if the density does not increase
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much, or even decreases, while the atoms are increasing, that
may signify that the atoms “infected” more classes.

3.3.1 Rate

To compare the AoC rate (ACR) between the periods with
and without CI/CD, we first determined how that would be
measured. For that, we extract two metrics from each con-
sidered release: the number of atoms of confusion (NAC) and
the number of lines of code (LOC). Next, we calculate the ra-
tio between NAC and LOC to compute the AoC rate (ACR =
NAC ÷ LOC). We compute the ACR metric for all considered
releases in each project and group it into two periods, AoC
rate before and after CI/CD adoption. Finally, we compute
the statistical mean and median of the ACR metric for each
period and project, and use them as proxies to statistically
compare the rate of AoC before and after CI/CD adoption
across the studied projects.

3.3.2 Diffusion

For the AoC diffusion (ACDIF), we also extracted the two
metrics necessary for its calculation, the number of classes
in total (NCT) and the number of classes with atoms (NCA).
Next, we calculated the ratio between NCA and NCT to get the
ACDIF proper (ACDIF = NCA ÷ NCT). We then repeated what
was made with the ACR, computing the metric for the releases
of each project, and then separating between before and after
CI/CD adoption to get the mean and median.

3.3.3 Density

The process is the same for the AoC density (ACDEN). The
necessary metrics for its calculation were already used for
the past two metrics, the NAC and the NCA, and the density is
the ratio between NAC and NCA (ACDEN = NAC ÷ NCA). The
rest of the process is the same as the other two metrics.

3.4 AoC Prevalence Metrics
The frequency percentage (FP) and the relative percentage

(RP) were used for the analysis of specific atom types. These
are also resistant to the impact of project growth since they
are percentages. The frequency percentage checks the preva-
lence by representing how frequently an atom type appears
considering all projects and their release versions, while the
relative percentage represents how frequent the atoms are rel-
ative to the total of atoms.
For the FP, we first get the total number of releases span-

ning all projects and then, from this number, we count the
ones which contain the type of atom. The FP is the ratio be-
tween the releases that contain the type of atom and the total
number of releases. If the FP is 100%, that means that type
of AoC is present in every analyzed release.
The RP is different. While it is still a percentage, it is rela-

tive to the total number of atoms. To calculate it, we divide
the quantity of the specific atom type by NAC for each re-
lease. But since we want a general metric, we then calculate
the mean value considering all the releases. This value will
represent the prevalence of an atom type when considering

all other types. A value of 100% would mean that all atoms
are of the same type, which is unlikely to happen.

3.5 Determining Before and After CI/CD
To compare the AoC Metrics before and after CI/CD, we

had to know when CI/CD started for each project. For this,
we manually checked all projects and their releases while us-
ing the criteria from Liu et al. (2023), i.e., we searched for
the configuration file of a CI/CD service (see Section 2.2).
These files are usually .yml or .yaml files where the config-
uration of a CI/CD service is stored (e.g., the travis.yml
for the TravisCI5). The release when the file first appeared
was considered the release where CI/CD started. If multiple
CI/CDs were used in a single project, we considered the first
one used as the start of CI/CD. All releases fromwhen CI/CD
started to the most recent we downloaded we consider “After
CI/CD”, while all releases older than the release when CI/CD
started we consider “Before CI/CD”.

3.6 Data Mining
The mining process started with the project selection since

we had to filter more than 4000 projects by mining their
repositories and checking their information to see if they
were valid candidates for our study according to our criteria
previously mentioned in Section 3.2.
After choosing projects, we downloaded several release

versions from each, trying to balance the number before
and after the implementation of CI/CD. These releases had
their code statically analyzed with Java programs made with
Spoon: BOHR and JMetriX. Spoon is an open-source Java li-
brary that analyzes and transforms Java source code. BOHR,
created by Mendes et al. (2022), is a tool made to identify
AoC and extract data related to them from the source code of
Java projects. The AoC it can identify are based on the AoC
list for the Java programming language suggested by Langh-
out and Aniche (2021), and are shown in Table 1, as well as
the equivalent less-confusing pattern for each. JMetriX is a
tool made to extract general metrics and information about
Java source code. It was used to extract the number of lines
of code (LoC) metric from the projects.

3.7 Data Analysis
After the mining process, we got the number of LoC, the

total number of AoC, the number of classes in total and with
atoms, and the number of AoC of each type, for each release
of each project we selected. Next, we computed the AoC dis-
tribution metrics (ACR, ACDIF, and ACDEN) and prevalence
metrics (FP and RP). Since the number of AoC is consider-
ably lower than the number of LoC, we use the 10−3 scale to
represent the ACR metric.
After computing all metrics for each project, we calculated

means and medians when applicable and divided between
periods “Before CI/CD” and “After CI/CD” since we wanted
to compare the possible impact of CI/CD on the distribution
and prevalence of atoms considering the release history. We

5https://www.travis-ci.com/
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Figure 1. The violin plot of ACR before and after CI/CD adoption.

Figure 2. The violin plot of ACDIF before and after CI/CD adoption.

Figure 3. The violin plot of ACDEN before and after CI/CD adoption.

also made this separation when visualizing the data for each
project.
Now, for the ACR, ACDIF and ACDEN, we compared the gen-

eral data now divided as “Before CI/CD” and “After CI/CD”
using the Wilcoxon Signed-Rank Test, a non-parametric test
that does not assume normality in the data. TheWilcoxon test
checks the hypothesis of having a statistically significant re-
lation between the two sets.
For this test, the result is a p-value which must be 0.05 or

lower for the null hypothesis, that there is no relation between

data, to be rejected and the relation to statistically relevant.
Using this test on each project’s individual metrics could gen-
erate unreliable results because of a lack of data. As such, we
only used this test with the means and medians
The following experiment for the distribution metrics fo-

cused on the projects’ release history and the metrics’ in-
crease (or decrease) between each release, as percentages.
These differences between releases were then used to cal-
culate their geometric mean, again divided between “Before
CI/CD” and “After CI/CD”. In this situation, the geometric
mean represents a tendency to increase or decrease and, as
such, it is interesting to observe if there is a difference in ten-
dency between the two periods.
The comparison of the FP and RP metrics was done by ob-

servation since our objective with these is to check for any
differences between the prevalences, that is if certain types
of atoms started appearing more or less frequently, by how
much, and which ones are the most and least frequent. The
Wilcoxon Signed-Rank Test can also be used in theory, but it
is not ideal since it lacks the necessary data to generate robust
results. Thus, we decided not to use it.
Finally, we also analyzed three projects more closely:

Struts, GestureViews, and ColorPickerView. These three
were selected because some or all of their distributionmetrics
increased after CI/CD, which we consider counter-intuitive.
We also wanted to pick at least one Android project and one
long-lived library. For this analysis, we checked the data we
already had on each of these projects, and also their reposito-
ries on GitHub, to possibly identify a pattern possibly related
to the metrics’ increase.

4 Study Results and Discussion

4.1 Research Question 1 Answer
To answer our first research question, we started by com-

puting the mean, median, and geometric mean of the differ-
ences between releases, for the ACR, ACDIF and ACDEN met-
rics, for each studied project and summarized them in Ta-
bles 3, 4, 5, 6, 7 and 8. We also created violin plot visual-
izations for the mean results of each metric as shown in Fig-
ures 1, 2, and 3. Figures 4, 5, and 6 are the same, except the
plots are specific for each project, instead of a mean that rep-
resents all of them. showing the history of each metric were
also created as shown in Figures 7, 8, and 9. Next, we employ
the Wilcoxon Signed-Rank Test to compare the data before
and after CI/CD adoption. Thus, one can verify whether there
are statistically significant differences between them.
The Wilcoxon Signed-Rank Test is a non-parametric test

to compare paired data samples. First, for the ACR’s mean
comparison, we defined the null and alternative hypotheses
as follow: Hx

0 : x(ACRb) = x(ACRa) (it means that there is
no statistical difference between ACR before and after CI/CD
adoption), Hx

1 : x(ACRb) > x(ACRa) (it means that ACR
before is significantly higher than ACR after CD adoption),
and Hx

2 : x(ACRb) < x(ACRa) (it means that ACR before is
significantly lower than ACR after CD adoption). Next, for
the ACR’s median comparison, we defined the null and alter-
native hypotheses as follows: H x̃

0 : x̃(ACRb) = x̃(ACRa),



Studying the Impact of CI/CD Adoption on Atoms of Confusion Distribution and Prevalence in Open-Source Projects Feijó et al. 2024

Figure 4. The violin plot of ACR before and after CI/CD adoption for each individual project

Figure 5. The violin plot of ACDIF before and after CD adoption for each individual project
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Figure 6. The violin plot of ACDEN before and after CD adoption for each individual project

Table 3. Summary of projects and AoC rate statistics. ACRb (ACR
before CI/CD adoption), and ACRa (ACR after CI/CD adoption). The
x and x̃ stand for statistical mean and median respectively.

Project x(ACRb) x(ACRa) x̃(ACRb) x̃(ACRa)

commons-lang 11.73 12.36 11.54 12.52
commons-dbcp 6.17 4.00 5.72 3.77

struts 7.19 8.23 6.68 8.57
commons-codec 22.12 18.07 20.69 18.02
commons-bcel 8.26 7.20 8.58 6.85

commons-compress 23.77 20.53 23.47 20.61
commons-configuration 5.14 3.76 4.79 3.47

commons-net 10.47 12.09 11.14 11.56
freemarker 20.79 19.96 20.36 20.15

commons-vfs 7.11 7.00 7.40 7.00

infinity-for-reddit 13.34 17.04 13.27 16.99
discreet-launcher 3.42 7.53 3.47 8.49

opentracks 16.44 17.48 16.25 17.53
xupdate 14.96 15.26 15.06 15.20

presencepublisher 21.17 13.32 20.25 13.86
asteroidossync 12.47 13.17 12.96 13.17

unexpected-keyboard 12.82 15.04 12.64 15.01
shitter 9.88 9.46 9.23 9.32

colorpickerview 9.39 11.09 8.09 12.24
gestureviews 22.97 23.99 23.15 24.15

Note: x(ACRa), x(ACRb), x̃(ACRa), x̃(ACRb), x̂(ACRb), and x̂(ACRa) values
are given in 10−3 scale.

Table 4. Summary of projects and AoC rate growth statistics. ACRb

(ACR before CI/CD adoption), and ACRa (ACR after CI/CD adoption).
The x̂ stands for geometric mean.

Project x̂(ACRb) x̂(ACRa)

commons-lang 7.76 −3.29
commons-dbcp −7.11 −4.38

struts 5.12 −4.02
commons-codec −7.15 −0.55
commons-bcel −8.19 1.33

commons-compress −1.13 −1.97
commons-configuration 2.77 0.04

commons-net 10.22 5.09
freemarker −1.36 −0.79

commons-vfs −8.06 0.36

infinity-for-reddit 8.56 1.15
discreet-launcher 28.35 26.39

opentracks 7.37 −2.91
xupdate 0.50 0.18

presencepublisher −3.81 −12.43
asteroidossync −0.01 −0.12

unexpected-keyboard −0.08 1.81
shitter 16.66 −5.70

colorpickerview −18.75 13.27
gestureviews 0.81 1.04

Note: x̂(ACRb), and x̂(ACRa) values are all percentages. A positive value
means growth, while a negative means decline.
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Table 5. Summary of projects and AoC diffusion statistics. ACDIFb

(ACDIF before CI/CD adoption), and ACDIFa (ACDIF after CI/CD
adoption). The x and x̃ stand for statistical mean and median, re-
spectively.

Project x(ACDIFb)x(ACDIFa)x̃(ACDIFb)x̃(ACDIFa)

commons-lang 23.10 19.56 23.31 19.70
commons-dbcp 25.03 22.90 22.88 22.76

struts 18.35 19.76 17.74 19.78
commons-codec 35.24 37.55 34.96 37.58
commons-bcel 22.74 20.31 23.09 20.76

commons-compress 43.92 38.82 43.14 39.29
commons-configuration 23.21 22.94 22.94 23.19

commons-net 34.09 39.60 33.85 39.68
freemarker 22.67 20.86 21.59 21.05

commons-vfs 22.37 20.85 21.77 20.70

infinity-for-reddit 26.22 27.95 26.17 28.01
discreet-launcher 26.19 23.73 30.77 25.00

opentracks 40.12 40.88 41.61 39.30
xupdate 51.43 58.43 54.29 58.54

presencepublisher 33.01 19.42 31.58 21.14
asteroidossync 34.43 19.09 36.66 19.09

unexpected-keyboard 28.10 38.67 28.29 37.62
shitter 44.88 41.64 46.34 42.52

colorpickerview 31.46 34.94 32.21 36.55
gestureviews 55.91 57.45 56.86 56.86

Note: x(ACDIFa), x(ACDIFb), x̃(ACDIFa), and x̃(ACDIFb) values are all
percentages.

Table 6. Summary of projects and AoC diffusion growth statistics.
ACRb (ACDIF before CI/CD adoption), and ACRa (ACDIF after CI/CD
adoption). The x̂ stands for geometric mean.

Project x̂(ACDIFb) x̂(ACDIFa)

commons-lang 0.11 −3.07
commons-dbcp 0.32 0.33

struts 2.09 0.03
commons-codec −1.73 1.77
commons-bcel −2.46 −2.95

commons-compress −1.35 −3.01
commons-configuration 2.60 −1.24

commons-net 4.69 1.03
freemarker −5.35 −1.33

commons-vfs 0.92 −1.25

infinity-for-reddit 1.05 0.75
discreet-launcher 13.29 4.56

opentracks 1.20 −3.22
xupdate 5.89 1.76

presencepublisher −4.89 −4.52
asteroidossync −19.38 0.98

unexpected-keyboard 10.36 3.06
shitter 0.65 −1.71

colorpickerview 23.13 −1.21
gestureviews 1.80 0.00

Note: x̂(ACDIFb), and x̂(ACDIFa) values are all percentages. A positive
value means growth, while a negative means decline.

H x̃
1 : x̃(ACRb) > x̃(ACRa), and H x̃

2 : x̃(ACRb) < x̃(ACRa).
And finally, for the ACR’s geometric mean comparison, we
defined the null and alternative hypotheses as follows: H x̂

0 :
x̂(ACRb) = x̂(ACRa), H x̂

1 : x̂(ACRb) > x̂(ACRa), and
H x̂

2 : x̂(ACRb) < x̂(ACRa). The hypotheses H0, H1, and
H2 are equivalent for x, x̃, and x̂. This data for the ACR is
present in Table 9. As seen on Tables 10 and 11, we defined
the same hypotheses for the ACDIF and ACDEN, following the
same nomenclature.
Tables 9, 10 and 11 summarize the statistical test results

for all three metrics. After applying the statistical test to com-
pare the metrics before and after CI/CD for the arithmetic
mean and the median, we were able to identify that in all
the cases of Hx

0 and H x̃
0 the null hypotheses could not be

rejected (i.e., none of the statistical test results have a sig-
nificance level of α < 0.05). Thus, the alternative hypothe-
ses Hx

1 , H x̃
1 , Hx

2 , and H x̃
2 are all rejected. For the geometric

mean, however, H x̂
0 was rejected for ACDIF, and H x̂

1 could
not be rejected, which means there was a significant decrease
in the growth tendency of ACDIF after the implementation
of CI/CD. Therefore, the statistical results indicate that the
adoption of CI/CD has no significant impact on the AoC rate
or density for the analyzed group of projects, but there was a
significant impact on the growth of the AoC diffusion.

Table 7. Summary of projects and AoC density statistics. ACDENb

(ACDEN before CI/CD adoption), and ACDENa (ACDEN after CI/CD
adoption). The x and x̃ stand for statistical mean and median, re-
spectively.

Project x(ACDENb)x(ACDENa)x̃(ACDENb)x̃(ACDENa)

commons-lang 13.56 15.83 13.54 16.12
commons-dbcp 5.23 4.36 4.88 4.52

struts 3.52 4.23 3.34 4.27
commons-codec 14.55 11.38 13.29 11.50
commons-bcel 4.29 4.26 4.32 4.12

commons-compress 9.62 8.39 9.32 8.35
commons-configuration 4.87 3.39 4.93 3.29

commons-net 5.71 5.74 5.98 5.74
freemarker 8.20 8.62 8.50 8.59

commons-vfs 4.00 3.41 4.20 3.41

infinity-for-reddit 6.63 8.42 6.48 8.47
discreet-launcher 1.46 4.42 1.63 5.47

opentracks 6.25 5.34 6.30 5.33
xupdate 5.03 5.06 4.95 5.04

presencepublisher 3.23 2.48 3.00 2.69
asteroidossync 6.10 7.90 5.57 7.90

unexpected-keyboard 4.36 5.11 4.44 5.36
shitter 3.34 3.83 3.66 3.50

colorpickerview 3.54 3.65 3.16 4.94
gestureviews 5.98 6.66 6.21 6.69

4.2 Research Question 2 Answer
To answer our second research question, we calculated the

metrics FP and RP for each type of atom studied. The metrics
are shown in Table 12. We then analyzed the data to identify
objects of interest, such as the most and least prevalent types
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Figure 7. The plot of ACR’s history for each individual project

Figure 8. The plot of ACDIF’s history for each individual project
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Figure 9. The plot of ACDEN’s history for each individual project

Table 8. Summary of projects and AoC density growth statistics.
ACRb (ACDEN before CI/CD adoption), and ACRa (ACDEN after CI/CD
adoption). The x̂ stands for geometric mean.

Project x̂(ACDENb) x̂(ACDENa)

commons-lang 9.60 −2.44
commons-dbcp −5.42 −3.01

struts 4.65 −1.01
commons-codec −7.57 −0.27
commons-bcel −1.67 1.51

commons-compress −1.18 −0.18
commons-configuration 4.17 −2.62

commons-net 7.75 −0.09
freemarker 5.38 0.30

commons-vfs −7.78 −2.72

infinity-for-reddit 8.06 1.60
discreet-launcher 15.02 25.58

opentracks 3.11 −5.03
xupdate −1.93 1.33

presencepublisher −6.94 −10.13
asteroidossync 10.33 −0.85

unexpected-keyboard −5.56 9.72
shitter 17.03 −5.92

colorpickerview −22.32 18.17
gestureviews 4.28 0.94

Note: x̂(ACDENb), and x̂(ACDENa) values are all percentages. A positive
value means growth, while a negative means decline.

Table 9. The Wilcoxon hypotheses statement and the test results.
The symbols 3 and 7 indicate the result of the null hypothesis test
(3 fail to reject, and 7 reject).

Wilcoxon Hypothesis Value of p-value

Hx
0 : x(ACRb) = x(ACRa) (3)

0.84Hx
1 : x(ACRb) > x(ACRa) (7)

Hx
2 : x(ACRb) < x(ACRa) (7)

H x̃
0 : x̃(ACRb) = x̃(ACRa) (3)

0.70H x̃
1 : x̃(ACRb) > x̃(ACRa) (7)

H x̃
2 : x̃(ACRb) < x̃(ACRa) (7)

H x̂
0 : x̂(ACRb) = x̂(ACRa) (3)

0.37H x̂
1 : x̂(ACRb) > x̂(ACRa) (7)

H x̂
2 : x̂(ACRb) < x̂(ACRa) (7)

of atoms considering both metrics and if atoms tend to be
more or less prevalent after the implementation of CI/CD.

First of all, it is not ideal to compare the prevalence be-
fore and after CI/CD for the FP and RP using the Wilcoxon
Test. Table 12 shows that the OCB atom type never occurred in
the analyzed projects. As such, its percentage is 0 before and
after CI/CD for both metrics. Pre-Increment/Decrement,
while not 0, did not change from before to after CI/CD for
the FP. For the purposes of the Wilcoxon test, tied data is ig-
nored, leaving us with only 8 samples before and after for the
FP, and only 9 samples before and after for the RP. While it
is still possible to use the Wilcoxon test, the results will not
be as relevant as when used properly. As such, we decided
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Table 10. The Wilcoxon hypotheses statement and the test results.
The symbols 3 and 7 indicate the result of the null hypothesis test
(3 fail to reject, and 7 reject).

Wilcoxon Hypothesis Value of p-value

Hx
0 : x(ACDIFb) = x(ACDIFa) (3)

0.57Hx
1 : x(ACDIFb) > x(ACDIFa) (7)

Hx
2 : x(ACDIFb) < x(ACDIFa) (7)

H x̃
0 : x̃(ACDIFb) = x̃(ACDIFa) (3)

0.60H x̃
1 : x̃(ACDIFb) > x̃(ACDIFa) (7)

H x̃
2 : x̃(ACDIFb) < x̃(ACDIFa) (7)

H x̂
0 : x̂(ACDIFb) = x̂(ACDIFa) (7)

0.03H x̂
1 : x̂(ACDIFb) > x̂(ACDIFa) (3)

H x̂
2 : x̂(ACDIFb) < x̂(ACDIFa) (7)

Table 11. The Wilcoxon hypotheses statement and the test results.
The symbols 3 and 7 indicate the result of the null hypothesis test
(3 fail to reject, and 7 reject).

Wilcoxon Hypothesis Value of p-value

Hx
0 : x(ACDENb) = x(ACDENa) (3)

0.55Hx
1 : x(ACDENb) > x(ACDENa) (7)

Hx
2 : x(ACDENb) < x(ACDENa) (7)

H x̃
0 : x̃(ACDENb) = x̃(ACDENa) (3)

0.57H x̃
1 : x̃(ACDENb) > x̃(ACDENa) (7)

H x̃
2 : x̃(ACDENb) < x̃(ACDENa) (7)

H x̂
0 : x̂(ACDENb) = x̂(ACDENa) (3)

0.43H x̂
1 : x̂(ACDENb) > x̂(ACDENa) (7)

H x̂
2 : x̂(ACDENb) < x̂(ACDENa) (7)

Table 12. Summary of projects and their frequency and relative per-
centages. FPb (FP before CI/CD adoption), and FPa (FP after CI/CD
adoption). The applies to the FP

AoC Acronym (FPb) (FPa) (RPb) (RPa)

Post-Inc/Dec 75.93 76.85 4.36 3.71
Pre-Inc/Dec 59.26 59.26 1.30 0.91

IOP 86.11 99.07 8.29 10.51
CO 90.74 98.15 22.22 25.40
AaL 1.85 7.41 0.02 0.05
LaCF 96.30 99.07 47.91 44.82
RV 12.96 15.74 0.11 0.07

CoLE 26.85 36.11 0.26 0.24
OCB 0.00 0.00 0.00 0.00
TC 89.81 97.22 15.54 14.27

Note: (FPa), (FPb), (RPa), and (RPb) values are all percentages.

to not use it for this analysis. Instead, we manually checked
the data before and after CI/CD for both metrics.
The FP is important because it can show us if the

types of atoms are appearing or disappearing from the
projects after CI/CD. By checking the data manually, it
is possible to see an increase in the FP for all types
of atoms, except for the Omitted Curly Braces and
Pre-Increment/Decrement, whichmeans almost all types
of atoms are appearing more.
The RP works as an alternative way to check for the preva-

lence of atoms. As the name suggests, it’s prevalence rela-
tive to other atoms. This means that when the percentage of
an atom increases, the percentage of another must decrease
since the sum of all RP always results in 100%. The purpose
of RP is to be manually analyzed and compared to the FP
to avoid having just one way to measure specific prevalence
and determine the most and least prevalent types of atoms.
For both FP and RP, Omitted Curly Braces is 0, and, in

absolute terms, it is the least prevalent type of atom, but we
will disregard it from now on since it is not even present on
any projects nor periods. Logic as Control Flow is the
most prevalent atom type according to both FP and RP, be-
fore and after CI/CD, although, in the case of FP, after CI/CD
it ties with the Infix Operator Precedence, but since it
is more prevalent before CI/CD, it wins the tie. Arithmetic
as Logic is the least prevalent atom type (that is present)
according to both FP and RP, before and after CI/CD, even
though it got a considerable increase after CI/CD when con-
sidering FP.

4.3 Discussion
Individually, some projects, like commons-dbcp, actually

had their ACR, ACDIF and ACDEN reduced after the imple-
mentation of CI/CD, going against the tendency of increase,
but the behavior is not consistent throughout the projects no
matter the metric as we can see on the project-specific plots
shown in Figures 4, 5, 6, 7, 8 and 9 with some even having
their rates increased. The magnitude of the changes is also in-
consistent. This inconsistency is still true, to a lesser extent,
when checking the growth rates of the metrics. Visualizing
the data together, we can see that the impact, when consider-
ing all projects, was practically none. The ACR changed for
all projects, as mentioned before and shown in Table 3, and
the diffusion and density changed for most projects, as seen
in Tables 5 and 7. These changes can also be visualized in the
previously mentioned project-specific plots. However, when
analyzing the general violin plots in Figures 1, 2 and 3 of
both before and after CI/CD, we see the difference in distribu-
tion between them is hard to visualize, as they are both very
similar. In the case of the density, a tendency of increase is
actually noticeable, but as mentioned before, the relation be-
tween it and CI/CD was rejected, and most probably is just a
result of the great natural growth of the number of AoC. The
violin plots of Figures 1, 2 and 3 consider the means of the
metrics, but the violin plots for the medians are virtually the
same. The growth rates for the metrics seem to have a gen-
eral tendency to decrease, but the only significant tendency
seems to be the diffusion growth rate.
The FP results made sense when thinking about atoms in

general, that is, their natural tendency is to grow fast and ap-
pear more. So even considering the general prevalence in-
crease after the implementation of CI/CD, it is probably not
related to CI/CD, but just to the passage of time.
The RP, in theory, could conflict with the FP results. Hy-

pothetically, an atom type that appears on every project
and in every release version but only once would have an
FP of 100%, but its RP would be quite low when com-
pared to other atoms. The actual results did not show that,
most likely because of the AoC tendency to grow in num-
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bers. While new atom types appeared, the ones that were al-
ready present grew in numbers. Because of that, we did not
have much difficulty determining the most and least preva-
lent of the atom types. We also tried checking for patterns
on the shifting RP values between before and after CI/CD.
While the most prevalent, Logic as Control Flow, got
even more frequent, it lost prevalence when considering the
RP, while the Infix Operator Precedence grew in both,
probably because the growth of its frequency was much
higher. Pre-Increment/Decrement actually got less rela-
tively prevalent because it maintained the same frequency.
That said, the Type Conversion atom type got a substan-
tial increase in FP that did not reflect on RP.
We then verified our detailed analysis of the three projects

selected as mentioned by the end of Section 3.7. Project size
may influence atom behavior, but all three projects had sim-
ilar behavior, even with Struts being much larger than the
other two considering both classes and lines of code. The
most prevalent atom types had some variation, but we con-
firmed Logic as Control Flow as the most prevalent in
Struts and GestureViews. In the most recent analyzed ver-
sion of ColorPickerView, it was second place, after Infix
Operator Precedence and tied with Type Conversion.
The two most prevalent atoms compose more than 60% of
all atoms in these projects and even reach more than 90% in
Struts. These analyses do not change significantly through
versions, except for the most prevalent atoms in ColorPick-
erView, which changed frequently.
While analyzing their repositories, we focused on the

projects’ age, contributors, data of implementation of CI/CD,
and any possible drastic changes that may have occurred that
may have influenced our data. We knew from our data that
Struts’ versioning was inconsistent, but after analyzing its
history, the versioning changes and problems do not seem to
be related to AoC or CI/CD. The atom metrics generally in-
creased before Struts’ massive growth in version 2.5.0, for
example. Struts is the oldest project of the three, starting on
GitHub in 2006. Because of its age and size, it may be con-
sidered bad to change code for a less confusing version since
these changes may cause a bigger impact than expected and
may not be considered a priority. However, ColorPickerView
and GestureViews are considerably smaller and younger, be-
ing created in 2014 and 2017 respectively, and they seem to
behave similarly to Struts. This may happen because of the
number of contributors, and which of them has only one that
made significant contributions to their projects, which means
there was probably little effort to make their code clearer to
anyone else. They had more contributors, 11 and 4 in total re-
spectively, but the others had very few contributions. Struts
has the opposite situation, where it has quite a few important
contributors, and constantly has the number of contributors
increasing through the years, but it may not be enough to
stimulate a possibly large change in the code to deal with con-
fusion. However, in the last version we analyzed for Struts,
there was a significant drop in the number of AoC and AoC
Rate, so the culture may be changing, although it is not nec-
essarily related to CI/CD, as it was implemented for over 7
years. The other two projects do not seem to be improving.
Finally, we checked one other project, this time that had

positive results after CI/CD, for a quick comparison with the

three projects. Compress is very similar to Struts in size and
number of contributors while being quite different from the
other two. It has considerably more atoms than Struts, even
though they’re almost the same size. However, we could not
find an obvious reason why all of its metrics have a steady
tendency to decrease. What we know is that this tendency
does not start with CI/CD, as shown by its plots in Fig-
ures 7, 8, and 9.

4.4 Result Implications

Implications For Researchers. Our study and results can
bring implications for future works. It is possible to expand
on this analysis with different and more projects. Since the
tools we used were made with Java in mind, we limited our-
selves to Java projects, but other works may choose other
programming languages or just different Java projects. The
addition of more projects to the analysis could confirm that
there is little to no impact on AoC distribution and preva-
lence caused by CI/CD, or that perhaps there is an impact for
some projects. A comparative analysis could also be made
with projects from different programming languages. More
distinct analyses could also be made with different metrics
and focus, or possibly to study more variables besides the
implementation of CI/CD that may also influence the preva-
lence of AoC such as the projects’ size, number of contribu-
tors, and how much they contribute.
Implications For Developers. According to our results, if

developers are interested in reducing the prevalence of AoC
in their code, common CI/CD practices and pipelines may
not be enough since there was little to no impact on AoC
prevalence because of CI/CD. As such, it is of interest to
these developers to apply more specialized tools and solu-
tions, such as BOHR, to locate and identify these atoms so
that they can be replaced by better code in future refactorings.

5 Threats to Validity

We will use the threats to the validity of our study as pre-
sented by Wohlin et al. (2012). Those are threats to conclu-
sion, construct, internal, and external validity.
Conclusion Validity. To deal with threats to our study’s con-
clusion, we chose the Wilcoxon Signed-Rank Test so that
our conclusion was statistically relevant, and that it didn’t
depend on the type of data we used. Also, to analyze the spe-
cific atom prevalences, we chose twometrics, FP and RP, that
could result in different candidates for most and least preva-
lent atom types.
Internal Validity. It is possible that some other variables
could interfere by increasing or decreasing the rate of AoC in
ways we do not understand. However, it is not the intention
of this paper to imply causal relationships.
Construct Validity. There is a possibility of human bias be-
ing present when the projects are chosen. To avoid this, the
manual choice of projects was made at random after the fil-
tering, being invalidated only if the project did not fit our
criteria. Other parts of our analysis were automated to avoid
mistakes and bias.
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External Validity. The sample size of this study is only 20
projects, which can threaten its generalization. To mitigate
it, we tried to diversify our projects with not only long-lived
Java libraries but also projects from another context entirely,
that is, Android projects.We also filtered the projects, getting
only relevant ones, while avoiding personal projects.

6 Related Work
Gopstein et al. (2017) introduced the concept of Atoms of

Confusion as the smallest piece of code that can cause con-
fusion in developers, making them misunderstand what the
code actually does, which can lead to mistakes during devel-
opment and when doing tasks. This work also focused on
AoC in the context of the C programming language, while
other works studied the AoC in different programming lan-
guage contexts, such as Castor (2018), with Swift; Langh-
out and Aniche (2021), with Java; Torres et al. (2023), with
JavaScript; and Costa et al. (2023), with Python. Other works
also study the relationship of AoC with different metrics,
such as Bogachenkova et al. (2022) which analyzed the pos-
sible relation between AoC, code review, and pull requests.
Gopstein et al. (2018) also made a study to check the

prevalence of AoC in the context of open-source C and
C++ projects, while also studying the possible impact on
the number of bugs, and number of bug fixes that contain
atoms. Tahsin et al. (2023) made an empirical study of the
Prevalence of Atoms of Confusion in Open Source Java Sys-
tems, also showing the most common atoms in this con-
text. Mendes et al. (2022) similarly studied AoC and their
prevalence in a specific context, open-source long-lived Java
libraries, but also analyzed the co-occurrence of atoms, and
created the tool for AoC detection we used in our study.
On CI/CD, Almeida et al. (2022) studied the relation of

CI/CD with bug-fixing time, where it was found that there
was a decrease in bug-fixing time after CI/CD implementa-
tion. Our work is a derivative of this paper, as we consider
a different variable, within a different context but made our
studying process in similar ways. Fairbanks et al. (2023) ver-
ified the impact of CI/CD on commit velocity and the num-
ber of reported issues, analyzing over 12, 000 repositories
from GitHub, and GitLab, with roughly 4, 500 of them hav-
ing CI/CD. Liu et al. (2023) analysis was focused on the
context of Android apps, analyzing more than 80, 000 repos-
itories from GitHub, GitLab, and Bitbucket, and finding the
presence on CI/CD in roughly 10% of them. Their focus was
to check the extent of CI/CD adoption, and the use of differ-
ent CI/CD services in the projects.

7 Conclusion and Final Remarks
We analyzed 20 open-source Java projects, 10 long-lived

libraries, and 10 Android projects, with the intention of
checking if the implementation of CI/CD had an impact on
the metrics ACR, ACDIF and ACDEN, which we used as prox-
ies to measure the distribution of atoms of confusion, and
the metrics FP and RP to measure the prevalence of specific
types of atoms. We filtered and chose the repositories follow-

ing specific criteria to get relevant projects for the analysis.
Then, wemade a static analysis of the project release versions
to get the important data, such as LoC, Number of Classes,
Number of AoC (total and for specific types) and Number of
Classes with AoC, to calculate the metrics. We then made a
comparison of the metrics before and after the implementa-
tion of CI/CD. Our results imply there is no statistically sig-
nificant relationship between the implementation of CI/CD
and the metrics ACR, and ACDEN, but there was a significant
relationship when considering ACDIF’s growth rate specifi-
cally. Although these metrics changed for all projects indi-
vidually, as a group they were very stable. Considering FP,
there seems to be a relationship between the two time periods,
but since it follows the common atoms of confusion patterns
(to get more prevalent with project growth), the significance
of CI/CD here is dubious. And finally, we found that, for
both FP and RP, the most prevalent atom type is the Logic
as Control Flow and the least prevalent atom type is the
Arithmetic as Logic.

8 Data Availability

Our data and the code created for this paper
are available as a GitHub repository with this
link: https://github.com/dnfeijo/atoms-CICD-reproduction-
pack.
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